La 掺杂诱发层状钙钛矿型铁电体弛豫性 相变的介电研究*

惠 荣¹) 朱 骏¹) 卢网平¹) 毛翔宇¹) 羌 锋¹) 陈小兵^{1,2})^{*}

1(扬州大学物理科学与技术学院,扬州 225002)

2(南京大学固体微结构物理实验室,南京 210008)

(2003年3月14日收到,2003年4月9日收到修改稿)

制备了 La 掺杂层状钙钛矿铁电体材料 SrBi₄Ti₄O₁₅, Sr₂Bi₄Ti₅O₁₈以及共生结构 Bi₄Ti₃O₁₂-SrBi₄Ti₄O₁₅,通过研究样 品的变温介电特性发现 SrBi_{4-x}La_xTi₄O₁₅(x = 1.0), Sr₂Bi_{4-x}La_xTi₅O₁₈($x \ge 0.5$),(Bi ,La)₄Ti₃O₁₂-Sr(Bi ,La)₄Ti₄O₁₅(x = 1.50)样品的介电常数随温度变化曲线都具有弛豫性相变特征 ,La 含量的变化对介电温度特性曲线有重要影响, 随着 La 含量的增加,其弛豫程度明显增加.弛豫的起源与 La 离子的存在引起局域出现的微畴有关,而正常铁电 体—弛豫铁电体自发相变相对应的微观机理是正常铁电体的宏畴向弛豫铁电体微畴的转变.

关键词:弛豫性相变,微畴-宏畴,层状钙钛矿,介电性能 PACC:7660E,7780D,7700

1.引 言

铋系层状钙钛矿结构铁电(bismuth laverstructured ferroelectrics, BLSF)材料,具有较好的抗疲 劳性能,是目前铁电存储器应用研究的主要材 料^{12]},这种材料的通式是(Bi_2O_2)⁺(A_{n-1}) $B_n O_{3n+1}$)²⁻ 其中 A 为 + 1、 + 2 或 + 3 价离子 , B 为 +3, +4 或 +5 价离子 *n* 为类钙钛矿层中氧八面体 BO₆ 层数,其中类钙钛矿层($A_{n-1} B_n O_{3n+1}$)⁻ 与 (Bi, O,)⁺ 层交替排列^[3,4].为提高材料的铁电性能, A ,B 位掺杂被广泛研究 通过适当的掺杂可以在不 同程度上提高材料的剩余极化及抗疲劳性能[5-8], 但层状钙钛矿铁电体中因掺杂含量的不同而引起的 介电弛豫行为却很少见文献报道,弛豫铁电陶瓷作 为一类重要的功能陶瓷,自上个世纪50年代被发现 以来 围绕着介电弛豫的起源 人们曾提出了种种理 论解释及模型.Smolenskii 最早提出了基于 B 位离子 完全无序分布的组分不均匀理论 认为结构的无序 导致晶体内部化学组分的起伏 ,各组分不同的微区 具有不同的居里温度(T_c),弥散相变现象是大量微

区的 T_c 弥散的结果^[9].这种理论定性地解释了弛 豫铁电体的主要特性,一段时间内被广泛接受.后来 随着电镜技术的发展,发现许多无序的弛豫铁电材 料中存在纳米尺度的有序微区^[10,11]. Randall 和 Cross 曾以有序畴尺度的大小为基准,对铅基复合钙钛矿 结构 Ph(*B'B"*)O₃ 铁电陶瓷进行分类,认为有序畴尺 度在 2—50nm 范围内的是弛豫铁电体,而尺度大于 100nm 或小于 2nm 的是正常铁电体或反铁电体^[12]. 本文报道了 La 掺杂几种层状钙钛矿结构铁电材料 SrBi₄Ti₄O₁₅, Sr₂Bi₄Ti₅O₁₈,及共生材料 Bi₄Ti₃O₁₂-SrBi₄Ti₄O₁₅, M究了材料的变温介电特性,发现当 La 含量大于一定的值时,几种材料均出现了相变弥散 和频率 色散现象,这是弛豫铁电体的典型特 征^[13—15].

2. 实 验

用传统的固相烧结工艺制备 $SrBi_{4-x} La_x Ti_4 O_{15}$ (x = 0.00, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00), $Sr_2 Bi_{4-x} La_x Ti_5 O_{18}$ (x = 0.00, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00)及共生结构(Bi ,La), $Ti_3 O_{12}$ -Sf(Bi ,

^{*} 国家自然科学基金(批准号 :10274066)和江苏省教育厅自然科学基金(批准号 :01KJB140011)资助的课题.

