941nm 大功率应变单量子阱激光器的波长设计*

辛国锋^{1,2,} 陈国鹰¹ 花吉珍² 赵 润² 康志龙¹ 冯荣珠² 安振峰²

1(河北工业大学信息工程学院微电子所,天津 300130)

2(中国电子科技集团公司第十三研究所光电专业部,石家庄 050051)

(2003年6月4日收到,2003年8月11日收到修改稿)

从薛定谔方程出发推导了阶梯形有限深应变单量子阱中的特征值方程,研究了台阶宽度对激射波长、电子第 一子能级、空穴第一子能级的影响以及空穴第一子能级对激射波长的影响,计算结果表明当有源区 In 组分较大时, 不能忽略空穴第一子能级对激射波长的影响.该模型计算结果与实验值相吻合.

关键词:薛定谔方程,有限深势阱,应变量子阱,特征值方程 PACC:0365,7320D,0220,2110D

1.引 言

近年来,大功率半导体激光器的有源区几乎都 采用应变量子阱,这是因为应变效应和量子尺寸效 应使得半导体激光器价带的有效质量减小 态密度 降低 以获得较低的阈值电流密度 从而提高了激光 器的工作特性,量子阱的宽度、组分以及晶格失配形 成的应变决定着半导体激光器激射波长和工作特 性 而且综合考虑它们的影响给激光器的设计带来 了困难,所以有的作者首先忽略了空穴第一子能级 的对激射波长的影响11.有时为了生长出高质量的 InGaAs/AlGaAs 半导体材料界面 需要在两种材料之 间生长一薄层 GaAs 材料,目前还没有见到对这样的 梯形应变单量子阱模型进行过计算,本文从一维薛 定谔方程出发推导出该结构的特征值方程,研究了 GaAs 层厚对激射波长的影响,并且研究了空穴第一 子能级对激射波长的影响,利用该模型成功的对 941nm 应变量子阱激光器进行了理论设计,用 MOCVD 外延技术生长了这种结构的芯片材料,并制 成了半导体激光器阵列,计算结果与实验值相吻合。

2. 理论模型

2.1. 双轴应变理论

根据应变和应力分析,立方晶体受到双轴压 (张)应力以及单轴静压(张)应力作用,轴向应力的 作用会使整个价带边移动,而切变分量使重、轻空穴 带分开,退简并²¹.

应变分量

$$\varepsilon_{\parallel} = \frac{a_{\text{native}} - a_{\text{sub}}}{a_{\text{native}}}$$
 , (1)

$$\varepsilon_{xx} = \varepsilon_{yy} = -\varepsilon_{\parallel}, \varepsilon_{zz} = \frac{2C_{12}}{C_{11}}\varepsilon_{\parallel}.$$
 (2)

压应变时 $\epsilon_{\parallel} > 0$ 涨应变时 $\epsilon_{\parallel} < 0$.

应变张量

$$H = (-a) \cdot 2 \frac{C_{11} - C_{12}}{C_{11}} \varepsilon_{\parallel} ,$$

$$S = (-b) \cdot 2 \frac{C_{11} + 2C_{12}}{C_{11}} \varepsilon_{\parallel} . \qquad (3)$$

由于应变引起的带隙的变化为

$$\Delta E_{\rm HH} = H - S , \qquad (4)$$

$$\Delta E_{\rm LH} = H + S - \delta , \qquad (5)$$

$$\delta = \frac{1}{2} \Delta \{ 1 - 2(S/\Delta) + 9(S/\Delta)^2 \}^{1/2} - (1 - S/\Delta) \}$$

$$\approx 2S^2/\Delta$$
, (6)

其中, C_{11} , C_{12} 为弹性模量,a,b分别为静压形变势 和切变形变势, Δ 为自旋轨道裂变势.

^{*}河北省科技攻关重点项目(批准号 103213540D)和河北省自然科学基金(批准号 1603080)资助的课题.

