Zr-Al-Ni-Cu(Nb,Ti)大块非晶玻璃转变 的动力学性质*

陈志浩 刘兰俊 张 博 席 王 强 祖方道*

(合肥工业大学材料科学与工程学院,合肥 230009) (2003 年 8 月 29 日收到 2004 年 3 月 16 日收到修改稿)

以 Zr-Al-Ni-Cu(Nb, Ti)大块非晶合金差示扫描量热分析实验为基础,利用 Lasocka 方程、Kissinger 方程及 Vogel-Fulcher-Tammar(VFT)方程对其玻璃转变的动力学性质从不同方面进行了研究.分析结果表明 玻璃转变表观激活 能越小 则晶化转变激活能越大,表现出相反的难易程度,且玻璃转变表观激活能数值远较传统非晶要小,验证了 大块非晶合金独特的结构特点及玻璃形成能力(GFA)强的原因.利用 VFT 方程对玻璃转变弛豫时间与升温速度的 VFT 曲线进行了拟合,所算得的玻璃脆性参数 *m* 均在 30 左右,反映了 Zr-Al-Ni-Cu(Nb, Ti)非晶合金强的脆性属性. 玻璃转变处 Lasocka 关系的 *B* 值、原子表观激活能及玻璃脆性参数均反映了相同的 GFA 大小趋势,从不同方面进一 步揭示了非晶合金玻璃转变区间的动力学行为与 GFA 之间的密切联系,可作为判断非晶合金 GFA 强弱的重要依 据.

关键词:玻璃转变,玻璃形成能力,表观激活能,玻璃脆性参数 PACC:6470P,6740F

1.引 言

非晶合金在玻璃转变温度点 T_g 附近获得了足 够的能量后开始进行短程扩散重排,由玻璃态向更 稳定的过冷液态进行玻璃转变.这一过程中的动力 学、热力学行为对揭示非晶合金玻璃转变的本质及 玻璃形成能力的原因和判据具有重要意义.由于传 统非晶合金深过冷区间的温度范围过窄,这方面工 作未能大量展开.上世纪80年代末大块非晶合金研 究得到极大发展,在新的指导原则下陆续发现了新 型非晶合金系^[1-6].由于其具有更强的玻璃形成能 力(GFA).更宽的过冷区间、更小的临界冷速和更大 的最大临界尺寸,使得大块非晶合金更易于制备和 满足实际应用,同时也大大方便了研究和理解非晶 合金玻璃转变的过程.

对于非晶合金玻璃转变的本质一直以来颇有争 议,一般可接受的观点是玻璃转变为受动力学过程 控制的热力学相变,有着显著的动力学特征^[7].另 外,在对大块非晶相对于传统非晶的组织结构差异 研究中发现大块非晶合金具有两大不同的微观结构 特点:首先,具有高密度、无规密堆结构^{*1},大块非晶 合金的组织结构与深过冷液态更为接近.其次,非晶 与其相应的结晶化合物在微观结构和成分上有很大 不同,晶化时需要在大范围内进行组元原子的扩散 重排.由于大块非晶合金高密度、无规密堆结构使其 在过冷液态时进行原子的长程扩散十分困难,因而 抑制了它在深过冷液态时的生核和晶体长大,增强 了其热稳定性及对晶化过程的抵抗性.

非晶合金在玻璃转变及随后深过冷液区中的动 力学性质与非晶在这一区间的黏弹性行为密切相 关,Busch 和 Johnson 等人在对 Zr_{46.75} Ti_{8.25} Cu_{7.5} Ni₁₀ Be_{27.5}和 Zr_{41.2} Ti_{13.8} Cu_{12.5} Ni₁₀ Be_{22.5}等大块非晶合金玻 璃转变过程中粘度及弛豫时间的研究发现,粘度等 性质在接近玻璃转变区间时对温度变化相当敏 感^[9,10] 越强的深过冷液体其粘度越大,对温度变化 的反应越为迟滞.Angell 等人最早提出用"强"、"脆" 属性来区分玻璃态液体黏弹性属性的强弱^{11,12]},其 粘度 随 温 度 的 变 化 关 系 可 利 用 Vogel-Fulcher-Tammann (VFT)方程进行拟合:

^{*} 安徽省自然科学基金(批准号 103046202)资助的课题.

