STM 中量子点接触的电导计算*

李钱光 许海霞 李 翌 李志扬*

(华中师范大学物理科学与技术学院,武汉 430079) (2005年2月7日收到;2005年3月21日收到修改稿)

采用模式匹配和散射矩阵方法,对扫描隧道显微镜(STM)中量子点接触过程中的电导进行了计算.结果表明由 量子点接触形成的纳米结构的电导呈现量子化特征,这种量子化现象随所形成的纳米结构的横向尺寸和锥角的减 小而增强.而且在半导体材料中比金属中更易观察到电导量子化现象.

关键词:STM,量子点接触,量子化电导 PACC:6116P,7215R

1.引 言

扫描隧道显微镜(STM)由于其原子分辨的成像 本领,在表面科学、材料科学和生物科学等领域中发 挥着越来越重要的作用,同时它在单原子操纵、纳米 信息存储、人工纳米结构加工等方面也表现出巨大 的应用前景^[1—9].当利用 STM 进行纳米加工,例如通 过施加一个电脉冲进行场蒸发时,针尖与样品会形 成量子点接触,如图1所示.

图 1 中,首先由于强脉冲电场作用,大量原子从 针尖/样品转移到样品/针尖,形成纳米接触(图 1 (a));然后在反馈电路作用下,针尖后退,上述纳米 结构不断拉长拉细(图 1(b));最后拉断,在样品表 面产生一个原子堆(图 1(c)).在上述过程中,纳米 结构的半径不断减小,从实验上可以观察到电导的 量子化现象^[10-12].本文采用模式匹配和散射矩阵 法,对半导体材料和金属材料,计算了上述 STM 量 子点接触过程中的电导量子化行为.

2. 理论模型

当导体的特征尺寸接近或小于电子波长时,由

量子限制引起的量子输运现象将变得十分显著^{13]}. 为了分析复杂导体中的量子输运现象,在模式匹配 法中,先将形状复杂的导体分解为一系列简单导体,

图 2 台阶状导体

^{*} 国家教育部重点项目(批准号:104120)和校基金资助的课题.

 $^{^{\}dagger}$ E-mail:zylee_2005@163.com

并把每段导体中的波函数写成其本征模的叠加,再 通过连续边界条件把相邻两个导体中的波函数联系 起来.考虑图 2 中的导体,它由两个方形导体组成, 导体的高度分别为 w_1 , w_2 ,宽度分别为 L_1 和 L_2 ,其 中高度沿 Y 方向,宽度沿 X 方向,X 方向也是电子 传播方向.为简单起见,下面的公式仅针对二维情 况,即假设导体在垂直于纸面的 Z 方向无限伸长. 对导体 1 和 2,采用无限深势阱模型,其波函数 ϕ_{12} 可分解为正向和反向传输的本征模的叠加.即

$$\varphi_{1} = \sum_{n} (A_{n} e^{ik_{x}^{(n)x}} + B_{n} e^{-ik_{x}^{(n)x}})$$

$$\times \sqrt{\frac{2}{w_{1}}} \sin\left(\frac{n\pi y}{w_{1}} - \frac{n\pi}{2}\right)$$

$$= \phi_{1}^{T} (P_{1}A + P_{1}^{-1}B), \qquad (1)$$

$$\varphi_{2} = \sum_{m} (C_{m} e^{ik_{x}^{(m)x}} + D_{m} e^{-ik_{x}^{(m)x}})$$

$$\times \sqrt{\frac{2}{w_{2}}} \sin\left(\frac{m\pi y}{w_{2}} - \frac{m\pi}{2}\right)$$

$$= \phi_{1}^{T} (P_{2}C + P_{2}^{-1}D), \qquad (2)$$

式中 A_n , C_m , B_n , D_m 分别是正向和反向传输的本征 模的系数 ,A ,B ,C ,D 是其列矢量表示 , ϕ^{T} 表示由 (3) 武构成的列矢量的转置 ,

$$\phi_n = \sqrt{\frac{2}{w}} \sin\left(\frac{n\pi y}{w} - \frac{n\pi}{2}\right) , \qquad (3)$$

