一维铁磁/有机共轭聚合物的自旋极化研究*

付吉永 任俊峰 刘德胜 解士杰*

(山东大学物理与微电子学院,晶体材料国家重点实验室,济南 250100)(2003 年 8 月 21 日收到 2003 年 10 月 30 日收到修改稿)

针对最近关于自旋注入有机体的实验研究,理论上计算了有机分子与磁性原子接触时的自旋极化现象,通过 调节磁性原子的自旋劈裂强度,发现有机分子链内的自旋极化弱于金属链,但强于半导体链,同时还研究了有机分 子链内自旋极化随电子-声子耦合强度的变化关系以及界面耦合的自旋相关效应.

关键词:界面耦合,自旋极化,自旋劈裂 PACC:7300,7525,7170

1.引 言

自从庞磁电阻(CMR)现象发现以来¹¹,磁电子 学和自旋电子学已成为凝聚态物理和微电子学中一 个快速增长的领域.电子自旋注入和自旋相关输运 是当前感兴趣和被广泛研究的课题.电子自旋注入 包括从铁磁金属到超导体^[2];铁磁金属到一般金 属^[3] (铁磁金属到非磁性半导体^[4]以及磁性半导体 到非磁性半导体^[5]. Dediu 研究组报道了有机体中的 自旋极化注入和输运^[6],他们采用半金属 CMR 材料 Re_{1-x}Sr_xMnO₃ 作极化电子给体,有机层采用齐分子 聚合物六噻吩 T((sexithienyl).实验发现了负磁电阻 (NMR) ,表明有机体内存在自旋极化注入,两电极之 间的输运电流是自旋极化的. Xie 等人提出了一维 CMR/聚合物链的紧束缚模型,研究了基态情况下的 电荷极化现象,初步揭示了自旋极化注入有机体的 基本特征^[7].

目前对金属和半导体中的自旋注入和输运的理 论研究主要是基于载流子携带自旋,从经典输运方 程出发^[8—10],给出电流密度的极化特性,其界面效应 也给予了充分考虑^[11—13].但是有机材料有其特殊 性,由于有机分子链的低维性和内部强的电子-晶格 相互作用,任何电荷密度的改变都有可能导致系统 结构的再构^[14—17];更重要的是注入电子(或空穴)不 是以扩展态的形式存在,而是形成局域的元激发,如 孤子 极化子或双极化子^[18].人们希望有机材料内 可以出现大的自旋极化强度和自旋扩散长度,同时 也希望有机材料内的载流子是携带自旋的,从而实 现自旋注入有机体.本文针对 CMR/T6 系统,提出一 维耦合模型,计算系统的基态性质,分析影响有机层 自旋极化的各种因素,同时与一维金属链和半导体 链的情况进行了比较.

2. 模型和公式

考虑由磁性层和聚合物层构成的一维原子链, 有机层采用 5 个 T6,它可以看作是由 120 个 C 原子 组成的一维链,在紧束缚近似下^[19], 哈密顿量可写为

$$H = -\sum_{n} e_{n} a_{n,\sigma}^{+} a_{n,\sigma} - \sum_{n} J_{n} \left(a_{n,\uparrow}^{+} a_{n,\uparrow} - a_{n,\downarrow}^{+} a_{n,\downarrow} \right)$$

$$-\sum_{n,\sigma} t_{n,n+1,\sigma} \left(a_{n+1,\sigma}^{+} a_{n,\sigma} + a_{n,\sigma}^{+} a_{n+1,\sigma} \right)$$

$$-\sum_{n,\sigma} t_{2} \left(a_{4n-3,\sigma}^{+} a_{4n,\sigma} + a_{4n,\sigma}^{+} a_{4n-3,\sigma} \right)$$

$$-\sum_{n,\sigma} t_{3} \left(a_{4n-3,\sigma}^{+} a_{4n,\sigma} + a_{4n,\sigma}^{+} a_{4n,\sigma} \right)$$

$$+ \frac{1}{2} \sum_{n} K_{n} \left(u_{n+1} - u_{n} \right)^{2}, \qquad (1)$$

其中第一项为原子在位能,取决于两种材料的化学 势,第二项为原子自旋劈裂能,有机层内为零;第三 项为电子转移积分;硫原子的影响体现在第四项和 第五项,分别为电子通过硫原子所附加的跃迁项以

^{*} 国家自然科学基金(批准号 90103034,10074040)资助的课题.

