电流密度对铝合金微弧氧化膜 物理化学特性的影响

吴汉华¹²) 汪剑波²) 龙北玉¹) 吕宪义²) 龙北红²) 金曾孙², 白亦真³) 毕冬梅¹)

1)(吉林大学物理学院,长春 130023)

2)(吉林大学超硬材料国家重点实验室,长春 130012)

3) 大连理工大学物理系,三束材料改性国家重点实验室,大连 116024)

(2005年3月24日收到2005年7月18日收到修改稿)

利用微弧氧化(MAO)技术 在 LYI2 铝合金上沉积了显微硬度达 42.14 GPa 的超硬陶瓷膜.采用 x 射线衍射仪和 显微硬度计研究了阳极电流密度 j_a 和阴极、阳极电流密度比 j_e/j_a 对 MAO 膜相构成和力学特性的影响.此外 利用 扫描电子显微镜和恒电位仪分别对膜的微结构和抗点腐蚀特性进行了分析.结果表明 ,高 j_a 制备的膜主要含 α -Al₂O₃相 ,低 j_a 制备的膜主要含 γ -Al₂O₃ 相.显微硬度测试表明 这类膜有较高的硬度 ,但以 j_a = 15 A/dm² 和 j_e/j_a = 0.7 制备的陶瓷膜硬度最高.抗点腐蚀测试表明 , j_e/j_a 对陶瓷膜的微结构有很强的影响.

关键词:微弧氧化,显微硬度,电流密度,抗点腐蚀 PACC:6150J,6160,8245

1.引 言

微弧氧化(MAO)又称微等离子体电解质氧化、 阳极火花沉积或微弧放电氧化,该法是将样品作阳 极浸在兼作阴极的不锈钢处理池中,当两极间施加 高电压时浸在处理液中的样品表面产生强烈的微弧 放电,在放电产生的局部高温、高压以及热化学、等 离子体化学及电化学的共同作用下导致样品表面形 成一层新的氧化陶瓷膜,由于处理液中阴离子以及 金属阳离子的进入 使陶瓷膜的成分发生显著变化. 在机械性能方面 _MAO 膜优于阳极氧化膜 ,而附着 力优于其他方法得到的陶瓷膜^{1-5]}.制备 MAO 膜可 以采用单极性脉冲[6]、不对称交流[78]或双极性脉 冲11等电源,当使用后两种电源时,文献 9—11 冲 提到的电流密度一般是指交变电流密度的有效值。 由于这类电源工作时的正半周电流幅度大于负半周 电流幅度或正好相反时,将导致其交变电流有效值 相同 但这两种波形制备的氧化膜的特性差异很大. 因此 使用这类电源时需将正半周电流有效值(阳极 电流 和负半周电流有效值(阴极电流)分开.考虑到 样品的表面积,以阳极电流密度 j_a 和阴极电流密度 j_a 和阴极电流密度 j_c 作为制备氧化膜的电学参数控制较好.本文从这 一目的出发,研究了 j_a 和 j_c/j_a 对 LY12 铝合金 MAO 膜的厚度、相构成、微结构、显微硬度和抗点腐蚀性 能的影响.

2. 实验方法

将 LY12 铝合金加工成 ϕ 20 mm × 3 mm 试样 ,表 面除油、清洗、烘干.处理液由 2 g/L NaOH ,Na₂SiO₃ 添加剂和去离子水组成.容量 3 L、带冷却系统的不 锈钢处理槽做阴极,试样作阳极,用自制工作于稳流 方式的三相 20 kW 电源对其进行正负非对称脉冲波 形供电^[12],处理时间固定为 60 min ,处理液的温度控 制在 50 ℃以下,控制 j_a 在 3—25 A/dm² 之间 ,制备 了 $j_e/j_a = 0.6$,0.7 和 0.8 的样品 3 组.用 D8 DISCOVER型 x 射线衍射(XRD)仪 (Cu 靶,Ka 射 线,工作电压 40 kV,电流 30 mA)对样品进行分析, 膜的微结构用 Hitachi X-650 型扫描电子显微镜 (SEM)得到.用 PARC M273 型恒电位仪测量试样的 抗点腐蚀(在 3% NaCl 溶液中)特性,扫描电位(相对 氢的腐蚀电位)在 -0.15—1.6 V 之间,扫描速度为 0.33 mV/s.膜厚和硬度分别由带电荷耦合摄像头的 XJZ-6A 型光学显微镜和 MHT-4 型显微硬度计确定. 测量硬度前,用 600 号砂纸将样品表面的氧化陶瓷 膜统一打磨至约 10 μ m 厚,然后沿样品表面直径方 向(边缘约 5 mm 宽的区域舍去)依次在相邻间距为 1 mm 的 10 个不同位置测量其硬度并取平均,测量 过程中的峰值载荷为 200 g,保持时间为 10 s,载荷速 度为 20 g/s.

