Al_xGa_{1-x}N/GaN 调制掺杂异质 结构的子带性质研究*

郑泽伟¹²) 沈 波²[†] 桂永胜³) 仇志军³) 唐 宁²) 蒋春萍³) 张 荣²) 施 毅²) 郑有 ²) 郭少令³) 褚君浩³)

¹(解放军理工大学理学院,南京 211101)

2)(南京大学物理系,南京 210093)

3(中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083)

(2003年3月26日收到2003年5月4日收到修改稿)

通过低温和强磁场下的磁输运测量研究了 Al_{0.22} Ga_{0.78} N/GaN 调制掺杂异质结构中 2DEG 的子带占据性质和子带输运性质.在该异质结构的磁阻振荡中观察到了双子带占据现象,并发现 2DEG 的总浓度随第二子带浓度的变化 呈线性关系.得到了该异质结构中第二子带被 2DEG 占据的阈值电子浓度为 7.3 × 10¹² cm⁻².采用迁移率谱技术得 到了不同样品的分别对应于第一和第二子带的输运迁移率.发现当样品产生应变弛豫时第一子带的电子迁移率骤 然下降,而且第二子带的电子迁移率远大于第一子带的电子迁移率.用电子波函数分布和应变弛豫时的失配位错 散射解释了上述现象.同时进一步说明了界面粗糙散射和合金无序散射是决定 Al_x Ga_{1-x} N/GaN 异质结构中 2DEG 迁移率的主要散射机理.

关键词:AlGaN/GaN 异质结,二维电子气,子带占据,输运迁移率 PACC:7200,7215G,7280E

1.引 言

Al_xGa_{1-x}N/GaN 异质结构由于在高温、高频和 大功率场效应晶体管方面的应用前景而受到了人们 的普遍关注^[1-3]. 与 Al_xGa_{1-x} As/GaAs 异质结构相 比,该异质结构具有较大的导带不连续性和较强的 极化效应,异质界面处的二维电子气(2DEG)浓度达 10¹³ cm⁻²量级^[4]. 同时,异质结构中的 2DEG 被限制 在非常窄的区域内,使得 2DEG 量子化现象更加显 著,特别是第一和第二子带能级间的距离非常大.因 而,该异质结构中的激发子带的占据在磁输运实验 中很难被观察到.所以,对该异质结构子带性质的研 究既是研发新一代高性能 GaN 基微波功率器件的 需要,同时对丰富和发展半导体低维结构物理学也 有重要学术意义.磁输运测量一直是研究 2DEG 输 运性质的有效方法^[5-8].本论文通过在低温和强磁 场下的磁输运测量,研究了 Al_xGa_{1-x}N/GaN 调制掺 杂异质结构的多子带占据性质和不同子带的输运 性质.

2. 材料制备和实验

图 1 为 Al_xGa_{1-x}N/GaN 调制掺杂异质结构示意 图.样品用金属有机化学气相淀积方法在蓝宝石衬 底的(0001)面上生长.生长前先在蓝宝石衬底的 (0001)面上生长一层非成核的 GaN 缓冲层,生长温 度为 488℃.接着在 1071℃的温度下生长一层 2.0µm 厚的非故意掺杂 GaN(*i*-GaN)层.然后在 1080℃的 温度下生长一层非故意掺杂的 Al_{0.22} Ga_{0.78} N(*i*-AlGaN)作为隔离层和 Si 掺杂的 Al_{0.22} Ga_{0.78} N(*n*-AlGaN)层.实验所用样品的结构如表 1 所示.x 射线

^{*} 国家重点基础研究专项基金(批准号:G20000683),国家自然科学基金(批准号:G0136020和 60290080)和国家高科技研究发展计划项目 (批准号:2002AA305304)资助的课题。

[†]E-mail :bshen@nju.edu.cn

衍射倒空间谱表明,在样品 1、样品 2、样品 5 和样品 6 中 GaN 上的 Al_{0.22}Ga_{0.78}N 层是赝势生长的,而在样 品 3 和样品 4 中是晶格部分弛豫的^[9].

n-Al _{0, 22} Ga _{0, 78} N					
i-Al _{0.22} Ga _{0.78} N					
i-GaN					
蓝宝石(0001)					

图 1 Al_{0.22}Ga_{0.78}N/GaN 调制掺杂异质结构样品 的结构示意图

实验中霍尔测量和磁输运测量均采用范德堡法.77K 下测得的样品霍尔迁移率如表1所示.磁输运测量在 1.5K 下进行,磁场扫描范围在 0—9T 之间.