[†] E-mail <code>:xsj@sdu.edu.cn</code>

53 卷

及噻吩环两端碳原子因硫原子的存在而增加的电子 束缚能项 第六项为原子之间的弹性能.电子跃迁积 分与原子位移 $\{u_n\}$ 有关 : $t_{n,n+1} = t_p - \alpha_p(u_{n+1} - u_n)$ $-t_1\cos\left(\frac{n\pi}{2}\right)$.以上各式中, t_p 为格点等距离排列 $(u_n = 0)$ 时电子的跃迁积分 α_p 为电子-声子耦合常 数 $a_{n,a}^{+}(a_{n,a})$ 为自旋为 $\sigma(=\pm 1)$ 的电子在格点 n上的产生(湮没)算符. 噻吩环内的 C---C 键与噻吩 环之间 C—C 键(共 4 个键)的区别体现在 t₁ 项 ,它 也保证了系统的基态非简并性.t,为电子通过硫原 子所附加的跃迁积分, t。为噻吩环两端碳原子因硫 原子的存在而增加的电子束缚能项,K_n是弹性常 数.磁性原子层设为金属原子链 因此跃迁积分为常 数 而弹性常数取为无穷大。

磁性层与聚合物层的耦合通过端点原子体现, 它可以是自旋相关的,引入耦合因子 β_{α} ,

$$t_{F_{-P}}^{\sigma} = \frac{1}{2} \beta_{\sigma} (t_{F}^{i} + t_{P}^{i});$$

$$K_{F_{-P}} = \frac{1}{2} \beta_{\sigma} (K_{P} + K_{F}), \qquad (2)$$

其中 tⁱ 和 tⁱ 分别为铁磁层和聚合物层在界面处的 电子跃迁积分.

电子本征函数 | $\phi_{\mu,\sigma} = \sum Z_{n,\mu,\sigma} a_{n,\sigma}^+$ | 0 及其本 征值 $\epsilon_{\mu\sigma}$ 可通过求解如下本征方程得到,

$$- e_{n}Z_{n,\mu,\sigma} - J_{n}\sigma Z_{n,\mu,\sigma} - t_{n-1,n}Z_{n-1,\mu,\sigma} - t_{n,n+1}Z_{n+1,\mu,\sigma}$$

$$- (t_{2}Z_{n-3,\mu,\sigma} + t_{3}Z_{n,\mu,\sigma})\Delta\left(\frac{n}{4} \text{ int}\right)$$

$$- (t_{2}Z_{n+3,\mu,\sigma} + t_{3}Z_{n,\mu,\sigma})\Delta\left(\frac{n+3}{4} \text{ int}\right)$$

$$= \varepsilon_{\mu,\sigma}Z_{n,\mu,\sigma} I \qquad (3)$$

 $= \varepsilon_{\mu \sigma} Z_{n \mu \sigma}$,

其中 Δ (*i*, int)为取整函数,当*i* 取整数时,其值为 1 反之 其值为零.

令 $\phi_n = (-1)^n u_n$,通过微扰论,得到格点原子 平衡条件

$$(K_{n-1} + K_n)\phi_n = -K_{n-1}\phi_{n-1} - K_n\phi_{n+1} + 2\sum_{\mu,\sigma} (-1)^{n-1} \alpha_{n-1} Z_{n,\mu,\sigma} Z_{n-1,\mu,\sigma} + 2\sum_{\mu,\sigma} (-1)^n \alpha_n Z_{n+1,\mu,\sigma} Z_{n,\mu,\sigma} . (4)$$

3. 结果和讨论

我们计算了磁性层分别为一个、两个和多个原 子时的界面极化现象,跃迁积分为 $t_F = 2.5 \text{eV}$,同时 铁磁金属层的能带是连续的 ,故 $\alpha_{r} = 0$.由于金属链 的刚性,计算中磁原子是固定不动的;对于有机层, 取 $t_P = 2.5 \text{eV}$, $\alpha_P = 45 \text{eV/nm}$, $K_P = 2100 \text{eV/nm}^2$, $t_1 =$ 0.675eV ,t2 = t3 = 0.125eV.本文暂不考虑电荷在铁 磁层和有机层之间的转移 取两层的化学势相同 ,e_F $= e_P = 0.$

3.1. 单个磁原子/有机链系统

有机层与单个磁原子耦合时,由于六噻吩 T6 含 有偶数个π电子 整个系统将有单个电子自旋存在. 计算发现 由于电子态的延展性 有机层内界面附近 的电子将是自旋极化的.极化幅度与铁磁层自旋劈 裂强度 J, 电子-声子耦合强度 α 以及界面耦合权重 参数 β. 等有关. 定义自旋密度分布,

$$S_{n} = \rho_{\uparrow} - \rho_{\downarrow} = \sum_{\mu} \left(|Z_{n,\mu,\uparrow}|^{2} - |Z_{n,\mu,\downarrow}|^{2} \right).$$

取 $\beta_{\star} = \beta_{\downarrow} = 1$,不同 J 值时的计算结果如图 1 所示,虽然界面耦合是自旋无关的,但有机层内仍有 自旋密度存在 极化深度约 6—10a 其中 a 为聚噻 吩的晶格常数.如果考虑有机层内的总自旋 S_p = $\sum_{n} S_n$, \sum_{n} 表示对有机层内的格点求和 ,计算结果 显示在图 2 中,发现随着铁磁原子自旋劈裂 / 的增 加,有机层内的极化是减弱的,这种现象可从能带结 构中理解 聚合物在费米能级处有一带隙 其最低导 带能级高于磁原子占据能级,增加 / 意味着降低其 占据能级 电子向有机层内转移的概率就会降低 磁 原子的自旋极化增加.由于系统的总自旋为单电子 自旋 这样有机层内电子的极化就相应减小.

