氦原子 1snd(n=4—11)组态下¹D—³D 谱项 分裂值的计算*

贺黎明* 曹 伟 陈学谦 朱云霞

(华东理工大学物理系,上海 200237) (2005年3月4日收到,2005年4月15日收到修改稿)

利用多体微扰理论(MBPT)计算了氦原子 1snd n = 4—11)组态的1D—³D 谱项分裂值.基于两种不同的模型分 别计算 Rayleigh-Shrödinger 微扰展开式中仅含束缚态的部分和包含连续态的部分.对于束缚态,较严格地通过自洽 迭代求解 Hartree 方程构造零级近似波函数,并利用积分处理方法对无穷项求和中的余项给出了近似算法.而对于 连续态波函数 则采用简化的氢原子势模型.按照 Rayleigh-Shrödinger 微扰展开方法,将 Rydberg 态的微扰论修正计 算至三级.计算表明,二级和三级微扰对谱项分裂的贡献主要来自于束缚态求和部分.单态-三重态精细结构分裂 的计算结果与两组实验结果基本符合.

关键词:氦原子,Rydberg态,多体微扰,组态波函数,能级分裂 PACC:3120,3150

1.引 言

原子 Rydberg 态的研究有着非常重要的学术价 值和广阔的应用前景^[1-4]. 氦原子作为最简单的多 体系统,是检验量子力学及其处理多体问题理论方 法的理想场所.其高激发态的能级分裂结构,更是许 多实验和理论工作者研究的热点^[5].

多体微扰理论(MBPT)⁶⁻⁸¹是处理这类问题最 为常用的方法之一.Kelly^[9]将多体微扰理论用于原 子结构的计算.Vidolova-Angelova 等人^[10]利用模型势 方法对钇原子高 Rydberg 态 4f¹⁴6s_{1/2} nl_j 的精细结构 进行了相对论多体微扰计算,揭示了对于重原子体 系 单态-三重态的能级分裂可以达到同 Rydberg 系 列中相邻的能级.Chang 和 Poe^[11,12]利用 Brueckner-Goldstone(BG)多体微扰理论方法,计算了氦原子及 其等电子系列 D 态、F 态的精细结构.这里同样是采 用了较为粗糙的零级近似模型,而且计算结果中二 级微扰的修正值比较大,所以只考虑到二级微扰的 微扰论计算是远远不够的.为了解决这一问题, Chang^[13]又给出了将微扰论与组态相互作用相结合 的计算方法,其中用到了有限的 B 样条基矢组以构成所谓的准完备系^[14].

本文采用多体微扰理论对氦 Rydberg 态 1snd (n=4—11)组态的¹D—³D 谱项分裂值进行了计算. 基于两种不同的模型分别计算多体微扰中仅含束缚 态的求和部分和包含连续态的部分.按照 Rayleigh-Shrödinger 微扰展开方法,将 Rydberg 态的微扰论修 正计算至三级.由此得到的计算结果与两组实验测 量值基本符合.

2. 理论与方法

$$\Psi(\gamma LS) = \sum_{i=0}^{\infty} c_i \Phi(\gamma_i LS), \qquad (1)$$

i = 0 对应于实态,即 $\gamma_0 = 1 \le n d$,通常取 $c_0 = 1$; γ_i ($i \ne 0$)表示虚态,对双电子体系具体可表示为 $p_i q_i$. 如果 $c_i (i \ne 0) \ll 1$,则表示虚态只对 $1 \le n d$ 组态产生 组态微扰,可用微扰论方法来计算.

在多体微扰框架下,设

^{*} 国家自然科学基金(批准号:10074014)和华东理工大学校基金资助的课题.

