Er³⁺ ,Tm³⁺ 共掺的 NaY(WO₄) 晶体的光谱分析 和上转换发光*

谭浩¹⁾ 宋峰¹⁾ 苏静¹⁾ 商美茹¹⁾ 付博¹⁾

张光寅¹) 程振祥²) 陈焕矗²)

¹(南开大学光子学中心,天津 300071) ²(山东大学晶体研究所,济南 250100) (2003年5月3日收到 2003年6月2日收到修改稿)

在室温下 测量了 Er :Tm :NaY(WO4) 晶体的吸收光谱、激发光谱、发射光谱以及上转换发光 ,并运用 J-O 理论 对测量的结果进行了计算 ,得出了 Er :Tm :NaY(WO4) 晶体的强度参数 .报道了 Tm ,Er 离子间特殊的能量传递和相 关上转换 ,解释了离子间的能级跃迁过程 .同时 ,对于 Er 增强 Tm 离子近红外发光的特性也作了充分研究.

关键词:Er:Tm:NaY(WO₄) 晶体,吸收光谱,发射光谱,激发光谱,上转换 PACC:7855,4255R,7840,7630K

1.引 言

对于稀土离子掺杂上转换的研究在近些年得到 了长足的发展.其中,由于 Er³⁺,Tm³⁺离子都拥有丰 富的能级和在可见光以及近红外波段的荧光发射谱 线而受到了人们广泛的关注.Er³⁺,Tm³⁺ 单掺或者与 别的杂质共掺的各种实验被广泛报道^[1-7].不过,将 Er³⁺,Tm³⁺ 共掺的实验却未见报道.

 Er^{3+} 和 Tm^{3+} 的一些能级十分接近,例如 Er^{3+} 的 ${}^{4}I_{9/2}$ 能级和 Tm^{3+} 的 ${}^{3}H_{4}$ 能级的中心波长都是 801nm. 那么,两种离子共掺结果会如何呢?

本文通过测量到的吸收光谱,利用 J-O(Judd-Ofelt)^{8,9]}理论计算了 Er:Tm:NaY(WO₄)(Er:Tm: NYW)的强度参数;测量了上转换发光,发射光谱和 激发光谱.报道并解释了 Er,Tm 离子间的能量传递 过程.同时,对于 Er 增强 Tm 离子近红外发光现象也 作了充分研究.

2. 光谱分析

2.1. 吸收谱理论计算

本实验采用的 Er :Tm :NYW 晶体是通过 CS 提

升方法^[10]生长出来, Er³⁺掺杂浓度为 1.5%, Tm³⁺的 掺杂浓度为 0.5%, 样品厚度为 1.76mm, 样品外观为 淡粉红色, 双面抛光, 折射率为 1.9.

在室温下,采用 UV-365 型分光光度计测量了晶体的吸收光谱(图1).显然,在可见光范围有强吸收.

根据 J-O 理论,求得强度参数 Ω, 由于稀土离 子发光主要是电偶极跃迁,所以计算时只考虑了电 偶极情况.

Er Tm NYW 中 Er^{3+} 的强度参数 $\Omega_t(t=2 A f)$

^{*}教育部重点基金(批准号 101047)及国家自然科学基金(批准号 160377033 ,60025512)资助的课题.

[†]E-mail :tanhao@eyou.com

 $\Omega_2 = 1.51194 \times 10^{-19} ; \Omega_4 = 2.14131 \times 10^{-20} ; \Omega_6$ = 1.54659 × 10⁻²⁰.

Er :Im NYW 中 Im^{3+} 的强度参数 $\Omega_{t}(t=2.4.6)$ 为 $\Omega_{2} = 1.44294 \times 10^{-20}$; $\Omega_{4} = 3.17406 \times 10^{-20}$; $\Omega_{6} = 1.61192 \times 10^{-20}$.

与文献[11]比较,发现 Ω_2 的变化最大.由于 Ω_2 与共价态程度有关,可知本样品的共价程度比单 掺时要高很多.

2.2. 发射光谱

根据 Er :Tm :NYW 的吸收光谱和 Er ,Tm 的能 级,我们采用美国 SPEC 公司的 F111AI 型荧光光度 计测量了在 365nm(对应 Tm³⁺ 的¹D₂ 能级和 Er³⁺ 的 $^{2}K_{15/2}$ 能级),379nm(Er³⁺ 的 $^{4}G_{11/2}$),406nm(Er³⁺ 的 $^{2}H_{9/2}$),449nm(Er³⁺ 的 $^{4}F_{3/2}$),476nm(Tm³⁺ 的 $^{1}G_{4}$), 486nm(Er³⁺ 的 $^{4}F_{7/2}$),530nm(Er³⁺ 的 $^{2}H_{11/2}$),543nm (Er³⁺ 的 $^{4}S_{3/2}$),656nm(Er³⁺ 的 $^{4}F_{9/2}$),671nm(Tm³⁺ 的 $^{3}F_{2}$)以及 692nm(Tm³⁺ 的 $^{3}F_{3}$)的光激发时的发射光谱 和相关激发光谱.