[†] 通讯联系人.E-mail fangqiuzu@hotmail.com

 $\eta = \eta_0 \exp[DT_0 (T - T_0)].$ (1)

越'强'的过冷液体,其 VFT 拟合关系与 Arrhenius 关系越为接近:

$$\eta = \eta_0 \exp(D/T). \tag{2}$$

(1)和(2)式中 T_0 为 VFT 温度, η_0 设为 4×10⁻⁵ Pa· s^[9], D 为与熔体脆性相关的拟合参数.因而可利用 两者偏离程度来进行"强"、"脆"属性的衡量,即由 log₁₀ τ (*T*)对 T_g /T 的曲线在 T_g 点处的斜率 *m*(即玻 璃脆性参数)来量化.*m* 值大小范围为 16 < *m* < 200, *m* 值越小,说明偏离的程度越小,深过冷液体越 "强".当 *m* < 30 时,属于"强"液体,例如 SiO₂ 就是典 型的"强"液体.*m* > 100 时则属于"脆"性液体,oterpheny(OTP)即为典型的脆玻璃.合金的玻璃脆性 与 GFA 有着密切的关系,Johnson 小组曾对 GFA 和 过冷液体的"强"的行为呈正比性关系进行了讨 论^[13,14].

本文以 Zr-Al-Ni-Cu(Nb,Ti)大块非晶合金系为 研究对象,在差示扫描量热(DSC)分析实验的基础 上运用 Lasocka 方程^[15]、Kissinger 方程^[16]及 VFT 方 程对其在玻璃转变处的动力学行为进行了系统的研 究.在玻璃转变及晶化转变点处求得的表观激活能 的特点更进一步验证了大块非晶独特的结构特点及 GFA 强的原因.运用 VFT 方程拟合了玻璃转变处的 VFT 曲线,并且计算出了其玻璃脆性参数 *m* 大小, 显示了 Zr-Al-Ni-Cu(Nb,Ti)非晶合金强的脆性属性. Lasocka 关系的 *B* 值、原子表观激活能及玻璃脆性参 数均反映了 GFA 相同的大小趋势,从不同方面进一 步表明了玻璃转变的动力学行为与其 GFA 间的密 切关系,可作为判断合金 GFA 大小的重要依据.

2. 实验过程

实验所用 4 种母合金依次为 $Zr_{65} Al_{7.5} Ni_{10} Cu_{17.5}$ (1号), $Zr_{55} Al_{15} Ni_{10} Cu_{20}$ (2号), $Zr_{57} Al_{10} Ni_{12.6} Cu_{15.4} Nb_5$ (3号)和 $Zr_{52.5} Ti_5 Al_{10} Ni_{14.6} Cu_{17.9}$ (4号).使用的设备 为真空熔炼吸铸炉.将纯度在 99.9%以上的各组元 按照原子百分比配好,用丙酮洗净放入非晶电弧炉 中抽真空至 $1.6 \times 10^{-3} Pa$,进行电弧熔炼,并采用钛 吸收法进一步去氧,反复熔炼 5 次后吸铸成大块非 晶.本文所制备的块状非晶尺寸为 $\phi10mm \times 135mm$ 的圆柱状样品,并利用线切割技术加工成 DSC 实验 所要求的尺寸.对样品进行 x 射线衍射($CuK\alpha$ 射线) 检验后,可看到非晶峰而无明显的晶化峰出现(如图 1 所示) 这表明了其组织的非晶特征.

图 1 Zr₆₅ Al_{7.5} Ni₁₀ Cu_{17.5} 样品的 x 射线衍射谱图

使用 DSC 分析技术纪录观察块体非晶的玻璃 转变现象.实验使用的热分析仪器是 METTLER 821e/400 型差热扫描量热仪,扫描温度范围为 -70—700℃,线性升温速率范围为 0.01—100℃/ min.将这各组非晶样品在不同升温速度下(2,15, 30 A5 80K/min,其中 3 号样品为 2.5,5,10,20 A0, 80K/min)分别进行 DSC 扫描,其温度范围在 50— 550℃之间.升温过程中采用氮气保护.从大块非晶 合金在不同升温速度下的 DSC 曲线中可看出玻璃 转变及晶化转变表现出明显的动力学特征(如图 2 所示):2 号样品 Zr₅₅ Al₁₅ Ni₁₀Cu₂₀随升温速度的增大, 玻璃转变过程越来越明显,玻璃转变温度 T_g 、晶化 开始温度 T_x 等热力学特征温度都向高温方向 移动.

