Ga_6N_6 团簇结构性质的理论计算研究*

郝静安† 郑浩平

(同济大学玻耳固体物理研究所,上海 200092) (2003年6月13日收到 2003年7月16日收到修改稿)

在密度泛函理论的基础上,对 $Ga_6 N_6$ 团簇进行了第一性原理、全电子、从头计算,得到了 10 种可能的三维空间 结构及其电子结构.其中最稳定结构的一对 GaN 原子的平均结合能为 9.748 eV,因此是可能存在的.但与他人计算 的 $Ga_3 N_3$ 和 $Ga_5 N_5$ 相比, $Ga_6 N_6$ 团簇可能不属于" 幻数 "团簇.最稳定结构的 $Ga_6 N_6$ 团簇的费米面是部分占有的,能 量为 $E_F = -5.2972$ eV,因此具有" 金属性",但没有自旋磁矩.我们还计算了该结构的 $Ga_6 N_6$ 团簇的亲和势、电离能 和电子跃迁能.这将有助于对 $Ga_n N_n$ 团簇系列的结构和性质随 n 变化的研究.

关键词:GaN,团簇,电子结构 PACC:3640,7115A

1.引 言

近来, GaN 被确认为一种重要的宽能隙半导体. 其在蓝光到紫外光光电器件及高温、大功率、长寿命 电子器件方面都有巨大的应用前景;在短波长光致 发光二极管、半导体激光器及光探测器、光学数据存 储、高速大功率电子器件、紫外探测器等领域都有广 阔的应用前景.我们已对 GaN 晶体的电子结构做过 计算研究^[1],得到了与实验值相符合的 GaN 晶体禁 带宽度等性质.

然而 GaN 在微电子等方面的应用要求我们对 GaN 团簇的物理和化学性质有足够的了解. 但理论 方面对 GaN 团簇的研究仍很有限^[2-5],仅限于一些 Ga_n N_m($n, m \leq 5$)的小团簇. 其中, Belbruno^[2], Kandalam 等^[3], Song 和 Cao^[4]分别计算了 Ga₃N₃ 团 簇,得到了不同的稳定结构. Song 和 Cao^[4]的结果是 一种三维结构,其能量比其他人得到的结果低, Song 和 Cao^[5]还利用 FP-LMTO 方法计算了 Ga₅N₅ 团簇的 结构,得到了一种平面稳定结构.

据我们所知,目前还没有 Ga₆N₆ 团簇性质理论 计算研究的报道.本文从第一性原理出发,用"自由 团簇计算法"对 Ga₆N₆ 团簇进行了结构和能量的研 究.希望能够通过这项研究提供更多的对 $Ga_n N_n$ 小团簇性质的深入理解.

2. 理论和计算方法

我们的"自由团簇计算法"基于密度泛函理 论^[67].一个含 N 个电子和 M 个固定原子核的系统 的基态能量可写成

$$E_{\rm c}[\rho] = T_{\rm n}[\rho] + E_{\rm xc}[\rho] + \int \int \frac{\rho(\mathbf{r})\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}'$$
$$- 2\sum_{j=1}^{M} \int \frac{\rho(\mathbf{r})Z_{j}}{|\mathbf{r} - \mathbf{R}_{j}|} \mathrm{d}\mathbf{r} + \sum_{i\neq j}^{M} \frac{Z_{i}Z_{j}}{|\mathbf{r} - \mathbf{R}|} (1)$$

本文采用原子单位制 $,e^2 = 2, h = 1, 2m_e = 1$ 这里 e为电子电荷 ,h 是普朗克常数 $,m_e$ 为电子质量 .本文 中 ,上标 σ 表示自旋 ,下标 xe 表示交换-关联作用. 在(1)式中 , $T_m[\rho]$ 是 N 个"无相互作用单电子"的 总动能 . $E_x[\rho]$ 是交换-关联能 ,我们采用局域自旋 密度近似(LSDA) ,使用由 Rajagopal 等^[8]再参数化的 von Barth 和 Hedin 交换-关联势公式^[9].采用上述交 换-关联势的理由如下 (1)本文主要研究 Ga₆N₆ 团 簇的空间结构和电子结构 ,不想涉及各种不同交换-关联势对计算结果的影响.(2)我们在文献 1]中利 用这种形式的交换-关联势得到了与实验结果相符 的 GaN晶体能带结构分布和禁带宽度 . 每个"无相

^{*}上海市科学技术发展基金(批准号:00JC14051)资助的课题.