通过对光谱进行比较,我们发现 365nm,379nm, 406nm 449nm 486nm 谱线相似,在其他论文^[11]中对 于这些跃迁的机理已经有了很好的阐述.在这些光 谱中 476nm 的光谱引起了我们的重视(图 2).

从图 (x a)中可以看出,存在着三个强发射带. 对应 的 峰 分 别 是 530nm,543nm,551nm,646nm, 654nm,801nm.特别是红光部分和近红外部分的强 发射带是首次观察到.同时在图 (x b)中,红外光谱 中,观察到了1190nm,1300nm,1745nm的发射峰.

图 3

而对比 656nm ,671nm 和 692nm 发射谱后 ,发现 它们发射峰的位置相同 ,且都只存在 801nm 的强发 射峰.

图 2 476nm 在可见和红外的发射谱

2.3. 激发光谱

我们测量了相关波长的激发谱,并给出了重要的激发谱的图(如图3).

从图 3 可以看出,对于 692nm 激发谱 476nm 具 有很高的激发效能.对于 801nm 的激发谱 476nm 和 692nm 都具有不错的激发效能,而 656,671nm 却不 能激发.通过对上面发射谱和激发谱的分析,得到如 下推断:

第一、由于 476nm 发射谱中存在 646nm(Tm³⁺ 的 ${}^{1}G_{4}$ → ${}^{3}F_{4}$) *6*56nm(Er³⁺ 的 ${}^{4}F_{9/2}$ → ${}^{4}I_{15/2}$),且在其近红外 发射谱中存在 1745nm(Tm³⁺ 的 ${}^{3}F_{4}$ → ${}^{3}H_{6}$)发射峰,显 然 Tm³⁺存在从 ${}^{1}G_{4}$ 到 ${}^{3}F_{4}$ 的直接跃迁,并同时激发基 态的 Er³⁺ 到 ${}^{4}F_{9/2}$ 激发态.具体过程是: ${}^{1}G_{4}$ (Tm³⁺)+ ${}^{4}I_{15/2}$ (Er³⁺)→ ${}^{3}F_{4}$ (Tm³⁺)+ ${}^{4}F_{9/2}$ (Er³⁺) 图 4 中 *A* 过 程).而 656nm 和 1745nm 的激发谱也反过来证明了 这一点.

第二、从 801nm(Tm³⁺ 的¹G₄→³H₅ 或³H₄→³H₆) 的激发谱中,我们知道,对于 801nm 其主要的激发波 长为 476nm 和 692nm,而从 476nm 的近红外谱中,可 以看出存在较强的 1190nm(Tm³⁺ 的³H₅→³H₆)发射 峰,由此可以断定 476nm 发射谱中 801nm 光的很大 成分是 Tm³⁺ 的¹G₄→³H₅,而这些光则可把 Er³⁺ 从基 态激发到⁴I_{9/2},具体过程是 :¹G₄(Tm³⁺)+⁴I_{15/2}(Er³⁺) →³H₅(Tm³⁺)+⁴I_{9/2}(Er³⁺) 图 4 中 *B* 过程).1190nm 激发谱的 476nm 峰也证明了这点.

第三、同时,由于 476nm 激发出了 530nm, 543nm 551nm 的光,而在红外存在 1745nm 发射峰, 我们推断出存在如下跃迁过程: ${}^{3}F_{4}(Tm^{3+}) + {}^{4}I_{9/2}$ (Er^{3+})→ ${}^{3}H_{6}(Tm^{3+}) + {}^{4}S_{3/2}$ 或 ${}^{2}H_{11/2}(Er^{3+})$ (图4中*C* 过程).大量的 ${}^{1}G_{4} \rightarrow {}^{3}F_{4}$ 的跃迁未能在红外出现强的 1745nn(${}^{3}F_{4} \rightarrow {}^{3}H_{6}$)发射峰也说明确实存在能量 传递.

3. 上转换发光特性

同样采用 F111AI 型荧光光度计测量了上转换 发光.激发光源是波长为 974nm 的激光二极管 (LD) 经透镜聚焦后,照射在样品上.在 LD 激光功 率(驱动电流 1000mA,对应于激发功率约为 220mW) 线性变化、单色仪狭缝(1mm)、采集积分时间(0.5s) 等条件下,得到了如图 5 所示的上转换发光谱和图 6 上转换发光强度对激发功率的双对数图.