 $^{^{\}dagger}\text{E-mail}:\text{lmhe}@\,\text{ecust.edu.cn}$

)

$$H = H_0 + V, \qquad (2)$$

其中微扰算符 $V \ll H_0$ 按照 Rayleigh-Schrödinger^[6]微 扰方法 ,展开至三级的能级修正公式为

$$E^{(0)} = \varepsilon_{1s} + \varepsilon_{nd} , \qquad (3)$$

$$E^{(1)} = \Phi_0 + V + \Phi_0 \quad , \tag{4}$$

$$E^{(2)} = \sum_{i=1}^{\infty} \frac{\Phi_0 + V + \Phi_i - \Phi_i + V + \Phi_0}{E_0 - E_i} , \qquad (5)$$

$$E^{(3)} = \sum_{i,j=1}^{\infty} \frac{\Phi_0 + V + \Phi_i - \Phi_i + V + \Phi_j - \Phi_j + V + \Phi_0}{(E_0 - E_i) E_0 - E_j}$$
$$- E^{(1)} \sum_{i=1}^{\infty} \frac{\Phi_0 + V + \Phi_i - \Phi_i + V + \Phi_0}{(E_0 - E_i)^2}. (6)$$

在上式求和中, Φ_i , Φ_j 对应于所有可能的组态. 当然它们必须满足一定的条件,如具有相同的宇称, 还有(1)式中每一项波函数都须具有相同的谱项值 (L和S)及其分量(M_L 和 M_S).(5)式中如果 Φ_i 对应 于 p_iq_i 组态, 而 p_iq_i 为两个束缚态(bound orbitals)的 话则这里的 \sum_i 对应于两个单态的双重求和,简称 BB型(BB-type).如果其中包括连续态(continuum orbital)的话,则应有关于连续轨道的积分.这里可能 的情形有,一个束缚态和一个连续态(BC型),以及 两个连续态(CC型)则对应于双重积分.(6)式中第 一项的计算则更为复杂.

我们把整个微扰展式的计算分成两部分,即只包括束缚态的求和部分(BB型)和包含连续态积分的部分(包括BC型和CC型).前者应是主要的部分.

2.1. 束缚态波函数的求解

对于束缚态轨道波函数的求解,我们取

$$H_0 = h_{1s} + h_{nd}$$
, (7)

则有微扰项(Rydberg 单位)

$$V = \frac{2}{r_{12}} - V_{\rm nd}^{\rm C} - V_{\rm 1s}^{\rm C} , \qquad (8)$$

其中 Coulomb 势算符

$$V_{\rm nd}^{\rm C} \equiv n \, {\rm d} \left| \frac{2}{r_{12}} \right| n \, {\rm d}$$
, $V_{\rm 1s}^{\rm C} \equiv 1 \, {\rm s} \left| \frac{2}{r_{12}} \right| 1 \, {\rm s}$ (9)

分别表示 *n* d(1s)电子对 1 (*n* d)电子的 Coulomb 势, 而 Hartree 算符为

$$h_{1s} = -\nabla_{1s}^{2} - \frac{4}{r_{1s}} + V_{nd}^{C} ,$$

$$h_{nd} = -\nabla_{nd}^{2} - \frac{4}{r_{nd}} + V_{1s}^{C} . \qquad (10)$$

轨道波函数 $arphi_{1s}$, $arphi_{nd}$ 则通过自洽迭代方法求解下列

Hartree 方程获得

$$\begin{cases} h_{1s}\varphi_{1s} = \varepsilon_{1s}\varphi_{1s}, \\ h_{nd}\varphi_{nd} = \varepsilon_{nd}\varphi_{nd}. \end{cases}$$
(11)

虚轨道(virtual orbital)波函数的求取与实轨道 (φ_{1s} , φ_{nd})方程(11)相类(I)即在不同的 pq 组态下分 别计算相应的轨道波函数.但由于 Hamilton 量 h_p , h_q 因组态而异,同一 l系列的波函数之间不能保证 正交性.为此,有必要设计按组态系列计算的步骤以 及相应的正交化方案,既保证基矢的正交性,又能使 那些最重要的组态(对 1snd 的组态微扰作用较强) 受正交化的影响最小.在此基础上,我们采用角动量 耦合的方法构造对应谱项的组态波函数,并可将其 表示为空间部分和自旋部分的乘积.由于 Hamilton 算符中未包含自旋变量,在计算微扰矩阵元时只需 考虑组态波函数的空间部分即可.