[†] E-mail : guofeng _ xin@eyou.com

2.2. 台阶应变单量子阱模型

半导体量子阱一维薛定谔方程为[3]

$$-\frac{\hbar^2}{2m_j^*}\frac{\mathrm{d}^2\varphi(x)}{\mathrm{d}x^2}+V_j(x)\varphi(x)=E_j\varphi(x),$$

j = C, V $\downarrow p = 0 ; \exists d_w / 2 \forall v_j(x) = 0 ; \exists d_w / 2 < |x| < d/2$ $\forall v_j(x) = V_{b_{1j}} ; \exists |x| > d/2 \forall v_j(x) = V_{b_{2j}}.$

1 对于图 1(a),在阱中有子能级,此时上述薛 定谔方程的波函数具有以下形式:

 $K_{h2} = (2m_{h2}^*(V_{h2i} - E_{in}))^{1/2}/\hbar$

$$\varphi_{w}(x) = A_{0} \cos(K_{w}x - (n-1)\pi/2) \qquad |x| < d_{w}/2,$$
(8)

$$= A_1 \exp(-K_{b1} x) + B_1 \exp(-K_{b1} x) \qquad d_w/2 < |x| < d/2,$$
(9)

$$= B_2 \exp(-K_{b2} |x|) \qquad |x| > d/2.$$
(10)

根据边界条件波函数和通量 $rac{1}{m_j^*}rac{\mathrm{d} arphi_n(x)}{\mathrm{d} x}$ 在量子阱与势垒以及势垒之间的边界连续可以得到特征值

方程

$$\exp(K_{b1}d_w)\frac{m_{wj}^*K_{b1} + m_{b1j}^*K_w \tan(K_w d_w/2 - (n-1)\pi/2)}{m_{wj}^*K_{b1} - m_{b1j}^*K_w \tan(K_w d_w/2 - (n-1)\pi/2)} = \exp(K_{b1}d)\frac{m_{b2j}^*K_{b1} + m_{b1j}^*K_{b2}}{m_{b2j}^*K_{b1} - m_{b1j}^*K_{b2}}, \quad (11)$$

其中

$$K_w = (2m_{wj}^* E_{jn})^{1/2}/\hbar$$
,2)对于图 1(b),在阱中没有子能级,此时上述 $K_{b1} = (2m_{b1j}^* (V_{b1j} - E_{jn}))^{1/2}/\hbar$,薛定谔方程的波函数具有以下形式:

$$\varphi_{in}(x) = A_0 \cos(K_w x - (n-1)\pi/2) \qquad |x| < d_w/2, \qquad (12)$$

$$= A_1 \cos(K_{b1}x - (n-1)\pi/2) + B_1 \cos(K_{b1}x - (n-1)\pi/2) \qquad d_w/2 < |x| < d/2,$$
(13)
$$= B_2 \exp(-K_{b2}|x|) \qquad |x| > d/2.$$
(14)

同样根据边界条件波函数和通量 $\frac{1}{m_j^*} \frac{\mathrm{d}\varphi_m(x)}{\mathrm{d}x}$ 在量子阱与势垒以及势垒之间的边界连续可以得到特征

值方程

$$\frac{m_{wj}^{*}K_{b1}\cos(K_{b1}d_{w}/2 - (n-1)\pi/2) + m_{b1j}^{*}K_{w}\sin(K_{b1}d_{w}/2 - (n-1)\pi/2)\tan(K_{w}d_{w/2} - (n-1)\pi/2)}{m_{wj}^{*}K_{b1}\cos(K_{b1}d_{w}/2 - (n-1)\pi/2) - m_{b1j}^{*}K_{w}\sin(K_{b1}d_{w}/2 - (n-1)\pi/2)} = \frac{m_{b2j}^{*}K_{b1}\cos(K_{b1}d_{v}/2 - (n-1)\pi/2) + m_{b1j}^{*}K_{b2}\sin(K_{b1}d_{v}/2 - (n-1)\pi/2)}{m_{b2j}^{*}K_{b1}\cos(K_{b1}d/2 - (n-1)\pi/2) - m_{b1j}^{*}K_{b2}\sin(K_{b1}d/2 - (n-1)\pi/2)},$$
(15)

其中 $K_{b1} = (2m_{b1j}^{*}(E_{jn} - V_{b1j}))^{j/2}/\hbar, K_w, K_{b2} 同第1)$ 种情况.

一维方势阱的特征值方程^{4]}为

$$\tan(K_w d_w/2 - (n - 1)\pi/2) = K_b m_{uj}^* (K_w m_{bj}^*) (16)$$

其中 $K_w = (2m_{uj}^* E_{jn})^{\prime 2}/\hbar$, $K_b = (2m_{bj}^* (V_{bj} - E_{jn})^{\prime 2}/\hbar$.

2.3. 计算参数的选取

主要参数值^[5]的选取如表 1.