[†]通讯联系人; E-mail xbchen@yzu.edu.cn

图 1 样品的 x 射线衍射谱 (a)SrBi_{4-x} La_xTi₄O₁₅ (b) Sr₂Bi_{4-x}La_xTi₅O₁₈ (c)SrBi_{8-x}La_xTi₈O₂₇

图 2 样品在 T_C 附近,不同测量频率 f 下, ε 与 T 的关系 (a)SrBi₃LaTi₄O₁₅ (b)Sr₂Bi_{3.5}La_{0.5}Ti₅O₁₈ (c)SrBi_{6.5}La_{1.5}Ti₈O₂₇

La ${}_{4}Ti_{4}O_{15}$ (SrBi_{8-x}La_xTi₈O₂₇)(x = 0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50), 将 SrCO₃, Bi₂O₃(过量 10%), La₂O₃, TiO₂ 粉末按每种材料相应的化学计量 配比混合、研磨、烧结制成片状样品.用 x 射线衍射 仪(M03XHF22型,Cu 靶, $\lambda = 0.154056$ nm, 管压为 40 kV, 管流为 40 mA)对烧结后的样品进行结构分析.将样品抛光后涂上氧化银浆,还原制成银电极,用低 频阻抗分析仪(HP4192A)测量了样品的介电常数随 温度的变化曲线.

3. 结果与讨论

烧结以后陶瓷样品的 x 射线衍射谱见图 1,由 图可以看出,三种样品的钙钛矿相都已形成,没有出 现焦绿石相.当 La 掺杂含量(x)不同时,共生结构 SrBi_{8-x}La_xTi₈O₂₇的 x 射线衍射谱的形状几乎没有变 化,而样品 Sr₂Bi_{3.5}La_{0.5}Ti₅O₁₈的衍射谱在(110)峰、 (200) 峰 附 近 分 别 出 现 小 的 衍 射 峰,样 品 SrBi₃LaTi₄O₁₅中也类似情况出现,该峰对应着 SrTiO₃ 的(110)峰,这可能是由于随 La 掺杂量的增加,所需 烧结温度增高,Bi 挥发增多,Bi 欠量导致 SrTiO₃ 杂 相的出现.

通过测量样品相对介电常数 ϵ 随温度 T 的变 化 我们发现 ,三种材料当 La 掺杂量达到一定值时 Sr₂Bi_{4-x}La_xTi₅O₁₈($x \ge 0.05$),SrBi_{4-x}La_xTi₄O₁₅(x =1.0)SrBi_{8-x}La_xTi₈O₂₇(x = 1.50),样品均表现出了 弛豫铁电体的典型特征 ,图 2 为样品 SrBi₃LaTi₄O₁₅, Sr₂Bi_{3.5}La_{0.5}Ti₅O₁₈及 SrBi_{6.5}La_{1.5}Ti₈O₂₇在 T_c 附近,不 同测量频率 f 下,介电常数随温度的变化曲线,三种 样品的介电峰在 T_c 附近均出现宽化现象,同时反 映出相似的规律,随测量频率的升高,介电峰值逐渐 下降,且介电峰值逐渐下降,峰温逐渐向高温方向移 动,三种样品在不同测量频率下介电峰值对应的温 度见表 1.

表 1 各样品在不同测量频率下的介电峰值对应的温度 $T_{
m m}/\infty$

	10kHz	50kHz	500kHz
${\rm Sr}_2La_{0.5}Bi_{3.5}Ti_5O_{18}$	113	114	117
$\rm SrBi_3LaTi_4O_{15}$	252	253	254
SrBi _{6.5} La _{1.5} Ti ₈ O ₂₇	355	356	357

图 3 为 $SrBi_{4-x} La_x Ti_4 O_{15}$ 不同 La 含量样品的介 电变温谱 ,由图可见 在同一种样品中 随 La 含量的 增加,其相应的介电峰半高宽的弥散度加大,具体数 值见表 2.由此可见 La 掺杂导致样品出现了相变弥 散和频率色散现象.样品 SrBi_{4-x}La_xTi₄O₁₅(x = 0.75) 的介电温度谱上也现出了一定的相变弥散现象,但 其频率色散现象不是很明显,因而我们认为 SrBi_{4-x} La_xTi₄O₁₅从 La 含量达 1.0 时开始表现出明显的弛 豫铁电体的特征.由于在 SrBi_{8-x}La_xTi₈O₂₇(x = 1.50) 中没有 SrTiO₃ 杂相,但出现了弛豫铁电体的典型特 征,所以可以推测样品中出现弛豫铁电体特性并非 由 SrTiO₃ 杂相引起,而是样品本身的特性.

