锐钛矿 TiO₂ 及其掺 Fe 所导致的红移现象研究: 應势计算和紫外光谱实验

张勇 唐超群 戴君

(华中科技大学物理系,武汉 430074) (2004年3月18日收到2004年6月2日收到修改稿)

采用平面波超软赝势方法研究了锐钛矿型 TiO₂ 及 Fe 掺杂 TiO₂ 的晶体结构和能带结构,计算表明 Fe 掺杂导致 TiO₂ 电子局域能级的出现及禁带变窄,从而导致吸收光谱红移.研究发现,_{bg}态在红移现象中起了重要作用.紫外 透射光谱实验证实了 TiO₂ 掺 Fe 后吸收光谱红移和禁带变窄的理论预言.

关键词:密度泛函理论,TiO₂,Fe掺杂,红移 PACC:7115M,7115H,7115A,3320L

1.引 言

近年来,锐钛矿结构的 TiO₂ 由于具有良好的物 理、化学特性,如良好的光学特性,有效的光催化性 能等在实验上受到越来越多的重视^[1-5].这些特性 有望在光电和其他领域得到应用.但是,由于锐钛矿 相 TiO₂ 属于宽禁带($E_g = 3.23$ eV)半导体,这使得它 只能在紫外光($\lambda < 380$ nm)照射下才显示出活性.因 此 改善TiO₂ 活性,使其良好的性能可以在可见光 照射下发挥出来就有特别的意义.近年来,为实现 TiO₂ 的可见光响应,研究人员进行了大量的 TiO₂ 改 性实验,其中掺杂被认为是改进 TiO₂ 活性的有效途 径.Sakata 等研究了 TiO₂ 中掺杂 Cu²⁺ 后对可见光的 响应^[6];Choi 等进行了 TiO₂ 掺杂 21 种金属离子的 实验,指出 Fe³⁺, Mo⁵⁺, Ru³⁺, Os³⁺, Re⁵⁺, V⁴⁺和 Rh³⁺ 掺杂可以加强 TiO₂ 的光吸收活性^[7];文献[8—10] 对 Fe³⁺进行了详细研究.

与金红石相 TiO₂ 相比,关于锐钛矿相 TiO₂ 的理 论工作很少被报道,这可能是由于该晶形 TiO₂ 晶胞 内有较多的原子,使得计算变得复杂.3d 过渡金属 常被选为掺杂元素以增强 TiO₂ 的光催化活性,但 是,有关这些杂质元素对 TiO₂ 电子结构方面的影响 还未被澄清.本文计算了 TiO₂ 的几何及电子结构并 采用超原胞模型计算了 Fe³⁺ 掺杂 TiO₂ 的电子结构 特性.

2. 计算方法和实验过程

第一性原理赝势计算方法广泛用于材料模 拟^[11,12] 例如侯柱锋等^[13]计算了 CuSn 的 Li 嵌入性 质 林哲帅等^[14]计算了 NaNO₂ 的光学系数 ,在这些 计算中,计算值与实验值符合得很好.为研究 TiO, 及其掺杂的有关特性,基于密度泛函理论(DFT)^{15]} 下的从头计算和超晶胞方法被应用.正格矢锐钛矿 TiO2 单胞和本文所采用的超晶胞模型分别如图 1 (a)和(b)所示.超晶胞模型由两个单晶胞沿 a 轴排 列而成 其中一个 Ti 原子被 Fe 原子取代. TiO, 基态 晶格参量通过晶胞能量最小化获得.采用超软赝势 描述价电子与芯态的相互作用,交换-关联能采用广 义梯度近似(GGA)^{16]}. 平面波截断能 E_{cut} 设为 340eV.TiO2 采用溶胶-凝胶法制备 具体过程可以参 见文献[17]. 金属离子掺杂的 TiO₂ 的制备方法和 TiO, 的制备方法基本相同,不同的只是在TiO, 的溶 胶中加入含有杂质离子的金属盐溶液 本实验采用 的金属盐为 Fe(NO₃), ·9H₂O.

[†] E-mail :cqtang@public.wh.hb.cn

图 1 锐钛矿 TiO2 模型示意图 (a)正格矢晶胞(b)本文所用的超晶胞模型(一个 Ti 原子被 Fe 原子取代)

3. 结果和讨论

3.1. 结构优化

锐钛矿 TiO₂($I4_1/amd$)属四方晶系,每个晶胞 包含四个 TiO₂ 单元,其中 O 的位置只与一个内部坐 标 u 有关,原子坐标分别为:Ti(0,0,0)利 O(0,0, u).为获得 TiO₂ 基态晶格属性,确定晶格常数 a 和 c 采用第一性原理 GGA 方法计算晶胞总能量,按照 晶胞能量与体积关系的最小化原理得到晶格几何参 数 a 和 c.内部参量 u 由原子受力小于 1mRy/.a.u 得到.锐钛矿 TiO₂ 存在两种不同的 Ti-O 键长: d_{T-O}^{eq} 和 d_{T-O}^{ep} ,两个短键之间的角度被命名为 2 θ (如图 1 (a)).这些参量之间的几何关系可表示为

$$d_{\text{Tr-O}}^{\text{eq}} = cu , \qquad d_{\text{Tr-O}}^{\text{eq}} = \left[\frac{a^2}{4} + c^2\left(a - \frac{1}{4}\right)^2\right]^{1/2} (1)$$
$$2\theta = 2\arcsin\left(\frac{a}{2d_{\text{Tr-O}}^{\text{eq}}}\right). \qquad (2)$$

图 <u>(</u>(a)和(b)给出了晶胞总能量 *E* 与 *a*/*a*₀ 及 *c*/*a* 的关系图 <u>,</u>其中 *a*₀ 为实验值.获得的参数如表 1 所示.