需要指出的是,由于由同科电子构成的组态(如 mp²)受 Pauli不相容原理的限制,没有相应的³D 谱 项,所以计算得到的二级以上单态、三重态的能级修 正值是不对称的.此外,同科电子组态波函数的归一 化,也与其他组态不同.注意到这些问题对于本文的 计算是十分重要的.

2.2. 连续态径向波函数求解

连续态波函数不能像束缚态那样逐一进行正交 化.另考虑到连续态的最大贡献主要来自于类似 2pεp 组态,其中 εp 是能量为 ε 的 p 态连续态,它所 处的环境和单独氢原子势场非常相似.采用氢原子 势既简便,又能自然保证连续态波函数的正交性.对 于 BC 型波函数中的束缚态部分,则相应的采用文 献报道^[5,11]的简单模型,取作用势为

$$V(r) = -\frac{2Z_{e}}{r}$$
, (12)

其中 Z。为有效核电荷数 ,分别取为

$$Z_{e} = \begin{cases} 2 , l = 0, 1, \\ 1 & l = 2, 3, \dots \end{cases}$$
(13)

同时应考虑在这种势模型下的微扰算符亦应作相应 的调整.

能量为 ε,角动量为 *l* 的连续态电子满足径向 波动方程

$$\left[-\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{l(l+1)}{r^2} - \frac{2Z_e}{r}\right]P_{el}(r) = \epsilon P_{el}(r),$$
(14)

对所有的连续态 Z_{e} 均取 1. Cowar 16^{16} 经过理论推导 ,

得出满足上式的归一化连续态波函数应有渐进形式

$$P_{\varepsilon l}(r) \xrightarrow[r \to \infty]{} \frac{1}{\sqrt{\pi k}} \cos(kr + \delta_0), \qquad (15)$$

其中 $k = \sqrt{\varepsilon}$,为该连续态的波矢.

连续态的严格归一化过程需要将(14)式的微分 方程计算到无穷远处。但这是不可能做到的.所以就 必须建立起这样的算法,以使我们能够只计算到一 个很大但是有限的位置 r = r₀,而得到 r→∞处的近 似行为(主要是振幅),然后再根据(15)式进行归一 化.对此我们进行了细致的研究,详细结果将另文 发表.

3. 计算结果与讨论

根据上述计算方法,分别对 sd ,pp ,pf ,dd 等组态 系列进行自洽场计算,求取各个组态下的轨道能量 和轨道波函数,并利用正交化的轨道波函数构造对 应的组态波函数.以各组态波函数为基,便可逐级计 算微扰能.对于各级微扰计算,我们所关心的是对 ¹D—³D 谱项分裂有贡献的项,称为交换项(exchange term).原则上多体微扰计算应当考虑所有可能束缚 态的无穷项求和及连续态的无穷积分,但实际上只 能计算相对主要的组态系列,并利用积分处理方 法^[17]求解各个组态系列无穷项求和的修正问题.

表 1 给出了氦 Rydberg 态 1snd(n = 4—11)组态 二级微扰中各 BB 型组态系列对二级交换项的计算 结果.计算表明,pp 组态系列的贡献最大,sd 系列次 之,然后是 pf 系列,而 dd 系列对谱项分裂的贡献与 pp 系列相比,大至小四个数量级.考虑到在计算结 果中只保留四位有效数字,dd 系列的影响几乎可以 忽略.至于ff 等其他组态系列,则更可以不予考虑.