3. 实验结果及分析

3.1. 陶瓷膜的厚度

图 1 给出了不同 j_c/j_a 沉积的陶瓷膜厚度随 j_a 的变化规律. 从图 1 可以看出,陶瓷膜的厚度随 j_a 的增加逐渐增加, j_c/j_a 不同时,膜厚随 j_a 的变化不 同,特别是当 10 A/dm² < j_a < 20 A/dm² 时, j_c/j_a 对膜 厚的影响较大. 如当 j_a = 15 A/dm² 时, j_c/j_a = 0.6 ρ .7 和 0.8 制备的陶瓷膜厚度分别为 50 A0 和 60 μ m,即 j_c/j_a = 0.7 时陶瓷膜的生长速率最低,这种现象表明 该膜的微观结构必然不同于另外两种陶瓷膜.

MAO 是一种在高电压作用下伴随着电介质(氧 化膜)击穿时产生火花放电的阳极氧化,它与传统阳 极氧化有本质的不同,所加的处理电压超过氧化膜 的临界电击穿电压是 MAO 过程能否进行的必要条 件.在 MAO 过程中,微弧放电的数量、强度与 j_a 和 j_c/j_a 密切相关^[7],而微弧放电的数量和强度决定陶 瓷膜的生长速率^[11,43],所以,当处理时间一定时陶瓷 膜的厚度与 j_a 和 j_c/j_a 的大小密切相关.

3.2. 陶瓷膜的相分析和显微硬度

对 $j_c/j_a = 0.6$ 0.7 和 0.8 , j_a 在 3—25 A/dm² 之 间制备的陶瓷膜 XRD 分析表明 ,氧化膜主要由 α 相 和 γ 相 A1₂O₃ 及少量包含处理液中所含离子的杂质 相组成 .图 2 给出了 $j_c/j_a = 0.7$ 时 j_a 对陶瓷膜 XRD 谱的影响 .

图 2 j_a 对 MAO 膜 XRD 谱的影响 α 表示 α -Al₂O₃, γ 表示 γ -Al₂O₃, Al 表示铝 ,*M* 表示杂质

由于杂质相的含量极少 因此可以认为氧化膜 仅由 α 相和 γ 相 Al₂O₃ 组成.这样,可以利用陶瓷膜 中 α -Al₂O₃相与 γ -Al₂O₃相之比 P_r ($P_r = \alpha$ -Al₂O₃/ γ -Al₂O₃)代表膜的品质.根据文献 9,14],P, 可以通过 计算 XRD 谱中(113), AL, O, 和(400), AL, O, 衍射峰的相 对强度得到,于是可以估计出α-Al,O,相在氧化膜中 的含量 $P_{\alpha}\left(P_{\alpha}=\frac{P_{r}}{1+P_{r}}\right)$.图 3(a)给出了不同 j_{c}/j_{a} 制备陶瓷膜的 P_a 随 j_a 的变化规律. 从图 3(a)可以 看出 当 3 A/dm² < ja < 10 A/dm² 时 ,不同 jc/ja 所制 备陶瓷膜的 P_a 随 j_a 的增加有所下降. 但当 $j_a > 10$ A/dm^2 时 $j_e/j_a = 0.7$ 所制备陶瓷膜的 P_a 随 j_a 几乎 线性增加 $m_{j_e}/j_a = 0.6 \ \pi 0.8$ 制备的陶瓷膜的 P_a 在 10 A/dm² < j_a < 15 A/dm² 之间随 j_a 的增加比较 快 $| j_a > 15$ A/dm² 时 P_a 随 j_a 的增加比较缓慢. Yang 等^[9]研究过电流密度对铝合金 MAO 膜相构成 的影响 发现当电流密度大于 10 A/dm² 时 ,α-Al₂O₃ 相与 γ -Al₂O₃ 相之比 P_1 随电流密度的增加而快速 增加 ;当电流密度小于 10 A/dm² 时 ,P, 较低且基本

不随电流密度变化 这与我们的结果有所不同.