 P_{12} 是由(4)式描述的对角矩阵,

$$P_{v}(n,n) = e^{ik_{x}^{v}(n)x}$$
,
 $k_{x}^{(v)}(n) = \sqrt{2m^{*}E/\hbar^{2} - (n\pi/w_{v})^{2}}$, $v = 1,2.(4)$
在两个导体的界面,根据模式匹配原理,即波函数和
波函数的一阶微分在界面处连续,可以得到

$$\begin{aligned}
\phi_{2}^{\mathsf{T}}(C + D) \\
&= \begin{cases} \phi_{1}^{\mathsf{T}}(A + B) & -w_{2}/2 \leq y \leq w_{2}/2 , \\ 0 & -w_{1} \leq y \leq -w_{2}/2 \cup w_{2}/2 \leq y \leq w_{1} , \\ & (5) \end{cases}
\end{aligned}$$

$$\phi_{1}^{T}K_{1}(A - B) = \phi_{2}^{T}K_{2}(C - D), \qquad (6)$$
the state of the state o

 $K_v(m,n) = k_x^{(v)}(n) \delta_{m,n}, v = 1.2.$ (7) 由(5)和(6)式利用本征模的正交性,可以导出界面的散射矩阵^[14,15]

$$\begin{bmatrix} B \\ C \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} A \\ D \end{bmatrix} , \qquad (8)$$

式中

$$S_{11} = (I - H_2 H_1)^{-1} (I + H_2 H_1), \quad (9)$$

54 卷

$$S_{12} = -2(I - H_2 H_1)^{-1} H_2$$
, (10)

$$S_{21} = H_1(I + S_{11}),$$
 (11)

$$S_{22} = H_1 S_{12} - I. \tag{12}$$

(9)-(11) 武中 / 为单位矩阵,

$$H_{1}(n,m) = \frac{2}{\sqrt{w_{1}w_{2}}} \int_{-w_{2}/2}^{w_{2}/2} \sin\left(\frac{n\pi y}{w_{1}} - \frac{n\pi}{2}\right) \\ \times \sin\left(\frac{m\pi y}{w_{2}} - \frac{m\pi}{2}\right) dy , \quad (13)$$

$$H_2 = -K_1^{-1}(H_1)^{\mathrm{T}}K_2. \qquad (14)$$

当波函数在导体 1 和 2 中传播时,只是相位发 生改变,这种变化也可以写成类似(8)式的矩阵形 式,即

$$\begin{bmatrix} B \\ C \end{bmatrix} = \begin{bmatrix} 0 & P \\ P & 0 \end{bmatrix} \begin{bmatrix} A \\ D \end{bmatrix} , \qquad (15)$$

式中

$$P(m,n) = e^{ik_x(n)L} \delta_{mn}. \qquad (16)$$

采用如上的方法从左到右逐级求散射矩阵,最 后可以计算出电子从最左侧的窄带1入射到从最右 侧的窄带 N 出射的总的散射矩阵

$$\begin{bmatrix} b_1 \\ b_N \end{bmatrix} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix} \begin{bmatrix} a_1 \\ a_N \end{bmatrix}.$$
 (17)

由 $a_N = 0$ 和(17)式可以计算出电子从左侧以模式 n入射到右侧的各个模式的透射系数^[14]

$$T_{n} = \frac{\sum_{m=1}^{\infty} b_{N}(m) b_{N}^{*}(m) k_{x}^{(N)}(m) + k_{x}^{(N)*}(m))}{a_{1}(n) a_{1}^{*}(n) k_{x}^{(1)}(n) + k_{x}^{(1)*}(n))}$$
$$= \frac{\sum_{m=1}^{\infty} S_{21}(m,n) S_{21}^{*}(m,n) k_{x}^{(N)}(m) + k_{x}^{(N)*}(m))}{k_{x}^{(1)}(n) + k_{x}^{(1)*}(n)}.$$
(18)