图1 端点一个磁原子, J分别取 0.5, 1.5, 2.5, 3.5 时自旋极化 随格点的分布($\alpha = 4.5$),其中圆圈所标为磁原子的自旋极化

我们用无带隙(取 $t_{n,n+1,\sigma} = t_0$)和固定带隙(取 $t_{n,n+1,\sigma} = t_0 - 2\alpha(-1)^n \phi_0$)来分别描述一维非磁性

图 2 端点一个磁原子 三种非磁材料中自旋极化随自旋劈裂强 度 J 的变化($\alpha = 4.5$)

金属和半导体刚性链的情况,计算了自旋极化现象. 结果也显示在图2中.发现在同一个自旋劈裂J下, 自旋极化在金属层内最明显,在半导体内最弱.由于 有机材料与磁性层的界面接触更'柔和',因此,与相 同带隙的刚性半导体层相比,有机层内的自旋极化 略强一些.

参数 α 反映了有机材料内电子-声子相互作用 的强弱 ,它导致了噻吩链内键的长短交错(二聚化). 有机层内的自旋极化随 α 的变化显示在图 3 中.随 着 α 的增强 ,有机材料的带隙增加 ,相应的其自旋 极化减弱.

图 3 端点一个磁原子 , 噻吩层中自旋极化随 α 的变化(J=2.5)

界面耦合可以是自旋相关的.在 $\beta_{\downarrow} = 0$ 和 β_{\downarrow} = 1 两种情况下,我们研究了自旋极化随 β_{\uparrow} 的变化 关系 结果如图 4 所示.固定 β_{\downarrow} 随着 β_{\uparrow} 的增大,界 面耦合增强,噻吩层内自旋极化增大.同理,固定 β_{\uparrow} ,自旋极化随 β_{\downarrow} 也有相同的变化关系,这也是 $\beta_{\downarrow} = 1$ 对应自旋极化要强于 $\beta_{\downarrow} = 0$ 的原因.

图 4 端点一个磁原子 噻吩层中自旋极化随界面耦合参数 β_{\uparrow} 的变化 *J* = 2 , *α* = 4.5)

3.2. 两个磁原子/有机链系统

进一步,我们研究了磁性原子为两个(偶数)的 情况.当劈裂 J < 2.5eV 时,磁性系统的自旋能级没 有完全分开,总自旋为零.此时,有机层也存在自旋 极化,但强度很小;当 J > 2.5eV 时,磁性部分自旋 向上能级与向下能级完全分开(相当于半金属),此 时有机层内引起的极化也明显增大,系统的总自旋 也变为两个电子自旋,结果如图 5 和 6 所示.还可看 出,当磁性层的自旋能级重叠时,导致的有机层极化 是反向的;而当磁性层的自旋能级完全分开后,所导 致的有机层极化是正向的.这里我们把有机层内自 旋向上的极化表示为正向极化,自旋向下的极化为 反向极化.

图 5 端点两个磁原子, J分别取 1 2 3 A 时自旋极化随格点的分 布 其中圆圈所标为大小相等的两个磁原子的自旋极化($\alpha = 4.5$)

与单个磁性原子的情况类似,有机层内自旋极 化随电子-声子耦合强度α的增大逐渐减小随界面 耦合参数β的增加逐渐增大,如图7和图8所示.不

图 6 端点两个磁原子, 噻吩层中自旋极化随自旋劈裂强度 J 的变化关系($\alpha = 4.5$)

同的是,当 J 比较小(J < 2.5eV)时,自旋极化是反向的.由于计算中反向极化前面对应一个负号,所以图7和图8中曲线中正向极化和反向极化有着相反的变化趋势.总之若界面耦合自旋相关,可以通过调节不同自旋的界面耦合强度,提高有机层内的自旋极化.