表 1 优化 TiO₂ 几何结构参数所得到的结果 与实验值及文献报道的比较

	Exp. ^[18]	本工作	Others ^[19]
$a/10^{-1}$ nm	3.785	3.807	3.692
$c/10^{-1}$ nm	9.514	9.518	9.417
c/a	2.513	2.500	2.566
V_0 (10^{-3} nm/TiO ₂)	34.075	34.487	32.09
u	0.208	0.207	0.206
$d_{\rm Ti-O}^{\rm ap}/10^{-1}{\rm nm}$	1.978	1.970	1.948
$d_{\rm Ti-O}^{\rm eq}/10^{-1}{\rm nm}$	1.934	1.947	1.893
2 <i>θI</i> (°)	156.16	155.7	152.1

图 2 计算得到的 TiO₂ 晶胞总能量与(a) a/a_0 (b)c/a 的关系图

由表 1 可以看出,计算得到的平衡体积 V_0 是合理的,与实验所测得的体积偏差小于 2%,由计算所预言的 c/a 值为 2.500,与测量值 2.513 符合得很好.

3.2. 带结构和态密度

沿布里渊区高对称点方向的能带结构以及 TiO₂ 导带和价带附近的态密度(DOS)如图 3 和图 4 所 示,费米能被选为能量零点.计算得到的最小带隙为 2.19eV 远小于实验值 3.23eV,这主要是由于广义 梯度近似所产生的较小带隙引起的^[20].最小的带隙 为从价带顶的 M 点到导带底 Γ 点,属间接半导体, 但由于位于价带顶的 Γ (-0.102eV)仅比 M 点 (-0.044eV)低 0.058eV,所以也有的文献将锐钛矿 TiO₂ 视为直接带隙半导体.

图 3 锐钛矿 TiO₂ 能带结构图

由 TiO₂ 态密度图 4 可看出,费米能级附近的价 带(VB)主要由 O 原子 2p 轨道组成,其宽度为 4.387eV;导带(CB)由 Ti 原子 3d 轨道组成,其宽度 为 5.44eV.由于一个 Ti⁴⁺ 被六个 O²⁻包围 构成 TiO₆ 八面体,根据晶体场理论^[21],d 轨道分裂成 $t_{2g}(d_{xy}, d_{xz}, d_{yz})$ 和 $e_g(d_{z^2}, d_{x^2-y^2})$ 态两部分,这使得费米能 附近的导带被分裂成上、下两部分,其中,上部分导 带(由 Op 和 Ti e_g 轨道构成)宽度为 2.67eV,下部分 导带(由 Op 和 Ti t_{2g} 态组成)宽度为 2.77eV.TiO₂ 的 电子密度图(EDPs)如图 5(a)所示,Ti-O 键主要呈现 共价键特征.

图 4 TiO₂ 的总态密度和分态密度

图 5 (a)TiO₂ (b)Fe_xTi_{1-x}O₂(001)面 z = 1/2的电子密度图(金属离子位于中心位置)

掺杂 TiO₂(Fe_xTi_{1-x}O₂)的电子结构通过带结构 计算获得 图 6 和图 <u>f</u> b)分别给出了它的态密度图 和电子密度分布图.由图 6 可以看出, - 5—0eV 间 的电子态主要由 O 2p 态组成, 而 0eV 以上部分主要 归因于 Ti 3d 和 Fe 3d 态. O 2p 态占据态宽度随着 x(0 < x < 1)的增大而增大 ,O 2s 顶部与 O 2p 底部的 间隔随着 x 的增加而减小 ,由掺杂 TiO₂ 态密度图可 以看出 ,Fe 掺杂的 TiO₂ 比纯 TiO₂ 的禁带宽度窄 ,这 将导致 TiO₂ 的吸收光谱向长波方向移动(红移).由 Fe 的 t_{2g} 和 O 的 p 电子态形成的 π 反键态(I)位于 价带顶 0.3eV A 个电子占据该能级.Fe 的 e_{g} 态(II) 靠近导带附近.由图 f(b)可以看出 ,Fe 周围的电子 分布各向异性 ,Fe-O 键具有共价特性.

因为 Fe 的 t₂能级靠近 VB,在高度掺杂时易发 生重叠^[22],在这种情况下,可能存在电子由杂质态 顶部直接跃迁至导带的光激发现象,从而使得 TiO₂ 的吸收带红移成为可能.