对各入射模式求和得总的透射系数

$$T = \sum_{n} T_{n} , \qquad (19)$$

因此,可得在 OK 下系统的电导^[16,17]

$$G = \frac{2e^2}{h} \mathcal{T}(E_{\rm f}). \qquad (20)$$

3. 计算结果

为了分析计算图 1 所示的 STM 量子点接触过 程中的电导,我们用两个相对放置的尖劈形导体来 近似表示实际纳米结构,尖劈前端顶部宽度为 W₀, 锥角为 θ,进一步把尖劈切分成很多段,如图 3 所 示 这样就可以方便地采用上节介绍的模式匹配方 法进行计算.STM 中量子点接触拉断的过程 相当于 锥角不断变小的过程.3.1 节给出了二维计算结果. 在 3.2 节中用圆锥代替尖劈 给出了三维计算结果.

图 3 尖劈形接触结构

在模式匹配中所采用的本征模的个数越多,计 算精度越高,但计算量也越大.计算表明在传导模的 基础上再取 15 到 20 个消逝模后计算就能够达到很 好收敛性.因此在下面的计算中各个窄带中的模式 数都取传导模的数目再加 20.

3.1. 二维计算结果

在计算中用两个相对放置的尖劈形导体来近似 表示实际纳米结构,进一步把每个尖劈切分成 150 段 对半导体(其费米能取为 $E_f = 5 \text{meV}$)和金属(其费 米能取为 $E_f = 4.5 \text{eV}$)计算结果分别如图 4 和 5 所示.

由图 4 和图 5 可以发现,当尖劈前端的宽度很 小时,图 3 所示半导体和金属纳米结构的电导都表 现出量子特性.当锥角为^π20时,如图 4(b)和图 5(b) 所示,对金属而言,前端宽度为 9nm 时量子特性已 经不明显,对半导体而言,前端宽度为 150nm 时量子 效应还很显著.金属和半导体的这种差别是因为前 者的费米能级为 4.5eV,对应电子波长为 2.2nm,而 后者的费米能级为 5meV,对应电子波长为 67nm.在 半导体中电子波长要长得多,因此电导量子化的现 象更容易观察到.同时随着针尖锥角增大,电导量子 化效应有不断减小的趋势,同样如图 4(b)和图 f(b)所示,对于半导体连接结构,当锥角为 $\frac{\pi}{20}$ 时,尖劈前 端宽度为 150nm 时量子效应还很显著,但是当锥角 为 $\frac{\pi}{3}$ 时,前端宽度为 80nm 时量子效应就基本消失 了.对金属连接结构而言,当锥角为 $\frac{\pi}{3}$ 时,尖劈前端的 宽度为 3nm 是量子特性就基本消失了,而锥角为 $\frac{\pi}{20}$ 时,前端宽度为 9nm 时相比之下量子特性还可区别.

3.2. 三维锥形圆柱体量子点接触连接结构的电导 计算结果

本节中用圆锥代替尖劈,这样可以更真实地模 拟图1中所示纳米结构.计算方法基本同上节,只是 对圆锥进行分割后,在每段圆柱体中电子的径向本 征函数应该改用 Bessel 函数表示为

$$\phi_n = \sqrt{\frac{2}{R_0^2 J_1(k_n R_0)}} J_0(k_n \rho), \qquad (21)$$

式中 $k_n = \frac{x_n}{R_0} , x_n \neq J_0(x)$ 的第 n 个零点.对半导体 和金属材料的计算结果分别如图 6 和图 7 所示.