图 3 样品 SrBi_{4-x}La_xTi₄O₁₅介电常数 ε 与温度 *T* 的关系(*f* = 10kHz)

表 2 SrBi_{4-x}La_xTi₄O₁₅样品中不同 La 含量所对应 的介电峰半高宽 $\Delta \pi (f = 10 \text{kHz})$

x	0.25	0.50	0.75	1.00
$\Delta T/^{\circ}$ C	29	29	57	92

弛豫性铁电体共同的特点是晶体结构存在一定 程度上的无序,但不同类型的弛豫性铁电体的本质 是不同的,按其产生的原因,可分为:1)由内部非均 匀电场引起的无序;2)由于局域应变而形成的无序; 3)由空位引起的无序^[10],而与正常铁电体—弛豫铁 电体自发相变相对应的微观机理是正常铁电体的宏 畴向弛豫铁电体微畴的转变^[10,11,16,17].La 掺杂层状 钙钛矿铁电体 SrBi₄Ti₄O₁₅,Sr₂Bi₄Ti₅O₁₈及 Bi₄Ti₃O₁₂-SrBi₄Ti₄O₁₅,当 La 含量大于一定的值时,材料均出现 了弛豫性相变现象.从原子半径上看,La³⁺离子半径 为1.16Å,而 Bi³⁺离子半径为 1.17Å^[18],根据 Fajans 法则,在价电数相等的同一系列离子中,半径愈小, 极化能力愈强^[19],因而 La³⁺离子的极化能力将比 Bi³⁺离子强.当 La 进入钙钛矿体系时,由于 A 位阳 离子大小不同及极化能力不同形成局域应变,为了 降低内应力,晶体内部将自发形成电畴以维持能量 最低原理,因而在富 La 离子区域将存在微畴.因 La 离子空间分布是任意的,所以可以推测这些微畴的 空间分布也是任意的.同时,由于四方相存在很大应 变,促进了宏畴的形成,两者共同作用的结果是当 La 含量适当时,出现了自发的微畴—宏畴之间的相 互转换^[17].当温度上升时,离子运动程度加剧,电偶 极子之间的相互耦合减弱,温度达到一定时,宏畴分 解成众多短程有序的微畴,从而发生正常铁电体— 弛豫铁电体的自发相变^[10].Yao 和 Cross 提出了如下 的动态跃迁频率关系^[20,21]:

$$\omega = \omega_0 \exp\left(-\frac{E_a}{kT_m}\right) \, ,$$

式中 ω 为测量频率 ,k 为玻尔兹曼常数 ,T_m 为弛豫 铁电体的介电常数最大值所对应的温度 ;E_a 为微 畴—宏畴转变的活化能.当温度降低时 ,动态频率变 低 ,极化微区将被固定在某一方向而转变为极化微 畴.动态频率越小 ,微畴—宏畴转变越困难 ,微畴越 稳定 ;反之 ,动态频率越大 ,微畴—宏畴的转变越 容易.

另外 Dai 等¹⁷¹在研究四方相的 PLZI(Zr/Ti 比为 40/60)陶瓷的介电性能时,认为 A 空位的存在阻止 了 BO₆ 的耦合,从而导致微畴产生.我们认为在层 状钙钛矿结构中,Bi 挥发引起的空位对正常铁电体 向弛豫铁电体转变的诱发是微弱的.在这些点缺陷 中,氧空位占了很大的分量,但因氧空位很容易移动 聚集,因而从某种意义上讲由氧空位的存在而产生 的微畴是不稳定的而且很容易消失.从实验中也可 以看到,未掺杂时,材料中虽然有空位等点缺陷的存 在,但均表现出正常铁电体的行为,换句话说,空位 并未诱发铁电体的弛豫相变行为.当有 La 掺杂进材 料中时,从一定程度上抑制了空位的生成^[4],空位的 影响就更微弱了.因而 La 掺杂层状钙钛矿铁电材料 诱发其由正常铁电体向弛豫铁电体转变,主要受 La 离子存在引起的微畴决定,空位的影响是微弱的.