表1 主要参数的选取

 $m_0 = 9.108 \times 10^{-31} \text{kg}$,普朗克常数 $\hbar = h (2\pi) = 1.054 \times 10^{-34} \text{ J} \cdot \text{S}.$

InGaAs 和 AlGaAs 的 C_{11} , C_{12} 和晶格常数参数用 InAs , GaAs 和 AlAs 的值以线性插入法得到.

有效质量的计算公式

$M_{\ln_x \text{GaAs}} = (0.067 - 0.04 \times x) \times m_0$,	(17)
$M_{\mathrm{Al}_x\mathrm{GaAs}}$ = (0.048 + 0.31 $ imes$ x) $ imes$ m_0 ,	(18)
$M_{\rm GaAs} = 0.45 \times m_0$.	(19)
禁带宽度的计算公式为	
E_{g} (GaAs) = 1.424,	(20)
E_{g} (In _x Ga _{1-x} As)	
$= 1.424 - 1.53 \times x + 0.45 \times x^2$,	(21)
E_{a} (Al _x Ga _{1-x} As)	

$$= 1.424 + 1.247 \times x$$
, $x < 0.45$. (22)

3. 计算结果及讨论

首先计算了应变单量子方势阱的情况(阱内无 台阶).图 2 给出了激射波长随量子阱的宽度以及 In

图 2 激射波长随量子阱宽度以及 In 组分的变化

组分变化的关系.图 3 给出了电子第一子能级以及 空穴第一子能级随 In 组分变化的关系(阱宽为 8nm),可以看出前者比后者的变化大,这可能是有 些作者在设计激光器时略去空穴第一子能级的原因.图4给出了是否考虑空穴第一子能级时激射波 长之差,可以看出当 In 组分较低时,二者之差较小, 随 In 组分的增加激射波长之差变大,当 In 组分为 0.22时,二者之差高达7.3nm,所以当 In 组分较大 时就不能忽略空穴第一子能级对激射波长的影响。

图 3 电子、空穴第一子能级随 In 组分的变化

图 4 空穴第一子能级对波长的影响随 In 组分的变化

在实际的生长过程中,为了提高量子阱 InGaAs 与垒层 AlGaAs 之间的界面质量,需要在二者之间生 长一薄层 GaAs 材料,所以就形成了台阶形一维势 阱.作者根据以上理论分析计算了这种结构的单量 子阱,计算过程中的量子阱宽度为 8nm, In 组分为 0.13, Al 组分为 0.2. 图 5 至图 8 分别给出了电子第 一子能级、空穴第一子能级、激射波长随台阶宽度的 变化,以及是否考虑空穴第一子能级带来的波长变 化.从图 5、图 6 可以看出电子第一子能级、空穴第 一子能级随台阶宽度(*d* - *d*_w)/2 的增加而减小,前 者的相对变化量(0.153)比后者(0.0674)的要大.从 图 7 可以看出随台阶宽度(*d* - *d*_w)/2 的变大(从 0.025nm 到 1nm),激射波长增加(从 936.3nm 到 941.4nm),即随台阶宽度加大相当于单量子阱的宽 度增大,从而导致电子和空穴第一子能级降低,激射 波长增加.图 8 表明随台阶宽度的增加,是否考虑空 穴第一子能级造成的波长之差减小.

图 5 电子第一子能级随台阶的变化

图 6 空穴第一子能级随台阶的变化

图 8 空穴第一子能级对波长的影响随台阶的变化

4.实 验

根据以上理论指导,进行了实验.通过实验确定 了 941nm 的半导体激光器材料结构,并利用该材料 制成了半导体激光器阵列.

采用德国 AIXTRON-2000 金属有机化合物气相 淀积(MOCVD)设备,分别以 TMIn,TMGa,TMAI为 III 族源,AsH₃为V族源,SiH₄和 DEZn为n型和p型掺 杂源,H₂作为载气.整个外延过程中生长 p⁺-GaAs 欧姆接触层时的温度为 650°C,为了保证量子阱界 面的陡峭性,其余外延层的生长温度为 730°C.在 n⁺-GaAs 衬底(Si:10¹⁸ cm⁻³)上(100)(偏 < 110 > 约 2°)依次生长 n⁺-GaAs 缓冲层,n-Al_{0.6}Ga_{0.4}As 下限制 层,Al_{0.2}Ga_{0.8}As下波导层,GaAs势垒层,8nm厚的

图 9 激光器光谱图

GaInAs 单量子阱, GaAs 势垒层, Al_{0.2} Ga_{0.8} As 上波导 层, p-Al_{0.6} Ga_{0.4} As 上限制层, p⁺-GaAs 欧姆接触层.材料结构如表 2 所示.