从图 5 中,我们知道 530nm(Er^{3+} 的 $^{2}\text{H}_{11/2} \rightarrow$ $^{4}\text{I}_{15/2}$) 543nm和 551nm(Er^{3+} 的 $^{4}\text{S}_{3/2} \rightarrow$ $^{4}\text{I}_{15/2}$) 656nm和 667nm(Er^{3+} 的 $^{4}\text{F}_{9/2} \rightarrow$ $^{4}\text{I}_{15/2}$),以及 801nm(Tm^{3+} 的 $^{3}\text{H}_{4}$

→³H₆ 或 Er³⁺的⁴I_{9/2}→⁴I_{15/2})存在上转换发光.其中,

出现如此强的 801 nm 上转换光谱在我们所知的范围 内还没有见到,而 Er 单掺样品中也没有出现过^[11], 显然这是由于 Er/Tm 共掺引起的.与其他基质相比, 光谱中绿光和红光发生了分裂,分别对应于 ${}^{4}S_{3/2} \rightarrow$ ${}^{4}I_{15/2}, {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}.$

由图 6 得到,在所有的光强和激发功率的对数 关系中,其斜率都接近于 2,说明上转换发光主要都 是通过双光子过程得到的.通过对图 6 和光谱参数 计算结果的分析,并结合前面对 Tm³⁺,Er³⁺的跃迁 通道的讨论,可以得出上转换发光的跃迁情况.具体 过程如下:

1. 绿光 (530nm 543nm 和 551nm)

对于绿光,其斜率分别为 1.969,1.992 和 1.980.

具体过程是:在基态的 Er^{3+} 吸收了 974nm 的激 发光能量 $h\nu$ 后,跃迁到 $^{4}I_{11/2}$ 能级.除一部分无辐射 弛豫到 $^{4}I_{13/2}$ 能级以外,其余离子吸收激发光的能量 进一步跃迁到 $^{2}H_{11/2}$ 能级,然后一部分再无辐射弛豫 到 $^{4}S_{3/2}$ 能级.上述过程可用下面的式子来表达:

 ${}^{4}I_{15/2}(Er^{3+}) + h\nu \rightarrow {}^{4}I_{11/2}(Er^{3+}),$ ${}^{4}I_{11/2}(Er^{3+}) + h\nu \rightarrow {}^{2}H_{11/2}(Er^{3+}),$ ${}^{2}H_{11/2}(Er^{3+}) \sim {}^{4}S_{3/2}(Er^{3+}).$

从²H_{11/2}跃迁回基态⁴I_{15/2}发出中心波长 530nm 的 光², H_{11/2}无辐射弛豫至⁴S_{3/2},再跃迁到基态,发出波 长为 543nm 和 551nm 的绿光.这是双光子过程.

2. 红光 656nm 和 667nm 和红外光 801nm)

红光的斜率分别为 1.873 和 1.972,红外光斜率 为 1.939.

具体过程:在基态的 Er^{3+} 吸收能量跃迁到⁴ $I_{11/2}$ 能级后 相当数量的离子将无辐射弛豫到⁴ $I_{13/2}$ 能级, 再吸收激发光能量而跃迁到⁴ $F_{9/2}$ 能级.从前面分析 我们知道,对于 656nm 是不能直接激发出 801nm 的. 在本样品中,处于⁴ $F_{9/2}$ 的 Er^{3+} 将和基态 Tm^{3+} 发生能 量传递,得到³ F_3 能级的 Tm^{3+} ,然后弛豫到³ H_4 能级.即

 ${}^{4}I_{11/2}(\text{ Er}^{3+}) \sim {}^{4}I_{13/2}(\text{ Er}^{3+}),$

 ${}^{4}I_{13/2}(\text{ Er}^{3+}) + h\nu \rightarrow {}^{4}F_{9/2}(\text{ Er}^{3+})$

 ${}^{4}F_{9/2}(Er^{3+}) + {}^{3}H_{6}(Tm^{3+}) \rightarrow {}^{4}I_{15/2}(Er^{3+}) + {}^{3}F_{3}$ (Tm³⁺),

 ${}^{3}F_{3}(Tm^{3+}) \sim {}^{3}H_{4}(Tm^{3+}).$

由⁴ F_{9/2}能级跃迁至⁴ I_{15/2},发出中心波长为 656nm 和 667nm 的红光.由³ H₄ 跃迁回³ H₆ 就发射出中心波 长为 801nm 的红外光.这是两个双光子过程.