图 2 Zr₅₅ Al₁₅ Ni₁₀ Cu₂₀分别在 2,15 30 45 和 80K/min 升温速度下 DSC 曲线

3.实验结果与分析

3.1. 玻璃转变的 Lasocka 关系

图 3 为以上 4 组 Zr 基块体非晶玻璃转变温度

3841

 T_g 随升温速度不同的变化曲线,其拟合关系为 $T = A + B \ln Q$,表明玻璃转变温度 $T_g 与 \ln Q$ 呈线性关系.对 T_g 这一关系称为 Lasocka 关系^[15], *B* 值大小 说明了玻璃转变温度 T_g 对升温速度的依赖性. Johnson 等人^[9]认为,过冷液体的粘度越大,玻璃转 变弛豫过程所需要的时间就越多,受动力学因素的 影响越大.因此, *B* 值大小侧面反映了 GFA 的强弱. 如表 1 所示 *A* 组样品由强至弱依次为样品 4 号、3 号、2 号、1 号.所得 *B* 值大小与文献 17]利用多种 扫描速度的 DSC 结果得到的 Zr₄₁ Ti₁₄ Cu_{12.5} Ni₁₀ Be_{22.5} 大块非晶合金 T_g 温度的 *B* 值接近,说明这 4 组大 块非晶与 Zr-Ti-Cu-Ni-Be 非晶合金系相似,具有很强 的 GFA.

图 3 样品 1—4 号 Z_r 基块体非晶合金玻璃转变温度 T_g 点随升 温速度 Q 不同的变化曲线

表 1 样品 1—4 号大块非晶合金 T_g 与升温速度间 Lasocka 关系的 *B* 值

11.5461

3.2.	Kissinger	方程与原子激活能

9.9124

B

在玻璃转变过程中大块非晶合金原子结构进一 步扩散、重排,向平衡态的深过冷液体转变.在这一 进程中,原子吸收能量克服由玻璃态向过冷液态结 构转变时的能量障碍——原子表观激活能.它有效 地反映了块体非晶合金的结构特征.我们将以上数 据通过 Kissinger 方程来确定玻璃转变、晶化转变过 程的表观原子激活能 △*E*. Kissinger 方程为

$$\ln \frac{T^2}{Q} = \frac{\Delta E}{RT} + A , \qquad (3)$$

11.5634

4号

13.1812

T 为特征温度, Q 为升温速度, R 为气体常数. 利用

(3)式,由 $\ln T^2/Q$ 对 1/T 作图的斜率计算出表观激 活能 ΔE ,如图 4 所示,即为样品 1—4 号 Zr 基大块 非晶在 T_g 处的 Kissinger 曲线图,计算出的这 4 组样 品对应的表观激活能如表 2 所示.表观激活能由小 至大依次为样品 4 号、3 号、2 号、1 号.数值越小,反 映其组织结构与相应的深过冷液态结构越接近.

图 4 样品 1—4 号在玻璃转变温度 Tg 点的原子激活能

表 2 样品 1—4 号大块非晶在 Tg 处的表观激活能

样品	1号	2号	3号	4号	
ΔE (kcal/mol)	78.95	74.50	72.83	59.31	

表 3	样品 14 号大块非晶	晶在 T_x 处的表观激活能
-----	-------------	------------------

样品	1号	2号	3号	4号	
ΔE (kcal/mol)	58.25	60.57	70.99	78.87	

而样品在晶化转变处算得的表观激活能大小顺 序则正好相反,如表 3 所示.综合表 1 和表 2 可以看 出,GFA 越强,其组织结构与相应的深过冷液态结构 越接近,玻璃转变时所需克服的能垒越小(即玻璃转 变处的 Δ*E* 越小),而与之相应的晶态组织结构差异 越大,因而晶化时所需克服的能垒则越大.

比较典型的传统非晶合金 Ni₇₅ P₁₆ B₆ Al₃, Pd_{77.5} Cu₆ S_{16.5}, Pd_{77.5} Ag₆ Si_{16.5}, Pd_{77.5} Ni₆ Si_{16.5} (Pd₈₀ Ni₂₀)₈₀ P₂₀ 和(Pt₈₀ Ni₂₀)₀ P₃₀的玻璃转变激活能分别为 170, 152, 129.2, 156.9, 136 和 129kcal/mol^[18].两相比较可以看 出 Zr 基大块非晶合金在玻璃转变过程中的原子激 活能比传统薄带非晶合金要低很多,即大块非晶合 金在这一过程中所要克服的能量障碍远小于传统非 晶合金.综上分析结果说明了较传统非晶而言,大块 非晶合金微观组织结构与相应的深过冷液态结构更 为接近,其非晶形成能力更强,而与晶态组织结构则 差异较大,过冷液区更为稳定.由此可见, Zr 基大块 非晶合金玻璃转变过程中的小的激活能揭示了大块 非晶独特的结构特点和 GFA 强的原因 ,其数值的大 小反映了非晶 CFA 的强弱.