图 4 半导体材料($E_{i} = 5 \text{meV}$)图 3 所示纳米结构的电导与尖劈前端的宽度和锥角的关系曲线 (b E_{i} (a)中三条曲线的放大

图 5 金属材料(E₁=4.5eV)图 3 所示纳米结构的电导与尖劈前端的宽度和锥角的关系曲线(b)是(a)中三条曲线的部分放大

图 6 半导体材料(E₁ = 5meV),图 3 所示纳米结构的电导与圆柱体前端的半径和锥角的关系曲线 (b)是(a)中三条曲线的放大

对比图 6,7 与图 4,5 可以看出,采用二维尖劈 和三维锥形圆柱体来模拟图 3 中所示纳米结构,计 算结果所反映的规律基本相同.但需注意,在图 6,7 中 圆柱体前端的尺寸应该是半径的二倍.也就是 说,在三维情况下,量子效应比二维情况近似提前一 倍出现.这是因为在三维情况下,量子限制存在于两 个方向,或者说电子能量被均分到两个方向,因此近 似可以看作波长增加.

4. 结 论

本文用模式匹配和散射矩阵的方法计算了 STM 中由于量子点接触形成的纳米结构的电导特性,发 现当纳米结构的横向特征尺寸较小时,其电导会出 现量子化现象,而且纳米结构的锥角越小,电导的量 子化越明显.另外在半导体材料中比金属中更易观 察到电导量子化现象.

- [1] Dai Z , Slough C G and Coleman R V 1991 Phys. Rev. Lett 66 1318
- [2] Bengu E , Plass R and Marks L D 1996 Phys. Rev. Lett. 77 4226
- [3] Crommie M F , Lutz C P and Eigler D M 1993 Science 262 218
- [4] Li Z Y , Liu W and Li X J 1998 Ultramicroscopy 73 147
- [5] Hajime K , Sumio H and Ryo I 1995 Appl. Phys. Lett. 67 2609
- [6] Wang F H, Yang J L and Li J M 1998 Acta Phys. Sin. 47 1827 (in Chinese] 王福合、杨金龙、李家明 1998 物理学报 47 1827]
- [7] Li Q X, Yang J L, Ding C G, Wang K L and Li J M 1999 Acta Phys. Sin. 48 1086 (in Chinese] 李群祥、杨金龙、丁长庚、汪 克林、李家明 1999 物理学报 48 1086]
- [8] Ge S P, Zhu X and Yang W S 2005 Acta Phys. Sin. 54 824 (in Chinese] 葛四平、朱 星、杨威生 2005 物理学报 54 824]
- [9] Gu C Z 2002 Chin. Phys. 11 1042

- [10] Pascual J I, Mendez J and Gomez H J 1993 Phy. Rev. Lett. 71 1852
- [11] Todorov T N and Sutton A P 1996 Phys. Rev. B 54 14234
- [12] Brandbyge M, Schiotz J, Sorensen M R, Stoltzen P and Norskov J K 1995 Phys. Rev. B 52 8499
- [13] Xue Z Q and Li W M 2003 Nanoelectronic (Beijing : Publishing House of Electronics Industry) 12(in Chinese] 薛增泉、刘维敏 2003 纳米电子学(北京:电子工业出版社)第12页]
- [14] Andreas W, Jenifer L, Stephen M G and Vijai K T 1991 J. Appl. Phys. 70 355
- [15] Pascual J I, Torres J A and Saenz J J 1997 Phy. Rev. B 55 16029
- [16] Landauer R 1970 Philos. Mag. 21 863
- [17] Buttiker M 1986 Phys. Rev. B 33 3020

Calculation of conductance of quantum point contact in STM*

Li Qian-Guang Xu Hai-Xia Li Yi Li Zhi-Yang

(College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China)
 (Received 7 February 2005; revised manuscript received 21 March 2005)

Abstract

The conductance of quantum point contact in scanning tunneling microscope is calculated by modal matching and scattering matrix method. The results show that the conductance of the nano-structure formed during quantum point contact in STM is quantized, which becomes more obvious as the radius and cone angle of the nano-structure decreases. The quantitative behavior could be observed more easily with semiconductors than with metals.

Keywords : STM , quantum point contact , quantum conductance PACC : 6116P , 7215R

^{*} Project supported by the Key Project of Ministry of Education (Grant No. 104120) and the Foundation of Central China Normal University.