表 1 各 BB 型组态系列对二级交换项的计算结果(GHz)

n	pp 系列	sd 系列	pf 系列	dd 系列	总计
4	- 53.03	5.193(-2)	2.391(-2)	-7.250(-3)	- 52.96
5	- 30.26	3.252(-2)	1.633(- 2)	-4.141(-3)	- 30.22
6	- 18.49	2.079(-2)	1.026(-2)	-2.506(-3)	- 18.46
7	- 12.03	1.384(-2)	6.639(-3)	- 1.613(- 3)	- 12.01
8	- 8.221	9.587(-3)	4.482(-3)	-1.094(-3)	- 8.208
9	- 5.854	6.882(-3)	3.149(-3)	-7.738(-4)	- 5.845
10	-4.310	5.092(-3)	2.290(-3)	-5.694(-4)	-4.303
11	- 3.262	3.867(-3)	1.714(-3)	-4.306(-4)	- 3.257

在涉及到连续态的计算中,首先考虑了上述四 个组态系列的 BC 型组态对二级交换项的贡献,计 算结果列于表 2 的第二至第五列.结果表明,这里的 pp,pf 系列的计算值大致相当,符号却相反.所以这 两个组态系列的影响相互抵消,而 sd 和 dd 系列的 结果又相对较小.对于 CC 型组态,我们只计算了 pp 组态系列,计算结果列于表 2 第六列.与同组态系列 的 BC 型计算值相比,CC 型组态的贡献小了 5 个数 量级.由此可见,整个 CC 型组态系列的影响都是很 小的,可以忽略不计.

表 2 BC 型、CC 型组态系列对二级交换项的贡献(GHz)

n	pp 系列 BC 型	pf 系列 BC 型	sd 系列 BC 型	dd 系列 BC 型	_{pp} 系列 CC 型	总 计	
4	- 5.751	6.385	-1.685(-3)	- 7.091(- 3)	-7.711(-5)	6.251(-1)	
5	- 3.609	3.695	1.059(-3)	-3.819(-3)	-4.505(-5)	8.319(-2)	
6	- 2.314	2.273	1.484(-3)	-2.256(-3)	-2.786(-5)	-4.180(-2)	
7	- 1.547	1.483	1.292(-3)	-1.435(-3)	1.515(-5)	-6.413(-2)	
8	- 1.076	1.016	1.024(-3)	-9.672(-4)	-1.252(-5)	-5.996(-2)	
9	-7.747(-1)	7.240(-1)	7.951(-4)	-6.818(-4)	-8.937(-6)	-5.060(-2)	
10	- 5.748(-1)	5.334(-1)	6.193(-4)	-4.983(-4)	-6.592(-6)	-4.129(-2)	
11	- 4.374(- 1)	4.039(-1)	4.872(-4)	-3.750(-4)	-4.995(-6)	-3.339(-2)	

表 2 最后一列给出了含连续态的二级微扰项的 贡献值.与表 1 中的结果比较,连续态的贡献要小得 多(差二个数量级).其中主要的原因是 BC 型中的 pp,pf 组态系列相互抵消的缘故.以上二级微扰的计 算结果,对于三级微扰中如何选择主要的组态系列

是一个参考依据.

表3给出了三级微扰的计算结果.首先(6)式 中第二项与二级微扰的算式相类似,所以在二级微 扰中所有计算过的组态系列在这里都同样计算一 遍,包括余项的处理,计算结果列于表3中第四、第 五列.其中第四列是只考虑束缚态(BB型)的计算 值,第五列为包含连续态(主要是BC型)的计算值. 这里看出二者竟相差9个数量级.