图 3 不同 j_c/j_a 所制备陶瓷膜的 P_a 值和显微硬度随 j_a 的变化 (a)陶瓷膜的 P_a 值 (b)陶瓷膜的显微硬度

α-Al₂O₃ 相为稳定相 熔点 2050 ℃ ;γ-Al₂O₃ 为亚 稳相,在800—1200 ℃加热,γ-Al₂O₃相可转变成 α-Al, O, 相. 在 MAO 过程中,产生火花放电通道中的 瞬间温度超过 2000 ℃,足以产生熔融状态的 $Al_{\gamma}O_{\gamma}^{[15]}$.由于该氧化铝在高冷却速率时易形成 γ_{-1} Al₂O₃相,而低冷却速率时易形成 α-Al₂O₃相^[16],因 此在火花熄灭瞬间,放电通道中熔融 Al₂O₃ 同处理 液接触面的冷却速率大易形成 γ-Al₂O₂相,而同通 道壁(侧面)相接触面的冷却速率小易形成 α-Al₂O₃ 相.考虑到 Al,O, 的热导率很低 ,当氧化膜较厚时 , 放电通道侧面的熔融 Al_2O_3 在冷却时更容易形成 α - Al_2O_3 相.当 $i_a > 10 A/dm^2$ 时 陶瓷膜的厚度随 i_a 快 速增加(如图1所示),从而导致在该区间陶瓷膜的 P_a 随 j_a 快速增加. 当 j_a 较小(小于 6 A/dm²)时, 陶 瓷膜虽然较薄 但微弧放电的强度也较弱 形成的放 电通道尺寸较小 造成放电通道与基体接触面处及与 通道壁相接触的熔融 Al, O, 的冷却速率较小 ,易形成

 α -Al₂O₃ 因此较低 j_a 制备的陶瓷膜也有较高的 P_{α} .

关于 i_a 和 i_a/i_a 对 MAO 膜显微硬度的影响已在 文献 7 冲报道过,但考虑到本文的系统性,文中给 出了这一结果(如图 3(b)所示)从图 3(b)中可以看 出 陶瓷膜的显微硬度与 j_a 和 j_c/j_a 密切相关. 文献 [14 冲 Xue 等研究过电流密度小于 10 A/dm² 的铝 合金 MAO 膜截面的相构成.他们发现,从膜表面到 膜与基体的界面上 α-Al, O, 相的含量几乎随深度的 增加而线性增加,而图 3(a)给出的 P 。是氧化膜外 部疏松层和内部致密层共同作用的结果.所以,对 ;。 $= 15 \text{ A/dm}^2$ $i_a/i_a = 0.6 0.7 和 0.8$ 的样品 在测试完 显微硬度(即打磨过)后进行了 XRD 分析,结果表 明,这三块样品的 P。值分别为 60%(对应显微硬度 17.1 GPa),54%(对应显微硬度 42.14 GPa)和 49% (对应显微硬度 20.05 GPa).可见 ,在本实验条件下 陶瓷膜的 P_a 不是影响 MAO 膜显微硬度的主要原 因.一般而言,铝合金 MAO 膜是由硬度不同的 α- Al_2O_3 相和 γ - Al_2O_3 相组成的混合物,因此 MAO 膜的 硬度应与陶瓷膜的 P。密切相关. 然而,陶瓷膜的 P_a 、孔隙度和颗粒尺寸都取决于 j_a 的大小. 虽然高 j。有利于得到含 α-Al, O, 相较高的陶瓷膜, 但陶瓷膜 的孔隙度和颗粒尺寸也相应变大,使硬度的分布不 均匀.Yang 等^[9]已发现较低的电流密度比较高的电 流密度制备的 MAO 膜的显微硬度高 在我们的实验 中也发现有类似的现象.测量中发现, $i_a \ge 20$ A/dm² 所制备陶瓷膜的显微硬度分布很不均匀 ,不同测 量点硬度的最大偏差可达到 45%,但在对 j。= 15 A/dm^2 $j_c/j_a = 0.7$ 和其他较小 j_a 制备的陶瓷膜测量 中 同一样品不同位置的测量结果其最大偏差不超 过 10%.因此,我们认为 MAO 膜的硬度可能主要取 决于陶瓷膜的孔隙度和颗粒尺寸的大小,而不是陶 瓷膜的 P_a.