表 1 样品结构和 1.4K 下分别对应样品第一子带和第二子带 2DEG 的输运迁移率 μ1 和 μ2,以及在 77K 下测得的霍尔迁移率 μH

样品编号	隔离层	n-AlGaN	μ_1	μ_2	$\mu_{ m H}$
	厚度/nm	/nm	$(\text{ cm}^2/\text{V}\cdot\text{s})$	$(\text{cm}^2/\text{V} \cdot \text{s})$	$(\text{cm}^2/\text{V} \cdot \text{s})$
1	3	25	1839	—	2730
2	3	50	1219	5626	3070
3	3	75	416	—	915
4	3	100	456	8347	978
5	5	25	1752	—	3060
6	10	25	1756	—	4450

3. 实验结果和讨论

3.1. Al_{0.22} Ga_{0.78} N/GaN 调制掺杂异质结构的子带占 据性质

图 2 为样品 4 的纵向磁阻随与样品表面垂直的 磁场的变化曲线.从表 1 可知该样品具有较低的霍

图 2 1.4K 温度下 ,Al_{0.22} Ga_{0.78} N/GaN 调制掺杂异质结构的横向 磁阻随与表面垂直的磁场的变化

图 3 1.4K 温度下, Al_{0.22} Ga_{0.78} N/GaN 调制掺杂异质结构界面处 三角势阱中 2DEG 总浓度随第二子带 2DEG 浓度的变化

尔迁移率 但在磁阻曲线中出现了非常强的舒布尼 科夫-德哈斯(SdH)振荡,其他样品也出现了很强的 SdH 振荡.这里感兴趣的是 SdH 振荡的双周期性. SdH 振荡的双周期特性表明,异质界面处三角势阱 中至少有两个子带被 2DEG 占据. 从高场振荡磁阻 可直接得到分别对应于第一子带和第二子带的 2DEG 浓度,对磁阻曲线用快速傅里叶变换也可分 辨出两个子带,并且所得到的两个子带的浓度和直 接由振荡周期得到的非常吻合,这表明所用样品中 有两个子带被 2DEG 占据,考虑到数据处理的准确 性 这里只给出磁阻曲线没有观察到明显并行电导 的样品 3、样品 4 和样品 6 三块样品 2DEG 总浓度随 第二子带 2DEG 浓度的变化,如图 3 所示.从图 3 可 以看出 ,2DEG 总浓度随第二子带浓度的变化呈非 常好的线性关系.这一结果与 Ga, In, ,, P/GaAs 异质 结构的实验结果以及 Al, Ga1_, As/GaAs 异质结构的 实验结果和理论结果一致[10-12],从而可以外推出第 二子带被占据时 2DEG 的阈值浓度为 7.3 × 10^{12} cm⁻².费米能级 E_F 、各子带能级 E_i 和第 *i* 个子带 2DEG 浓度 N_i 间的关系可表示为

$$E_{\rm F} = E_i + N_i \pi \hbar^2 / m^*$$
 (1)

式中 m^* 为电子有效质量 , \hbar 为折合普朗克常数.取 $N_i = 7.3 \times 10^{12} \text{ cm}^{-2}$, $m^* = 0.23 m_e^{[13]}$ 时可得到 $E_F = E_1 = 75 \text{ meV}$.表明 ,当该异质结构三角势阱中的第二 子带刚要被 2DEG 占据时第一和第二子带的能级相 距 75 meV.

3.2. Al_{0.22} Ga_{0.78} N/GaN 调制掺杂异质结构的子带输运性质

半导体中的电子输运特性通常由输运散射时间 $\tau_{1}($ 或输运迁移率 μ_{1})表征.如果 $Q(\theta)$ 正比于散射 概率 , θ 为散射角 ,则输运散射时间由下式给出:

$$\frac{1}{\tau_{t}} = \int_{0}^{\pi} Q(\theta) (1 - \cos\theta) d\theta , \qquad (2)$$

式中有一个权重因子(1 – cosθ)项,所以只有大角散 射才会对输运散射时间有显著的贡献.