从实验还可见,三种材料 $Sr_2La_xBi_{4-x}Ti_5O_{18}$, Sr $Bi_{4-x}La_xTi_4O_{15}$, $SrBi_{8-x}La_xTi_8O_{27}$,开始出现弛豫相 变特征时的 La 含量的值与 A 位 Sr 离子的相对含量 值有关, $Sr_2Bi_4Ti_5O_{18}$ 中,Sr:Bi = 1:2,掺 La 含量 x = 0.5 时出现弛豫相变特征 ,SrBi₄Ti₄O₁₅ ,SrBi₈Ti₈O₂₇中 Sr 与 Bi 的比值分别为 1/4 和 1/8 ,而在这两种材料 中出现弛豫相变时 La 含量的值分别为 1.0 和 1.5 , 可见 A 位 Sr 的相对含量值越高 ,掺 La 后越容易诱 发材料由正常铁电体向弛豫铁电体转变 ,这可能跟 Sr 的 金 属性比较强有关.由于在 Sr₂Bi₄Ti₅O₁₈ , SrBi₄Ti₄O₁₅及共生结构材料 Bi₄Ti₃O₁₂-SrBi₄Ti₄O₁₅中 Sr 占据了部分 A 位 ,这样由于 A 位金属阳离子的价位 及原子半径的改变导致了局部微畴的产生 ,但其含 量还不足以诱发弛豫相变 ,当 La 掺杂入 A 位后 ,进 一步增加了体系中微畴的含量 ,最终导致材料由正 常铁电体变成弛豫铁电体.

另外我们还对 La 掺杂 Bi₄Ti₃O₁₂陶瓷材料进行 了研究,当 La 含量达到 1.0 时,测量其变温介电性 能,未出现明显的弛豫相变现象.目前有文献报道 Bi_{4-x} R_x Ti₃O₁₂(R = Pr, Nd, Gd, Dy j^{221} ,当 x 值较低 时,各样品显示出正常铁电体行为,但所有的样品在 x 值增大时均变成了弛豫铁电体.La, Pr, Nd, Gd, Dy 同属镧系稀土元素,它们价态相同,离子半径相 近,Bi_{4-x}La_xTi₃O₁₂应该会表现出与 Bi_{4-x} R_x Ti₃O₁₂(R= Pr, Nd, Gd, Dy)相似的规律,因此我们认为继续 增大 La 含量有可能导致弛豫相变的出现.

4.结 论

La 掺杂层状钙钛矿结构铁电材料 Sr₂Bi₄Ti₅O₁₈, SrBi₄Ti₄O₁₅及共生结构材料 Bi₄Ti₃O₁₂-SrBi₄Ti₄O₁₅,研 究了其相应的变温介电特性,实验中发现当 La 含量 比较低时, Sr₂La_xBi_{4-x} Ti₅O₁₈, SrBi_{4-x} La_xTi₄O₁₅, SrBi_{8-x}La_xTi₈O₂₇显示出正常铁电体行为,随着 La 含 量的增加, Sr₂La_xBi_{4-x} Ti₅O₁₈(x = 0.5), SrBi_{4-x} La_xTi₄O₁₅(x = 1.0), SrBi_{8-x}La_xTi₈O₂₇(x = 1.50)开始 出现弛豫铁电体的典型特征.对SrBi_{4-x}La_xTi₄O₁₅样 品通过其介电系数随温度的变化谱计算出不同 La 含量对其介电峰半高宽的影响,发现随着 x 的增 大,介电峰逐渐宽化.我们认为 La 离子的存在形成 局域应变,进而产生微畴,同时由于四方相存在更大 应变,促进了宏畴的形成,两者共同作用的结果,当 La 含量适当时,出现了自发的微畴—宏畴之间的相 互转换.