综上,通过对 Er :Tm :NYW 光谱特性的研究,分 析出其中存在的 Er ,Tm 离子之间的几个跃迁过程: ${}^{1}G_{4}(Tm^{3+}) + {}^{4}I_{15/2}(Er^{3+}) \rightarrow {}^{3}F_{4}(Tm^{3+}) + {}^{4}F_{9/2}(Er^{3+}),$ ${}^{1}G_{4}(Tm^{3+}) + {}^{4}I_{15/2}(Er^{3+}) \rightarrow {}^{3}H_{5}(Tm^{3+}) + {}^{4}I_{9/2}(Er^{3+}),$ ${}^{3}F_{4}(Tm^{3+}) + {}^{4}I_{9/2}(Er^{3+}) \rightarrow {}^{3}H_{6}(Tm^{3+}) + {}^{4}S_{3/2} g^{2}H_{11/2}$ $(Er^{3+}), {}^{4}F_{9/2}(Er^{3+}) + {}^{3}H_{6}(Tm^{3+}) \rightarrow {}^{4}I_{15/2}(Er^{3+}) + {}^{3}F_{3}$ $(Tm^{3+}). 同时我们发现,由于 Tm^{3+} 和 Er^{3+} 共掺, 使得 Tm^{3+} 在 801 nm 位置的发射得到了很大的加强.$

- [1] Heine F, Heumann E et al 1994 Appl. Phys. Lett. 65 383
- [2] Chen X B, Li M X et al 2000 Acta Phys. Sin. 49 2482 (in Chinese] 陈晓波、李美仙等 2000 物理学报 49 2482]
- [3] Song F, Guo H C *et al* 2001 Acta Opt. Sin. **21** 1392(in Chinese) [宋 峰、郭红沧等 2001 光学学报 **21** 1392]
- [4] Philipps J F , Töpfer T et al 2002 Appl. Phys. B 74 233
- [5] Yang J H, Dai S X et al 2003 Acta Phys. Sin. 2 508(in Chinese) [杨建虎、戴世勋等 2003 物理学报 2 508]
- [6] Sokólska I 2000 Appl. Phys. B **71** 157
- [7] Danger T , Koetke J et al 1994 J. Appl. Phys. 76 1413
- [8] Judd B R 1962 Phys. Rev. 127 750
- [9] Ofelt G S 1962 J. Chem. Phys. 37 511
- [10] Cheng Z X , Lu Q et al 2001 J. Crystal Growth 222 797
- [11] Song F, Tan H et al 2002 Acta Phys. Sin. 51 2375 (in Chinese)
 [宋 峰、谭 浩等 2002 物理学报 51 2375]

Upconversion luminescence and Spectra characteristics of Er³⁺, Tm³⁺ co-doped NaY(WO₄)₂ crystal*

Tan Hao¹) Song Feng¹) Su Jing¹) Shang Mei-Ru¹) Fu Bo¹) Zhang Guang-Yin¹)

Cheng Zhen-Xiang²) Chen Huan-Chu²)

¹⁾ (Photonics Center , Nankai University , Tianjin 300071 , China)

 $^{2}\$ (Institute of Crystal , Shandong University , Jinan ~250100 , China)

(Received 3 May 2003; revised manuscript received 2 June 2003)

Abstract

Absorption spectra , emission spectra , excitation spectra , and upconversion luminescence of Er^{3+} , Tm^{3+} co-doped NaY (WO₄) crystal were measured at room temperature. Intensity parameters are calculated from absorption spectra in terms of Judd-Offelt theory. Transition processes of the energy levels of Er^{3+} and Tm^{3+} were analyzed in details and the cross relaxations : ¹G₄(Tm^{3+}) + ⁴I_{15/2}(Er^{3+}) \rightarrow ³F₄(Tm^{3+}) + ⁴F_{9/2}(Er^{3+}) , ¹G₄(Tm^{3+}) + ⁴I_{15/2}(Er^{3+}) \rightarrow ³H₅(Tm^{3+}) + ⁴I_{9/2}(Er^{3+}) , ³F₄ (Tm^{3+}) + ⁴I_{9/2}(Er^{3+}) \rightarrow ³H₆(Tm^{3+}) + ⁴S_{3/2} or ²H_{11/2}(Er^{3+}) and ⁴F_{9/2}(Er^{3+}) + ³H₆(Tm^{3+}) + ⁴I_{15/2}(Er^{3+}) + ³F₃(Tm^{3+}) were put forward. Sufficient proofs have been found to illustrate the use of Er^{3+} as a sensitizer which is effective for the Tm^{3+} doped crystal.

Keywords : Er :Tm $NaY(WO_4)_2$ crystal , absorption spectra , emission spectra , excitation spectra , upconvarsion **PACC** : 7855 , 4255R , 7840 , 7630K

^{*} Project supported by the key Project of the Ministry of Education of China (Grant No. 01047) and the National Natural Science Foundation of China (Grant Nos. 60377033 and 60025512).