表 3 三级微扰的计算结果(GHz)

n	第一项 束缚态求和	第一项 连续态部分	第二项 束缚态求和	第二项 连续态部分	总 计
4	11.93	5.430(-4)	2.133	-4.165(-9)	14.06
5	6.626	3.138(-4)	7.689(-1)	-1.362(-9)	7.395
6	3.982	1.929(-4)	3.242(-1)	-5.102(-10)	4.306
7	2.558	1.258(-4)	1.542(-1)	- 2.159(- 10)	2.712
8	1.733	8.617(-5)	8.050(-2)	- 1.010(- 10)	1.814
9	1.225	6.143(-5)	4.520(-2)	- 5.123(- 11)	1.270
10	0.897	4.526(-5)	2.692(-2)	- 2.777(- 11)	0.924
11	0.676	3.427(-5)	1.681(-2)	- 1.591(- 11)	0.693

(6)式等号右第一项实际包含了对四个单态的 求和或积分,所以计算非常复杂.为了简化计算,在 选择 BB型组态时只考虑了 pp 和 sd 两个组态系列, 在选择 BC型组态时只考虑了 pp 和 pf 组态系列.计 算结果列于表 3 的第二、第三列.比较结果再次表明 主要的贡献还是来自于束缚态部分.而(6)式等号右 第一项与第二项比较,三级微扰中第一项的贡献要 大一些.

表4给出了本文的最后计算结果及其与实验的 比较.第二至第四列给出了各级微扰对¹D—³D 谱项 分裂的贡献值,其中二、三级微扰的计算都已考虑了 连续态的影响.第五列为包含了一至三级微扰的总 的计算结果.最后三列给出了三组实验测量值,其中 第六列是由传统光谱学方法得到的测量结果,而后 两列是分别采用了微波光学技术和与快原子束(fast atomic beams)结合的微波光学测量手段.这两种较 新的测量方法分辨率应更高,测量结果更准确.本文 的计算结果较好地符合了这后两组测量值.

表 4 ¹D—³D 谱项分裂值总的计算结果及其与实验值的比较(GHz)

n	一级 微扰	二级 微扰	三级 微扰	总计	实验 值 ^[18]	实验 值 ^{_19}]	实验 值 ^[20]
4	99.49	- 52.33	14.06	61.22	59.20	58.89	59.14
5	57.48	- 30.14	7.395	34.74	34.41	34.05	34.13
6	35.34	- 18.50	4.306	21.15	20.81	20.919	20.95
7	23.05	- 12.07	2.712	13.69	14.78	13.6333	13.6577
8	15.790	- 8.268	1.814	9.336	10.79	9.33267	
9	11.260	- 5.896	1.270	6.634	7.196	6.65048	6.66200
10	8.294	- 4.344	0.924	4.874	5.687	4.89813	4.89
11	6.280	- 3.290	0.693	3.683	4.498	3.70777	

4. 结 论

微扰论计算中零级近似解的选取往往是至关重 要的.本文基于两种不同的模型分别计算多体微扰 中仅含束缚态的求和部分和包含连续态的部分.对 于束缚态部分,我们基于第一性原理,较严格地通过 求解 Hartree 方程构造零级近似波函数,并利用积分 处理方法对无穷项求和中的余项进行了近似计算. 而对于连续态波函数,则采用了简化的氢原子势模 型.这样不仅可以很方便地计算得到所有的连续态 波函数,而且还避免了正交化的困难.通过选择相对 较大的积分限以尽量使无限积分中的余项可忽略不 计.计算结果表明,二至三级微扰对谱项分裂的贡献 主要是来自于束缚态的求和部分.

我们采用改进的 Numerov 格式^[21,22],双精度浮 点运算,有效地保证了 Rydberg 态和连续态的数值 计算精度.最后得到的氦原子 1snd(n=4—11)组态 下¹D—³D 谱项分裂值的计算结果与两组较新的实 验测量值基本符合.