[†] E-mail :haoja101@163.com

互作用单电子"可用一个定态单电子波函数
 f_n(r)
 表示 ,系统总电荷密度和总动能分别是各个无相互
 f
 f
 用单电子的电荷密度和动能之和 ,

$$\rho(\mathbf{r}) = \rho^{\text{up}}(\mathbf{r}) + \rho^{\text{dn}}(\mathbf{r})$$
$$= \sum_{\ell \in \text{Ediago}} |\phi_{\ell}^{\text{up}}(\mathbf{r})|^{2}$$
$$+ \sum_{m \in \text{Ediago}} |\phi_{m}^{\text{dn}}(\mathbf{r})|^{2}, \qquad (2)$$

$$T_{ml}[\rho] = \sum_{\substack{\ell \in L \in I : H \in I : H \in I}} \oint \phi_{l}^{up *}(\mathbf{r}) - \nabla^{2} \not p_{l}^{up}(\mathbf{r}) d\mathbf{r} + \sum_{n(\ell \in L \in I : H \in I)} \phi_{m}^{dn *}(\mathbf{r}) - \nabla^{2} \not p_{m}^{dn}(\mathbf{r}) d\mathbf{r}.$$
 (3)

在总电荷守恒条件下,把(1)式对 ϕ_n^{*} (**r**)变分,即得 到著名的 Kohn-Sham 方程

$$\left\{ -\nabla^{2} + 2 \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' - 2 \sum_{i=1}^{M} \frac{Z_{i}}{|\mathbf{r} - \mathbf{R}_{i}|} + V_{vc}^{\sigma}(\mathbf{r}) \right\} \Phi_{n}^{\sigma}(\mathbf{r}) = \varepsilon_{n}^{\sigma} \Phi_{n}^{\sigma}(\mathbf{r}).$$
(4)

本文的计算就是把单电子波函数 Φ_n^r (**r**)用一组高斯 基展开,对 Ga_6N_6 团簇自洽求解方程(4).这里所用 的 Ga原子和 N 原子优化的高斯基组与文献[1]中 相同.

3. 计算结果和讨论

3.1. 空间结构

为了得到 Ga_6N_6 团簇的稳定结构,我们确定了 7 种可能的三维初始结构.这些初始结构的确定是 基于对 GaN 晶体的研究^[1]和对文献 2—5 的借鉴. 初始原子间距参考了 GaN 晶体晶格常数的实验确 定值^[10]:a = 0.319 nm,c = 0.5189 nm, $\mu = 0.377$.再 根据计算结果所得到的单个原子的受力来调整团簇 中原子的位置,重新计算.最后我们计算得到了 10 种可能的 Ga_6N_6 团簇结构.这些结构及其基态总能 量已在图 1 中给出.当然,我们不能说已给出所有可 能的 Ga_6N_6 团簇亚稳态结构,可能还存在一些图 1 中没有显示的亚稳态结构.

在图 1 所示的 10 种结构中,结构(1)的基态能 量最低 : $E_{\rm c} = -322597.61 \text{ eV}$.为了便于讨论,我们 在图 1(1)中用数字标出了各原子的编号.表 1 给出 了结构(1)中 12 个原子的编号、原子类型及相应的 位置坐标.第 2 个原子(N)和第 7 个原子(Ga)之间 的原子间距最小,其距离为 0.1905 nm;第 8 个原子 (N)和第10个原子(N)之间的原子间距最大,其距离为0.5575 nm.

表 1 Ga_6N_6 团簇结构(1)的原子坐标

序号	原子	X/nm	Y/nm	Z/nm	
1	Ga	0.0000	- 0.0047	0.0087	
2	Ν	0.0003	- 0.0001	0.3274	
3	Ga	0.0000	0.1840	0.2619	
4	Ν	0.0000	0.1842	0.0640	
5	Ga	0.1580	- 0.0967	0.2645	
6	Ν	0.1628	- 0.0951	0.0663	
7	Ga	-0.1571	- 0.0871	0.2645	
8	Ν	-0.1621	- 0.0893	0.0663	
9	Ga	0.1582	0.2761	0.0003	
10	Ν	0.1630	0.2813	0.3266	
11	Ga	- 0.1581	0.2767	0.0003	
12	Ν	- 0.1621	0.2718	0.3266	

为了验证团簇真实存在的可能性,我们利用相同的高斯基组分别计算了孤立 Ga 原子和 N 原子的能量,得到的结果为 $E_{Ga} = -52283.87 \text{ eV}$, $E_{N} = -1472.65 \text{ eV}$.根据公式