图 5 样品 1—4 号 Zr 基大块非晶合金升温速度 Q 与玻璃转变 点 T_g 间的 VFT 拟合曲线

3.3. 玻璃脆性参数 m

在不同的升温速度 Q 下,非晶合金的玻璃转 变、晶化转变等过程均随之变化这一动力学特性,也 体现在改变升温速度时特征温度处的结构弛豫时间 亦随之而变. Busch 和 Johnson 研究小组在对 $Zr_{46.75}$ $Ti_{8.25}Cu_{7.5}Ni_{10}Be_{27.5}$ 和 $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ 等合金 的研究中发现玻璃转变处结构弛豫时间与温度的关 系与玻璃转变区域粘度与温度的 VFT 关系相似^[11], 说明玻璃转变随升温速度变化的动力学特性亦能反 映合金脆性. Cherf^{19 20]}在对一些含 Pd 和 Pt 的金属 玻璃的研究中也在 $T_g^2/Q-T_g$ 关系中得出与粘度和 温度关系相似的曲线.本文将样品 1—4 号 Zr-Al-Ni-Cu(Nb ,Ti)合金做 $log_{10}Q^{-1}$ 与 T_g^{-1} 的 VFT 方程拟合 曲线(如图 5 所示). VFT 方程为

$$Q^{-1} = A \exp\left(\frac{DT_0}{T - T_0}\right)$$
, (4)

式中 A , D , T_0 均为拟合参数 , T_0 为 VFT 温度.

当升温速度小到一定值时,深过冷液体在加热 过程中任意温度时均有足够的弛豫时间进行弛豫和 结构转变,故取升温速度为 0.5K/min 时对应的玻璃 转变温度 $T_{g,0.5}$ (近似于平衡态深过冷液体的玻璃转 变温度 T_g)对 T_g^{-1} 进行调整,以便于不同合金的 VFT 曲线相互比较.可以看出,当升温速度较低时, 图 5 中样品对应各点与 VFT 曲线拟合很好,当升温 速度增至 40K/min 以上时,图 5 中 VFT 点开始与 VFT 曲线逐渐偏离.这是因为随升温速度的不断增大,非晶在各温度弛豫至对应的结构状态的弛豫时间明显不足,其滞后现象越加明显,因而 $T_{g,0.5}/T_{g}$ 值向后推移直至与VFT 曲线开始产生偏离.各金属玻璃拟合的VFT 曲线的各项参数 A, D, T_{0} 见表 4.利用这些参数计算出在特定升温速度下对应 T_{g} 点的玻璃脆性参数为

$$m = \frac{DT_0 T_g}{(T_g - T_0)^2 \ln 10}, \qquad (5)$$

式中 T_g 取 $T_{g0.5}$,计算结果列于表 4.4 组样品脆性 参数均算得在 30 上下,说明该组元合金系属于"强" 液体,具有很强的玻璃形成能力.其脆性属性由强至 弱依次为样品 4 号、3 号、2 号、1 号,与以上分析的 Lasocka 关系及原子激活能所反映的 GFA 大小相一 致,进一步验证了玻璃脆性参数 m 与 GFA 间的正 比性关系.

表 4 样品 1—4 号在 T_g 处 VFT 方程的各项参数

样品	A	D	T_0	m
1号	1.0×10^{-11}	18.7	380	34.1
2号	1.0×10^{-10}	17.4	397	31.4
3号	1.0×10^{-10}	18.8	388	29.9
4号	1.0×10^{-9}	17.2	378	27.5

4. 结 论

本文对 4 组 Zr-Al-Ni-Cu(Nb,Ti)大块非晶合金 在不同升温速度下进行了DSC实验,并对其数据利 用 Lasocka 方程、Kissinger 方程及VFT 方程进行了热 力学、动力学研究.

 Lasocka 关系反映了 *T_g* 对升温速度的依赖 性,即其受动力学因素影响的程度,从侧面反映了 GFA 的强弱.与 Zr₄₁ Ti₁₄ Cu_{12.5} Ni₁₀ Be_{22.5} 大块非晶合金 相近的 B 值表明 Zr-Al-Ni-Cu(Nb ,Ti)非晶合金系优 秀的 GFA 能力.

2. 利用 Kissinger 方程计算了玻璃转变及晶化 转变中的表观激活能,结果显示,GFA 越强,非晶组 织结构与相应的深过冷液态结构越接近,玻璃转变 时所需克服的能垒则越小(即玻璃转变处的 Δ*E* 越 小).同时与相应的晶态组织结构差异越大,晶化时 所需克服的能垒也越大(晶化表观激活能越大).所 求 Zr 基非晶合金于玻璃转变处的表观激活能数值 远小于传统非晶合金,说明大块非晶合金组织结构 较传统非晶合金更加接近于过冷液体结构,因而其 非晶形成能力更强,过冷液态更为稳定.揭示了其独 特的结构特点和强的玻璃形成能力的原因.