- [1] Zhang J Z 2004 Phys. Rev. Lett. 93 043002
- [2] Fan X W et al 2004 Chin. Phys. Lett. 21 65
- [3] Sheng Y, Jiang G and Zhu Z H 2002 Acta Phys. Sin. 51 501(in Chinese)[盛勇、蒋 刚、朱正和 2002 物理学报 51 501]
- [4] Zhang L M, Chen J, Xu H F, Dai J H, Liu S L, Chen C X and Ma X X 1999 Acta Phys. Sin. 48 1204 (in Chinese)[张立敏、陈 军、徐海峰、戴静华、刘世林、陈从香、马兴孝 1999 物理学报 48 1204]
- [5] Gallagher T 1994 Rydberg Atoms (Cambridge : Cambridge University Press)
- [6] Lindgren I I and Morrison J 1986 Atomic many-body theory (Berlin · New York : Springer-Verlag)
- [7] Chang T N 1993 Many-body theory of atomic structure and photoionization (Singapore : World Scientific)
- [8] Boyle J J and Pindzola M S 1998 Many-body atomic physics : lecture on the application of many-body theory to atomic physics (Cambridge : Cambridge University Press)

- [9] Kelly H P 1964 Phys Rev. B 136 3896
- [10] Vidolova-Angelova E P Ivanov L N and Letodhov V S 1981 J. Opt. Soc. Am. 71 6699
- [11] Chang T N and Poe R T 1974 Phys. Rev. A 10 1981
- [12] Chang T N and Poe R T 1976 Phys. Rev. A 14 11
- [13] Chang T N 1989 Phys. Rev. A 39 4946
- [14] Johnson W R Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 307
- [15] Fischer C F 1997 Computational atomic structure : an MCHF approach (Bristol :Institute of Physics Pub.)
- [16] Cowan R D 1981 The theory of atomic structure and spectra(Berkeley ·Los Angeles ·London 'University of California Press)

- [17] Cao W, He L M, Chen X Q and Zhu Y X 2004 Chin. J. At. Mol. Phys. 21 691(in Chinese)[曹 伟、贺黎明、陈学谦、朱 云霞 2004 原子与分子物理学报 21 691]
- [18] Martin W C 1973 J. Phys. Chem. Ref. Data 2 257
- [19] Farley J W, MacAdam K B and Wing W H 1979 Phys. Rev. A 20 1754
- [20] Cok D R and Lundeen S R 1979 Phys. Rev. A 19 1830
- [21] He L M, Lu H and Yang Y 2002 Chin. J. At. Mol. Phys. 19 316(in Chinese)[贺黎明、陆 慧、杨 樾 2002 原子与分子物 理学报 19 316]
- [22] He L M, Yang Y and Lu H 2003 Acta Phys. Sin. 52 1385 (in Chinese)[贺黎明、杨 樾、陆 慧 2003 物理学报 52 1385]

Calculation of helium ${}^{1}D$ — ${}^{3}D$ term intervals for 1s nd(n = 4—11) states *

He Li-Ming Cao Wei Chen Xue-Qian Zhu Yun-Xia

(Department of Physics, East China University of Science and Technology, Shanghai 200237, China)
 (Received 4 March 2005; revised manuscript received 15 April 2005)

Abstract

With many-body perturbation theory (MBPT), ${}^{1}D^{-3}D$ term intervals of helium 1 snd (n = 4---11) configurations have been calculated. Based on two different models, Rayleigh-Schrödinger perturbation expansion terms only consisting of bound states and those of continua are calculated respectively. For bound states, the zeroth-order wave functions are strictly generated from self-iteration solutions of Hartree equation and residues of infinite perturbation series are dealt with by integral processing method. For continuum parts, a simplified hydrogen potential model is adopted. According to Rayleigh-Schrödinger expansion, the perturbation corrections to Rydberg states have been evaluated up to the third-order terms. From the calculation, the energy splittings are mainly attributed to bound parts. Singlet-triplet level splittings yielded here are found to agree quite well with two sets of experimental results.

Keywords : helium , Rydberg state , many-body perturbation theory (MBPT) , configuration wave function , term interval PACC : 3120 , 3150

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10074014) and the Foundation of East China University of Science and Technology.