研究者们已经在 Al_xGa_{1-x}N/GaN 异质结构的散 射机理方面作了大量的工作,认为界面粗糙散射和 合金无序散射在决定二维电子气的迁移率方面起着 非常重要的作用^[14].由前面的结果可知 ,Al_{*}Ga_{1-*}N/ GaN 异质结构界面三角势阱中的最低两个子带能级 距离可达 75meV 以上,所以这两个子带中电子的分 布会有很大的不同 因而在散射机理上也可能存在 较大的差异,散射机理的差异直接表现在两个子带 电子迁移率的不同 用传统的霍尔方法不能将不同 子带电子的迁移率区分开而只能得到迁移率的平均 值 ;不同子带中 2DEG 的输运迁移率可以用迁移率 谱技术得到[15-18].得到的不同样品对应于第一子带 和第二子带的输运迁移率(μ_1 和 μ_2)如表1所示. 从表中可以发现,对赝势生长样品(样品2)和部分 弛豫样品(样品4)其第二子带中电子的输运迁移率 均远大于第一子带电子的输运迁移率,但与赝势生 长的样品 2 相比 Al0.22 Ga0.78 N 层产生应变弛豫的样 品 4, μ, 骤然减小而 μ, 却相对增加.

我们知道,在 $Al_x Ga_{1-x} N/GaN$ 异质结构中,界面 处的压电场可高达 ~ $MV/cm^{[4]}$.这一强的压电场将 对该异质结构中的 2DEG 输运性质产生重要的影 响.当 GaN 上的 $Al_x Ga_{1-x} N$ 层产生应变弛豫时将在 界面附近产生失配位错.因为在 $Al_x Ga_{1-x} N$ 层中位 错芯附近的应变与 $Al_x Ga_{1-x} N$ 中其他地方不同,而 界面处的压电场由 Al_{*}Ga_{1-*}N 中的应变决定,所以, 当 Al_{*}Ga_{1-*}N 层产生应变弛豫时界面处的压电场将 产生较大的起伏.这一不均匀的极化场将对第一子 带中的电子产生很强的散射作用.所以,样品的势垒 层产生应变弛豫时第一子带电子输运迁移率骤然 降低.

由上面的结果知道 Al_{0.22} Ga_{0.78} N/GaN 异质界面 处三角势阱中的第二子带和第一子带的能级相距 75meV 以上,所以和第一子带相比第二子带的电子 波函数将远离界面扩展到 GaN 层中.界面粗糙散射 和合金无序散射都为短程散射势,由于第二子带电 子分布远离界面,与第一子带的电子相比第二子带 电子受到的这两种散射作用将大大减弱.因而,第二 子带电子的输运迁移率远大于第一子带的输运迁 移率.

当 Al_{0.22} Ga_{0.78} N 势垒层产生部分弛豫时,异质界 面处的三角势阱将变浅,而数据显示这时这两个子 带间距并没有明显的变化,从而第二子带的电子进 一步远离界面.这样,第二子带电子不但受到界面粗 糙散射和合金无序散射进一步变弱而且所受到的非 均匀电场散射也变弱,所以,Al_{0.22} Ga_{0.78} N 层产生应 变弛豫时第二子带电子的迁移率不但没有减小反而 有所增加.这一结果进一步证明了界面粗糙散射和 合金无序散射在限制 2DEG 的迁移率方面起着非常 重要的作用.

4.结 论

本文通过低温和强磁场下的磁输运测量,研究 了 Al_{0.22}Ga_{0.78}N/GaN 调制掺杂异质结构中 2DEG 的子 带占据性质和子带输运性质.在该异质结构的磁阻 振荡中观察到了双子带占据现象,并发现 2DEG 的 总浓度随第二子带浓度的变化呈线性关系.得到了 第二子带被 2DEG 占据的阈值电子浓度为 7.3 × 10¹² cm⁻²,这时第一和第二子带能级相距 75meV.采用迁 移率谱技术得到了不同样品分别对应于第一和第二 子带的输运迁移率.发现当样品产生应变弛豫时第 一子带的电子迁移率骤然下降,而且第二子带的电 子迁移率远大于第一子带的电子迁移率骤然下降,被 认为是由于失配位错在界面附近产生的非均匀压电 场对第一子带电子的散射造成的.第二子带的电子 迁移率远大于第一子带的电子迁移率,被认为是由 于第二子带电子分布远离异质结构界面,使界面粗 糙散射和合金无序散射减弱的原因.实验结果进一 步验证了界面粗糙散射和合金无序散射这两种散射 机理是决定 Al_xGa_{1-x}N/GaN 异质结中 2DEG 迁移率 的主要散射机理。