- [1] Ho Nyung Lee et al 2002 Science 296 2006
- [2] Zhao M L, Wang C L, Zhong W L, Zhang P L, Wang J F 2002 Acta Phys. Sin. 51 420(in Chinese)[赵明磊、王春雷、钟维烈、 张沛霖、王矜奉 2002 物理学报 51 420]
- [3] Hiroshi Irie, Masaru Miyayama and Tetsuichi Kudo 2001 J. Appl. Phys. 90 4089
- [4] Yang P X, Deng H M and Zhu J H 1998 Acta Phys. Sin. 47 1222 (in Chinese)[杨平雄、邓红梅、褚君浩 1998 物理学报 47 1222]
- [5] Park B H et al 1999 Nature 401 682
- [6] Yuji Noguchi and Masaru Miyayama 2001 Appl. Phys. Lett. 78 1903
- [7] Uong Chon, Ki-Bum Kim, Hyun M Jang and Gyu-Chul Yi 2001 Appl. Phys. Lett. 79 3137
- [8] Melagrejo R E , Tomar M S , Bhaskar S , Dobal P S and Katiyar R S 2002 Appl. Phys. Lett. 81 2611
- [9] Smolenskii G A 1970 J. Phys. Soc. Jpn. 28 26
- [10] Jiang X P, Fang J W, Zeng H R, Li G R, Chen D R and Yin Q R 2001 Science in China (Series E) 31 307 (in Chinese) [江向平、 方健文、曾华荣、李国荣、陈大任、殷庆瑞 2001 中国科学(E 辑) 31 307]
- [11] Xu G S , Luo H S , Qi Z Y , Xu H Q and Yin Z W 2000 J. Chin.

Cera. *Soc*. **28** 560 (in Chinese)[许桂生、罗豪、齐振一、徐 海清、殷之文 2000 硅酸盐学报 **28** 560]

- [12] Randall C A , Bhalla A S , Shrout T R 1990 J. Matter . Res . 5 829
- [13] Liqin Zhou , Vilarinho P M and Baptista J L 1999 J. Euro. Ceram. Soc. 19 2015
- [14] Toulouse J, Vugmeister Bo E and Pattnaik R 1994 Phys. Rev. Lett. 73 3467
- [15] Westphal V and Kleemann W, Glinchuk M D 1992 Phy. Rev. Lett. 68 847
- [16] Liu P and Yao X 2002 Acta Phys. Sin. 51 1621 (in Chinese) [刘 鹏、姚 熹 2002 物理学报 51 1621]
- [17] Dai X, Kigiovanni A and Viehland D 1993 J. Appl. Phys. 74 3399
- [18] Hiroshi Uchida , Hiroki Yoshikawa , Isao Okada , Hirofumi Matsuda and Takashi Iijima 2002 Jpn. J. Appl. Phys. 41 6820
- [19] Wen Y K, Shao J 1985 Intruduction to Ionic Polarization (Anhui: Anhui Education Press) p88(in Chinese] 温元凯、邵 俊 1985 离子极化导论 安徽 安徽教育出版社)第 88页]
- [20] Chen Z L , Yao X and Cross L E 1983 Ferroelectrics 49 213
- [21] Cross L E 1987 Ferroelectrics 76 241
- [22] Pineda-Flores J L, Chavira E and Huanosta-Tera A 2001 Phys. C 364 – 365 674

Dielectric study on relaxor-like phase transition of lanthanum doped bismuth layer-structured ferroelectrics *

Hui Rong Zhu Jun Lu Wang-Ping Mao Xiang-Yu Qiang Feng Chen Xiao-Bing[†]

(College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China)

(Laboratory of Solid State Microstructures , Nanjing University , Nanjing 210008 , China)

(Received 14 March 2003; revised manuscript received 9 April 2003)

Abstract

Lanthanum doped bismuth layer-structured ferroelectrics and its intergrowth type, $SrBi_{4-x}La_xTi_4O_{15}$, $Sr_2La_xBi_{4-x}Ti_5O_{18}$, and (Bi ,La), Ti_3O_{12} -Si (Bi ,La), Ti_4O_{15} , have been prepared by solid-state reaction method. The dielectric properties of those materials are measured. The results show that $SrBi_{4-x}La_xTi_4O_{15}$ (x = 1.0), $Sr_2La_xBi_{4-x}Ti_5O_{18}$ ($x \ge 0.5$), (Bi ,La), Ti_3O_{12} -Sr (Bi ,La), Ti_4O_{15} (x = 1.50) exhibit typical relaxational characteristics. The degree of diffuseness and relaxation increased with increasing La^{3+} content. The origin of relaxation is the microdomain induced by La^{3+} doing. The micromechanism corresponding to the transition between normal ferroelectrics and relaxors is explained as the transition from the macrodomain of normal ferroelectrics to the microdomain of relaxors.

Keywords: relaxor-like phase transition, microdomain-macrodomain, bismuth layer-structured perovskite, dielectric properties PACC: 7660E, 7780D, 7700

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10274066) and the Natural Science Foundation of Education Bureau of Jiangsu Province, China (Grant No. 01KJB140011).

[†] Corresponding Author , E-mail address 'xbchen@yzu.edu.cn.