图 6 不同掺 Fe 比例的 Fe_x Ti_{1-x} O₂ 态密度图

为了观察 Fe 杂质带在禁带中的位置,我们计 算了 Fe_xTi_{1-x}O₂ 的带结构,如图 7 所示.由图可以看 出沿布里渊区高对称点方向有三个 Fe 杂质态能级, 其中,下方的两能级(对应图 6 中 I 态)与价带顶 (O 2p)态重叠,高能级(对应图 6 中的 II 态)与导带 底(Ti t_{2g} 态)重叠.为了验证理论计算所得出的红移 预言,图 8 给出了用紫外-可见分光光度计所测得的 纯 TiO₂ 及 Fe 掺杂 TiO₂ 的紫外光谱.图 8 表明,随 Fe 含量的增加(由 0%到 2% 3% A%),对应的光谱吸 收带边逐渐向长波长方向移动.这表明,随着 Fe 含 量的增加,掺杂 TiO₂ 的禁带宽度逐渐变窄.

图 8 Fe_xTiO_{1-x}O₂(x=0 0.02 0.03 0.04)的紫外透射光谱实验图

4.结 论

本文研究了锐钛矿 TiO₂ 的基态几何结构性质 及 Fe 掺杂 TiO₂ 的电子结构特性,获得了晶格常数、 带隙等重要几何及电子结构参数.结果发现,Fe 的 t_{2g}态导致在 TiO₂ 禁带中出现了靠近价带的新的局 域能级.杂质的 t_{2g}能级在带隙中的位置在 TiO₂ 的光 谱响应中扮演了重要角色.理论计算结果表明 Fe 掺 杂可导致红移现象出现,实验结果证实了理论上的 预言.

- [1] Fujishima A and Honda K 1972 Nature 37 238
- [2] Serpone N and elizzetti E 1989 Photocatalysis, Fundamentals and Applications (New York: Wiley) p603
- [3] Gratzel M 1992 Comments Inorg. Chem. 31 567
- [4] Gleiter H 1989 Prog. Mater. Sci. 33 223
- [5] Tang H , Prasad K , Sajines R , Schmid P and Levy F 1994 J. Appl. Phys. 75 2042
- [6] Sakata Y et al 1998 Chem. Lett. 12 1253
- [7] Choi W, Termin A and Hoffmann M R 1994 J. Phys. Chem. 98 13669
- [8] Bickley R I et al 1994 J. Chem. Soc. 90 2257
- [9] Navio J A et al 1992 J. Mater. Sci. 27 3036
- [10] Litter M I, Navio J A 1994 J. Photochem Photobiol A 84 183
- [11] Shen Y W and Kang J Y 2001 Acta Phys. Sin. 51 645 (in Chinese] 沈耀文、康俊勇 2001 物理学报 51 645]
- [12] Tan M Q, Tao X M and Xu X J 2003 Acta Phys. Sin. 52 3142 (in Chinese J 谭明秋、陶向明、徐小军 2003 物理学报 52 3142]
- [13] Hou Z F and Liu H Y 2003 Acta Phys. Sin. 52 952 (in Chinese)

「侯柱锋、刘慧英 2003 物理学报 52 952]

- [14] Lin Z S and Wang Z Z 2001 Acta Phys. Sin. 50 1145(in Chinese) [林哲帅、王志忠 2001 物理学报 50 1145]
- [15] Argaman N and Makov G 2000 Am. J. Phys. 68 69
- [16] Perdew J P , Burke K and Emzerhof M 1996 Phys. Rev. Lett. 77 3865
- [17] Jiang H B and Gao L 2002 Materials Chem. Phys. 77 878
- [18] Howard C J, Sabine T M and Dickson F 1991 Acta Crystallogr, Sect. B: struct. Sci. 47 462
- [19] Asahi R , Taga Y , Mannstadt W and Freeman A J 2000 Phys. Rev. B 61 7459
- [20] Wang Y X, Wang C L and Zhong W L 2004 Acta Phy. Sin. 53 214
 (in Chinese] 王渊旭、王春雷、钟维烈 2004 物理学报 53 214]
- [21] Liu R Z 1983 Basics of Quantum Chemistry (Beijing Science Press) p12(in Chinese] 刘若庄 1983 量子化学基础(北京 科学出版 社)第12页]
- [22] Halperin B I and Lax M 1966 Phys. Rev. 148 722-740

Anatase TiO₂ and red-shift introduced by doping with Fe : pseudopotential calculations and ultraviolet spectroscropy

Zhang Yong Tang Chao-Qun Dai Jun

(Department of Physics , Huazhong University of Science and Technology , Wuhan 430074 , China)
 (Received 18 March 2004 ; revised manuscript received 2 June 2004)

Abstract

The crystal structure and electronic band structure of undoped and Fe-doped anatase TiO_2 have been investigated by using the plane-wave ultrasoft pseudopotential method in the generalized gradient approximation (GGA). The calculation shows that Fedoping introduces a localized level and narrowing of band gap in TiO_2 . The t_{2g} state of the dopant plays a significant role in redshift of spectrum. The previous prediction is confirmed by our experiment.

Keywords : density functional theory , TiO_2 , Fc-doped , red-shift PACC : 7115M , 7115H , 7115A , 3320L