表 2 InGaAs/GaAs/AlGaAs 材料示意结构

名称	组分	掺杂水平	厚度
帽层	p⁺ -GaAs∶Zn	$> 5 \times 10^{19} \mathrm{cm}^{-3}$	300nm
p 包层	p-Al _{0.6} Ga _{0.4} As: Zn	$1\times 10^{18}~{\rm cm}^{-3}$	1100nm
波导层	$\operatorname{Al}_{0.2}\operatorname{Ga}_{0.8}\operatorname{As}$	未掺杂	200nm
势垒层	GaAs	未掺杂	nm
量子阱	GaInAs	未掺杂	8nm
势垒层	GaAs	未掺杂	nm
波导层	$\operatorname{Al}_{0.2}\operatorname{Ga}_{0.8}\operatorname{As}$	未掺杂	200nm
n包层	$\operatorname{n-Al}_{0.6}\operatorname{Ga}_{0.4}\operatorname{As}\nolimits^{\scriptscriptstyle 2}\operatorname{Zn}$	$1 \times 10^{18} {\rm ~cm^{-3}}$	1100nm
缓冲层	n ⁺ -GaAs	$1 \times 10^{18} {\rm ~cm^{-3}}$	500nm
衬底	n ⁺ -GaAs	$> 1 \times 10^{18} {\rm ~cm^{-3}}$	350µm

将外延材料经过标准的光刻、腐蚀、p 面金属化 (Cr/Au)、减薄、n 面金属化(Au/Ge/Ni/Au)、合金、解 理等工艺制成腔长为 1.5mm 的 0.5cm 激光器条,然 后进行测试.在输入电流 400 µs ,50Hz 的条件下进行 测试,该器件的阈值电流为 2.5A,单面斜率效率为 0.34W/A(腔面没有镀膜),输出功率为 10.1W,器件 的激射波长为 940.5nm,激光器的光谱如图 9.

感谢中国电子科技集团公司第十三研究所光电专业部 光刻组徐会武、王霏、张世祖、杨素娟,材料组刘英斌、杨红 伟,测试组沈牧、王晓燕,组装组刘会民高级工程师以及装架 组等同事在实验过程中的大力支持和帮助

- [1] Li S Q et al 2000 Chin. J. Lasers A 27 682(in Chinese] 李树强 等 2000 中国激光 A 27 682]
- [2] Coldren L A 1995 Diode Lasers and Photonic Integrated Circuits (New York : Wiley-interscience publication) p533
- [3] Du B X 2001 Theory of semiconductor lasers(Beijing Weapon Indus-

try)236(in Chinese] 杜宝勋 2001 半导体激光器原理(北京: 兵器工业出版社)第 236页]

- [4] Guo C Z 1992 Semiconductor Quantum Well (Beijing) 7
- [5] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

Wavelength design for the 941nm high output power strained single-quantum-well semiconductor lasers *

Xin Guo-Feng^{1 (\mathfrak{D})[†] Chen Guo-Ying¹) Hua Ji-Zhen²) Zhao Run²)}

Kang Zhi-Long¹) Feng Rong-Zhu²) An Zhen-Feng²)

1) (Research Institute of Microelectronics , College of Information Engineering , Hebei University of Technology , Tianjin 300130 , China)

² (Ministry of Optoelectronics , 13th Research Institute of China Electronics Technology Corporation , Shijiazhuang 050051 , China)

(Received 4 June 2003; revised manuscript received 11 August 2003)

Abstract

The eigenvalue equation of the step finite strained single quantum well is deduced from Schrödinger equation, the influence of the step width on first electron energy, first hole energy, the stimulated wavelength, and the influence of the first hole energy on stimulated wavelength are studied. The results indicate that, if the In content is large, the influence of the first hole energy on the stimulated wavelength should not be neglected. The calculated value by using this model is in accord with the experiment results.

Keywords : Schrödinger equation , finite deep well , strained single quantum well , eigenvalue equation PACC : 0365 , 7320D , 0220 , 2110D

^{*} Project supported by the Technology Emphasis Project of Hebei Province , China (Grant No.03213540D) and the Natural Science Foundation of Hebei Province , China (Grant No.603080).

[†]E-mail :guofeng_ xin @ eyou.com