- [1] Khan M A, Chen Q, Shur M S, Mermott B T, Higgins J A, Burm J, Schaff W and Eastman L F 1996 Electron. Lett. 32 357
- [2] Wu Y F, Keller B P, Keller S, Kapolnek D, Kozodoy P, Denbaars S P and Mishra U K 1996 Appl. Phys. Lett. 69 1438
- [3] Binari S C , Redwing J M , Kelner G and Kruppa W 1997 Electron. Lett. 33 242
- [4] Asbeck P M, Yu E T, Lau S S, Sullivan G J, Hove J V and Redwing J 1997 Electron. Lett. 33 1230
- [5] Wong L W , Cai S J , Li R , Wang K , Jiang H W and Chen M 1998 Appl. Phys. Lett. 73 1391
- [6] Tsui D C 1973 Phys. Rev. B 8 2657
- [7] Zheng Y D , Chang Y H , McCombe B D , C. Farrow R F , Temofonte T and Shirland F A 1986 Appl. Phys. Lett. 49 1187
- [8] Manfra M J, Pfeiffer L N, West K W, Stormer H L, Baldwin K W, Hsu J W P, Lang D V and Molnar R J 2000 Appl. Phys. Lett. 77 2888

- [9] Shen B , Someya T and Arakawa Y 2000 Appl . Phys . Lett . 76 2746
- [10] Störmer H L et al 1982 Solid State Commun. 41 707
- [11] Razeghi M, Maurel P, Omnés F, Ben S Armor, Dmowski L and Portal J C 1986 Appl. Phys. Lett. 48 1267
- [12] Ando T, 1982 J. Phys. Soc. Jap. 51 3893
- [13] Wang Y J, Kaplan R, Ng H K, Doverspike K, Gaskill D K, Ikedo T, Akasaki I and Amono H 1996 J. Appl. Phys. 79 8007
- [14] Antoszewski J, Gracey M, Dell J M, Faraone L, Fisher T A, Parish G, Wu Y F and Mishra U K 2000 J. Appl. Phys. 87 3900
- [15] Gui Y S *et al* 1998 *Acta Phys . Sin .* **47** 1354(in Chinese]] 桂永胜 等 1998 物理学报 **47** 1354]
- [16] Beck W A, Anderson J R 1987 J. Appl. Phys. 62 541
- [17] Meyer J R , Hoffman C A , Bartoli F J , Arnold D A , Sivananthan S , Faurie J P 1993 Semicond . Sci . Technol . 8 805
- [18] Antoszewski J, Faraone L 1996 J. Appl. Phys. 80 3881

Study on the subband properties of $AI_x Ga_{1-x} N/GaN$ modulation-doped heterostructures *

Zheng Ze-Wei¹²⁾ Shen Bo²⁾ Gui Yong-Sheng³⁾ Qiu Zhi-Jun³⁾ Tang Ning²⁾ Jiang Chun-Ping³⁾

Zhang Rong²) Shi Yi²) Zheng You-Dou²) Guo Shao-Lin³) Chu Jun-Hao³)

¹⁾(Institute of Science, PLA University of Science & Technology, Nanjing 211101, China)

²) (Department of Physics, Nanjing University, Nanjing 210093, China)

³ (National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

(Received 26 March 2003; revised manuscript received 4 May 2003)

Abstract

The subbands occupation and subband transport properties in modulation-doped $Al_{0.22}$ Ga_{0.78} N/GaN heterostructures are studied by means of magnetotransport measurements at low temperatures and high magnetic fields. The occupation of two subbands is observed from the Shubnikov-de Haas oscillations. It is found that the total density of the two-dimensional electron gas (2DEG) as a function of the electron sheet density in the second subband is linear. The threshold of the 2DEG density that the second subband begins to be occupied is 7.3×10^{12} cm⁻². The transport mobility of the 2DEG in the two subbands is obtained by using the mobility spectrum technique. It is found that the transport mobility in the first subband decreases significantly when the relaxation of the $Al_{0.22}$ Ga_{0.78} N barrier occurs. The electron mobility in the second subband is much larger than that in the first one. The results indicate that the interface roughness scattering and the alloy disorder are the main mechanisms in determining the 2DEG mobility in Al_x Ga_{1-x} N/GaN heterostructures.

Keywords : AlGaN/GaN heterostructurs , two-dimentional electron gas , subband occupation , transport mobility PACC : 7200 , 7215G , 7280E

^{*} Project supported by the Special Funds for Major State Basic Research Projects of China (Grant No. G20000683), the National Natural Science Foundation of China (Grant Nos. 60136020 and 60290080), and the National High Technology Research & Development Project of China (Grant No. 2002AA305304)