团簇结合能 = 孤立原子能量 × 团簇原子数

- 团簇能量

计算得到团簇结合能为 58.49 eV,略大于文献 5 中 团簇 $Ga_5 N_5$ 的结合能 58.11 eV.另外,文献 4]得到 的团簇 $Ga_3 N_3$ 的结合能为 34.45 eV.根据公式

GaN 原子对结合能 = 团簇结合能

÷ GaN 原子对数

计算得到结构(1)中一对 GaN 原子的平均结合能为 9.75 eV,文献 4 5 中得到的 Ga₃N₃和 Ga₅N₅中一对 GaN 原子的平均结合能分别为 11.48 和 11.62 eV,大 于我们的计算结果.因此结构(1)形式的 Ga₆N₆ 团簇 是可以存在的,但不如团簇 Ga₃N₃和 Ga₅N₅稳定.我 们知道,许多团簇都有幻数效应,原子数等于幻数的 团簇特别稳定,因为其平均原子结合能明显大于非 幻数团簇的平均原子结合能.我们推测 Ga_nN_n 团簇 在随 n 增大时也有'幻数'效应,n = 3,n = 5 可能是 Ga_nN_n 团簇的幻数,而 n = 4(至今未见报道),n = 6不是 Ga_nN_n 团簇的幻数.考虑冯端在文献[11]中定 义的'相邻团簇能量二阶差分",

 $\Delta_2(N) = [BE(N) - BE(N+1)]$

+[BE(N) - BE(N - 1)],

其中 BH(N)表示 N 个原子团簇的结合能.对于 Mg

12

7

11

8

10

3

5

6

(4) $E_G = -322561.6722 \text{eV}$

(9) $E_{\rm G}$ =-322578. 4134eV

O

团簇 ,n = 10 是幻数 , Δ_2 (10)近似等于 3 eV ;而 n = 11 不是幻数 , Δ_2 (11)近似等于 – 0.5 eV ;两者差值达 3.5 eV. Na ,Al 团簇也有类似结果.由于作者至今还 未见 Ga₄ N₄ 和 Ga₇ N₇ 团簇的计算结果报道 ,我们无 法计算 Ga_n N_n 团簇的 Δ_2 (5)和 Δ_2 (6)值(这里 5 和 6 代表 GaN 原子对数),但由 BE(5) – BE(6) = – 0.38 eV ,可见我们的计算结果是在合理范围内.当然 ,该 推测最终将由 Ga₄ N₄ 和 Ga₇ N₇ 团簇的计算结果来验 证.我们的计算将有助于对 $Ga_n N_n$ 系列团簇的结构 和性质随 n 变化的研究.

3.2. 具有结构(1)的 Ga₆N₆ 团簇的电子结构

我们计算了结构(1)的 Ga₆N₆ 团簇的电子结构. 表 2 给出了靠近费米面的部分本征态的能量和 Mulliken 分析值.由于计算结果表明自旋向上和向下 分子轨道是简并的.我们只给出了自旋向上的结果.

本征态序号	本征态能量/eV	Ga	Ga	Ga	Ν	Ν
		s	р	d	s	р
97	- 11.5263	0.3796	0.0698	0.0216	0.0335	0.4955
98	- 10.7825	0.4695	0.1055	0.0193	0.0552	0.3504
99	- 10.7075	0.4268	0.0825	0.0240	0.0144	0.4523
100	- 10.5388	0.3435	0.0584	0.0150	0.0784	0.5047
101	- 10.0546	0.3352	0.1546	0.0305	0.1384	0.3413
102	- 8.7524	0.1986	0.2449	0.0259	- 0.0258	0.5564
103	- 8.4435	0.2464	0.1992	0.0295	0.1645	0.3604
104	- 8.0208	0.0735	0.2918	0.0264	0.0038	0.6045
105	- 7.5943	0.1186	0.1553	0.0113	0.0795	0.6353
106	- 7.2650	- 0.0300	0.1276	0.0256	0.4531	0.4237
107	- 6.8358	0.1664	0.2074	0.0087	0.0501	0.5674
108	- 6.3839	0.2676	0.2064	0.0173	0.0350	0.4736
109	- 6.1344	0.2751	0.1815	0.0149	- 0.1694	0.6978
110	- 5.8113	- 0.0389	0.1659	0.0305	0.1341	0.7084
111	- 5.7704	0.0554	0.0908	0.0281	0.0472	0.7786
112	- 5.5559	0.0094	0.1007	0.0204	0.0450	0.8244
113	- 5.4389	- 0.0186	0.1356	0.0175	- 0.0089	0.8745
114	- 5.3107	0.0256	0.0788	0.0168	0.0032	0.8756
115	- 5.2838	0.0025	0.0552	0.0131	0.0037	0.9255
以下是未占据态						
116	- 5.1537	0.0028	0.0584	0.0113	- 0.0153	0.9428
117	- 4.9649	0.2577	0.1911	0.0177	0.0971	0.4364
118	- 4.4075	0.2118	0.4959	0.0119	0.0277	0.2526