3. 对 Zr-Al-Ni-Cu(Nb,Ti)非晶合金玻璃脆性进行了分析 求出了特征温度处的结构弛豫时间与升温速度间的 VFT 曲线,计算出的各非晶合金玻璃脆性参数 m 均介于 30 上下,表明 Zr-Al-Ni-Cu(Nb,Ti)

- [1] Inoue A, Zhang T and Masumoto T 1989 Mater. Trans. JIM 30 722
- [2] Inoue A and Masumoto T 1993 Mater. Sci. Eng. A 173 1
- [3] Inoue A et al 1992 Mater. Trans. JIM **33** 937
- [4] Inoue A et al 1993 Mater. Trans. JIM 34 1234
- [5] Peker A and Johnson W L 1993 Appl. Phys. Lett. 63 2342
- [6] Zhang Z and Chen L R 2003 Chin. Phys. 12 79
- [7] Wang W H , Li L L , Pan M X and Wang R J 2001 Phys. Rev. B 63 52204
- [8] Wang H R et al 2001 Acta Phys. Sin. 50 2192(in Chinese)] 王焕 荣等 2001 物理学报 50 2192]
- [9] Busch R , Bakke E and Johnson W L 1998 Acta Mater . 46 4725
- [10] Li J and Zhang Y 1996 Acta Phys. Sin. 45 1359(in Chinese) 李 健、张 烨 1996 物理学报 45 1359]
- [11] Angell C A 1995 Science 267 1924

合金系属于"强"液体,具有很强的玻璃形成能力. 4. 对4组 Zr 基大块非晶合金玻璃转变动力学 行为研究发现,Lasocka 关系的 B 值,玻璃脆性参数 及原子表观激活能均反映了 GFA 一致的大小趋势, 从而可作为判断合金 GFA 大小的重要依据,因为它 们表明了玻璃转变的动力学行为与其玻璃形成能力 间的密切关系.

- [12] Bönmer R, Ngai K L, Angell C A and Plazek D J 1993 J. Chem. Phys. 99 4201
- [13] Busch R, Masuhr A, Bakke E and Johnson W J 1997 Mater. Res. Soc. Symp. Proc. 455 369
- [14] Glade S C and Johnson W L 2000 J. Appl. Phys. 87 7249
- [15] Lasocka M 1976 Mater. Sci. Eng. 23 173
- [16] Kissinger H E 1956 J. Res. Natl. Bur. Stand. 57 217
- [17] Zhuang Y X, Wang W H, Zhang Y, Pan M X and Zhao D Q 1999 Appl. Phys. Lett. 75 2392
- [18] Guo Y C and Wang Z X 1984 Amorphous Physics (Beijing Science Press)p174 (in Chinese)[郭贻诚、王震西 1984 非晶态物理学 (北京 科学出版社)第 174页]
- [19] Chen H S 1978 J. Non-Cryst. Solids 27 257
- [19] Chen H S 1978 J. Non-Cryst. Solids 29 22

Chen Zhi-Hao Liu Lan-Jun Zhang Bo Xi Yun Wang Qiang Zu Fang-Qiu[†]

(Department of Materials Science and Engineering , Hefei University of Technology ,Heifei 230009 , China)
(Received 29 August 2003 ; revised manuscript received 16 March 2004)

Abstract

The kinetic property during the glass transition process of Zr-Al-Ni-Cu (Nb, Ti) amorphous alloys was systematically investigated by differential scanning calorimetry method. The activation energy (ΔE) at the glass transition temperature was much smaller than tradition amorphous alloys and have different magnitude compared to ΔE value at T_x . These reveal that the bulk amorphous alloys show special structure characteristics and that is the reason of its big glass-forming ability. The Vogel-Fulcher-Tammann fits to the experimental data are given by the full curves and the fragility parameter m value was calculated to be about 30, reflecting its "strong" liquid property in deep-undercooled region. The B value of Lasocka function atom activation energy and glass fragility parameter reveal a close relationship between kinetic behavior at glass transition and the glass-forming ability. So it could be used as an important judgment for glass-forming ability.

Keywords : glass transition ,glass-forming ability ,activation energy ,fragility parameter PACC : 6470P , 6740F

^{*} Project supported by the Natural Science Foundation of Anhui Province , China (Grant No. 03046202).

 $^{^{\}dagger}\mbox{Corresponding author. E-mail $fangqiuzu@hotmail.com}$