图 7 端点两个磁原子 噻吩层中自旋极化随 α 的变化

图 8 端点两个磁原子 噻吩层中自旋极化随界面耦合参数 β_{\uparrow} 的变化(α = 4.5)

3.3. 一维铁磁/有机链系统

文献 7 曾给出了一维铁磁金属链/基态非简并 有机链的基态.我们进一步研究了铁磁链/噻吩系统 的自旋极化受各种因素的影响.计算中取了 200 个 磁原子,发现随着参数 J 的增大,磁性层自旋能级 重叠的程度越来越小.系统的总自旋可取 0,2,4, ...,196,198,200 等偶数个电子自旋,最终导致有机 层内自旋的正向和反向极化相互转变,但当自旋能 级完全分开后,系统的总自旋达到最大,有机层内便 一直是正向的自旋极化,结果如图 9 所示.从图中可 以看出噻吩层自旋的正向极化和反向极化相互转化 过程中,极化的起伏较小,这是由于磁原子的个数取 得很多,对应的能级已经是准连续的原因.我们还发 现如果取奇数个磁原子,系统的总自旋便取相应的 奇数个电子自旋,但自旋极化有着同样的性质.

图 9 铁磁链/噻吩系统,噻吩层中自旋极化随自旋劈裂强度 J 的变化($\alpha = 4.5$)

与前面两种情况类似,有机层内自旋极化随电子-声子耦合强度α的增加而减小,随界面耦合β的增加逐渐增加,这里就不重述。

4.结 论

考虑六噻吩齐分子端点与一个磁性原子、两个 磁性原子和磁性原子链形成的耦合系统,我们研究 了有机层自旋极化现象.探讨了磁原子自旋劈裂、界 面耦合以及有机层电子-声子相互作用强度等对自 旋极化的影响,并与刚性半导体或金属的情况进行 了比较.本文的研究只是针对当前有关的初步实验 结果,进行了系统基态的计算.更进一步的研究应是 系统在外场下的动力学过程.

- [1] Baibich M N, Broto J M, Fert A, Nguyen F. Dau Van, Petroff F, Etienne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
- [2] Meservey R 1970 Phys. Rev. Lett. 25 1270
- [3] Johnson M and Silsbee R H 1985 Phys. Rev. Lett. 55 1790
- [4] Monzon F G , Tang H X and Roukes M L 2000 Phys. Rev. Lett. 84 5022
- [5] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
- [6] Dediu V , Murgia M , Matacotta F C , Taliani C and Barbanera S 2002 Solid Stat Comm. 122 181
- [7] Xie S J , Ahn K H , Smith K L , Bishop A R and Saxena A 2003 Phys. Rev. B 67 125202
- [8] Son P C van , Kempen H van and Wyder P 1987 Phys. Rev. Lett. 58 2271
- [9] Schmidt G , Molenkamp L W , Filip A T and Wees B J van 2000-II

Phys. Rev. B 62 R4790

- [10] Zutic I , Fabian J and Sarma S D 2002 Phys Rev. Lett. 88 066603
- [11] Rashba E I 2000 Phys. Rev. B 62 R16267
- [12] Smith D L and Silver R N 2001 Phys. Rev. B 64 5323
- [13] Schmidt G, Ferrand D, Molenkamp L W, Filip A T and Wees B J van 2002 Phys. Rev. B 62 R4790
- [14] Sun X et al 2000 Phys. Rev. Lett. 84 2830
- [15] Fu R L, Ye h j and Li L 1998 Acta Phys. Sin. 47 94 (in Chinese) [傅柔励、叶红娟、李 蕾等 1998 物理学报 47 94]
- [16] Shakin V A 1994 Phys. Rev. B 50 4306
- [17] Xiong Y 1999 Acta Phys. Sin. 48 1138 (in Chinese)[熊 烨 1998 物理学报 48 1138]
- [18] Heeger A J, Kivelson S, Schrieffer J R, Su W P 1988 Rev. Mod. Phys 60 781
- [19] Su W P , Schrieffer J R and Heeger A J 1980 Phys. Rev. B 22 2099

Spin polarization study on one-dimensional ferromagnetic metal/conjugatd polymers *

Fu Ji-Yong Ren Jun-Feng Liu De-Sheng Xie Shi-Jie[†]

(School of Physics and Microelectronics , Shandong University , State Key Laboratory of Crystal Materials , Jinan 250100 , China)
 (Received 21 August 2003 ; revised manuscript received 30 October 2003)

Abstract

We investigated theoretically the properties of spin polarization in organic polymer contacting magnetic atoms. Dependence of the spin polarization on the strength of the electron-phonon coupling in a polymer and the spin-dependent effect of the interface coupling were discussed. By modulating the strength of spin splitting, we found that the spin polarization within an organic chain is weaker than that within a metal chain, but stronger than that within a semiconductor.

Keywords: interface coupling , spin polarization , spin splitting **PACC**: 7300 , 7525 , 7170

^{*} Project supported by the National Natural Science Foundation (Grant Nos. 90103034, 10074040).

[†] E-mail : xsj@sdu.edu.cn