表 2 结构(1)的部分本征态能量及 Mulliken 分析值

我们发现计算是内禀发散的.为了得到收敛的 结果,必须把 114 和 115 两个态的电子占有数取为 分数: $n_{114} = 0.85$, $n_{115} = 0.15$.此时收敛的两个态的 本征能量如表 2 所示,相差 0.0272 eV.若继续调整 占有数使这两个态的本征能量再靠拢,计算将发生 振荡而不收敛.因此部分占有的本征态 114 和 115 可近似认为是兼并的,即团簇具有'金属性".费米面 取为 114 和 115 两个本征态能量的平均值:*E*_F = -5.2972 eV.由于自旋向上的本征态与自旋向下的 本征态相同,整个团簇不具有磁性.表 2 中 Mulliken 分析值显示:从第 97 到第 103 本征态主要属于 N2p 和 Ga4s 电子的杂化态,第 106 本征态是属于 N2s 和 N2p 电子的杂化态,第 104,105 和从 107 至 115 本征 态主要是属于 N2p 能带.费米面以上第一个空态 (第 116 态)也是 N2p 能带.图 2 为结构(1)的部分本 征态(第 97 个本征态到第 120 个本征态)能级分布 示意图.

图 2 基态电子能级分布图 实线代表电子占有态 ;虚线 代表空态

3.3. 具有结构(1)的 Ga, N。 团簇的亲和势、电离能和跃迁能

我们计算了费米面的电子亲和势和电离能.即 对结构(1)的 Ga,N,团簇增加或减少一个电子.重新 进行自洽计算直至收敛,再根据各原子受力调整团 簇的空间结构,重复上述过程,最后求得增加或减少 一个电子后的 $Ga_{6}N_{6}$ 团簇的平衡结构和总能量.我 们发现,在团簇中增加一个电子对平衡结构有较大 的影响.其中第1(Ga)5(N)7(N),12(Ga)原子的受 力较其他原子大,第1(Ga)原子向团簇中心移动,第 5(N),7(N),12(Ga)原子向远离团簇中心的方向移 动.多一个电子的 $Ga_6N_6^-$ 团簇的平衡结构总能量为 $E_{c}^{-} = -322601.29 \text{ eV}$,与中性团簇 $Ga_{6}N_{6}$ 的基态本 征能量相减得到电子亲和势 $E_{\pi\pi} = -3.69 \text{ eV}$. 另 外 在团簇中减少一个电子对平衡结构没有大的影 响团簇结构几乎没有变化. 少一个电子的 Ga₆ N₆* 团簇的平衡结构总能量为 $E_{c}^{+} = -322590.37 \text{ eV}$,与 中性团簇 Ga, N, 基态本征能量相减得到电离能为 $E_{\pm 8} = 7.24 \text{ eV}.$

图 3 显示了 Ga_6N_6 团簇处于基态时费米面以下 部分占有态与费米面以上未占有态(117,118)的本 征能量差.其中 *a* 部分是第 104—115 态与第 118 态 之间的本征能量差;*b* 部分是第 104—115 态与第 117 态之间的本征能量差.如果用这些本征能量 差来表示两个态之间的跃迁能,误差正比于 $\frac{1}{2}\frac{\partial^2 E}{\partial n^2}\Big|_{n=1}$.文献 12,13 的过渡态方法可使误差降 低到与 $\frac{1}{24} \frac{\partial^3 E}{\partial n^3} \Big|_{n=0.5}$ 成正比.具体而言,就是同时强 制费米面以下某占有态及费米面以上某空态的占有 数都为 0.5 重新进行自洽计算,收敛后这两个占有 数为 0.5 的态的本征值之差即为该两态间的跃迁激 发能,但过渡态方法计算不易收敛,因此我们只用过 渡态方法计算了费米面处近似兼并的 114,115 态到 费米面以上第二个空态(第117态)的跃迁激发能, 平均值为 E = 0.38 eV. 把这个值与费米面上第 114, 115 态与第 117 态的本征能量差(图中用虚线表示) 相比较 过渡态计算的值约大 0.05 eV.因此我们认 为可以用图 3 合理地表示团簇 $Ga_{a}N_{a}$ 的跃迁能级. 由于费米面以上第一个未占据态(第116态)基本上 是 N2p 电子,第 104—115 态(基本上是 N2p 和 Ga3p 电子) 到该态的跃迁是偶极禁戒的. 而第 117,118 态 中已有较多的 Ga4s 电子分量,跃迁已可能,所以图 3 中只给出了到第 117 .118 态的跃迁能.

图 3 部分占有态与未占有态间的本征能量差

4.结 论

本文用自由团簇法计算了 Ga_6N_6 团簇的几种可 能的三维结构.在得到的 10 种结构中,最稳定的结 构如图 1(1)所示,其总能量为 – 322597.6033 eV.一 对 GaN 原子的平均结合能为 9.748 eV,因此是可能 存在的.这与他人计算的 Ga_3N_3 和 Ga_5N_5 相比, Ga_6N_6 团簇可能不属于"幻数"团簇.具有图 1(1)结 构的 Ga_6N_6 团簇的费米面是部分占有的,能量为 E_F = -5.2972 eV,因此显示"金属性",但没有自旋磁 矩.我们还计算了该结构的亲和势、电离能和电子跃 迁能.本工作将有助于对 Ga_nN_n 团簇系列的结构和 性质随 n 变化的完整研究.

本研究工作得到了上海超级计算中心的支持,提供神 威-1超级计算机,在此表示感谢.

- [1] He J, Zheng H P 2002 Acta Phys. Sin. 51 2580 (in Chinese) [何 军、郑浩平 2002 物理学报 51 2580]
- [2] BelBruno J J 2000 Heteroatom Chem. 11 281
- [3] Kandalam A K , Blanco M A , Pandy R 2001 J. Phys. Chem. B 105 6080
- [4] Song B , Cao P L 2002 Phys. Lett. A 300 485
- [5] Song B , Cao P L 2002 Phys. Lett. A 306 57
- [6] Hohenberg P, Kohn W 1964 J. Phys. Rev. B 136 684
- [7] Kohn W , Sham L J 1965 Phys. Rev. A 140 1133
- [8] Rajagopal A K , Singhal S , Kimball J (unpublished , as quoted by

Rajagopal A K) 1979 in *Advances in Chemical Physics* (Vol 41) Prigogine G I, Riceed S A ed (New York : Wiley) p59

- [9] Von Barth U, Hedin L A 1972 J. Phys. C 5 1629
- [10] Schulz H , Thiemann K H 1977 Solid State Commun. 23 815
- [11] Feng D, Jin G J 1992 New Perspective on Condensed Matter Physics (Shanghai Shanghai Scientific and Technical Publishers) p296 (in Chinese J 冯 端、金国钧 1992 凝聚态物理学新论(上海:上 海科学技术出版社)第 296 页]
- [12] Slater J C , Wood J H 1971 Int . J. Quantum Chem. 4 (Suppl)3
- [13] Slater J C 1972 Adv. Quantum Chem. 6 1

Theoretical calculation of structures and properties of Ga₆N₆ cluster^{*}

Hao Jing-An Zheng Hao-Ping

(Pohl Institute of Solid State Physics, Tongji University, Shanghai 200092, China)
 (Received 13 June 2003; revised manuscript received 16 July 2003)

Abstract

The first principle, all-electron, ab initio calculations have been performed for cluster Ga_6N_6 , based on the density functional theory. Ten possible structures and related electronic structures are obtained. For the most stable structure, the mean binding energy of a pair atoms of GaN is 9.748 eV, so the structure may exist. Compared with the results of clusters Ga_3N_3 and Ga_5N_5 calculated by other people, however, the cluster Ga_6N_6 may not be the "magic number" cluster. The Fermi level of cluster Ga_6N_6 in the most stable structure is partly occupied with $E_F = -5.2972 \text{ eV}$, which means "metallicity". The cluster Ga_6N_6 has no spin magnetic moment. The electron affinity, ionization energy, and transition energies of cluster Ga_6N_6 are also calculated. This work should be helpful to the complete study of structures and properties of clusters Ga_nN_n .

Keywords : GaN , cluster , electronic structure PACC : 3640 , 7115A

^{*} Project supported by the Science and Technology Development Foundation of Shanghai, China (Grant No. 00JC14051).