3.3. 陶瓷膜的结构和力学特性

图 4 给出了 $j_a = 15$ A/dm² $j_c/j_a = 0.6$ 0.7 和 0.8 制备的陶瓷膜表面形貌.从图 4 可以看出 样品表面 粗糙多孔.图 4(a)的微孔尺寸在 5—10 μ m 之间 ,图 4 (b)和(c)的微孔尺寸在 1—5 μ m 之间 ,且样品 A ($j_c/j_a = 0.6$)比样品 B($j_c/j_a = 0.7$)和样品 C($j_c/j_a = 0.8$)的微孔多 ,而样品 A 和样品 C 比样品 B 的表面 更粗糙.图 4(a)中的微孔周围有类似熔融过的痕 迹,这证明放电通道中确实存在过高温的作用 ,它有

图 4 j_a = 15 A/dm² 下 不同 j_c/j_a 制备的陶瓷膜表面形貌 (a)j_c/j_a = 0.6 (b)j_c/j_a = 0.7 (c)j_c/j_a = 0.8

利于 α -Al₂O₃ 相的形成.这与图 3(a)中观察到高 j_a 制备的陶瓷膜含有较高 α -Al₂O₃ 相的结果是一致的.

MAO 膜的显微硬度与其结构密切相关. 典型的 MAO 膜由表面多孔层和内部致密层组成,其厚度和 微孔的尺寸取决于 j_a 和 j_e/j_a 等电学参数,而陶瓷膜 的致密层比多孔层有更好的力学特性. 所以, 致密层 的厚度将影响陶瓷膜的力学性能. 图 5 给出了 j_a = 15 A/dm², j_e/j_a = 0.6 0.7 和 0.8 制备的样品截面形 貌. 虽然这些氧化膜都含有多孔层和致密层,但其多 孔层的厚度有明显的不同. 样品 Q j_e/j_a = 0.8)的多 孔层厚度约为 40 μ m, 样品 A(j_e/j_a = 0.6)的多孔层 厚度超过了 40 μ m ;而样品 B(j_e/j_a = 0.7)的多孔层 厚度不到 10 μ m ,与致密层没有明显的分界面,且其 致密层的致密程度比样品 A 和样品 C 高. 一般而 言, 致密层有更好的力学特性^[17].

从图 3 和图 5 可以看出 ,MAO 膜的相构成和微 结构受 *j_e/j_a* 的影响很大.正如一些研究者^[17,14]所 描述的那样,当加在样品上的电压超过某一临界值 时,作为阳极的铝合金表面所形成的初始绝缘氧化 膜(Al₂O₃)将发生电击穿,产生许多火花或微弧放 电,这时,处理液中的样品表面能见到大量迅速移动 的火花或微弧 微等离子体团在放电通道中形成 由 于其瞬间的高温(10³—10⁴ K)和高压(10²—10³ MPa) 作用^[18,19] 足以使来自基体的 Al³⁺ 和来自处理液中 的 0²⁻ 产生等离子体热化学相互作用形成熔融—淬 火的氧化铝,在不同的冷却速率作用下,熔融的 Al₂O₃ 分别凝固成 α-Al₂O₃ 和 γ-Al₂O₃ 相^[16]. 由于阴 极电压(电流)产生的电场力有利于处理液中的 Al^{3+} 和 Mg^{2+} 等阳离子重新回到多孔的氧化膜层中, 并在等离子体热化学相互作用下与 02-反应形成金 属氧化物改善膜层结构. Erokhine 等²⁰已发现阴极 电流不仅能够防止氧化膜转化成可溶性化合物(如 氢氧化铝等),并溶解于处理液中,而且能够使可溶 性化合物重新转化为金属氧化物.所以,合适的j_/j 有利于改善 MAO 膜的微结构(如密度、微孔尺寸和 颗粒大小等).

3.4. 陶瓷膜的抗点腐蚀特性

图 6 给出了铝合金基体及 $j_a = 15 \text{ A/dm}^2$, j_c/j_a 分别为 0.6 0.7 和 0.8 所制备的样品在 3.5% NaCl 溶液中的抗点腐蚀伏安特性曲线.从图 6 可以看出,

图 5 $j_a = 15 \text{ A/dm}^2$ 下,不同 j_e/j_a 制备的陶瓷膜截面形貌 (a) $j_e/j_a = 0.6$ (b) $j_e/j_a = 0.7$ (c) $j_e/j_a = 0.8$

铝合金采用 MAO 技术沉积陶瓷膜后,其抗点腐蚀性 能得到了显著改善.在 MAO 处理过的三块样品中, 以 $j_a = 15 \text{ A/dm}^2$, $j_c/j_a = 0.7$ 所制备陶瓷膜的腐蚀电 流密度最低,抗点腐蚀性能最强.这种优异的耐腐蚀 性能可能应归功于该陶瓷膜的致密结构.

图 6 $j_a = 15 \text{ A/dm}^2$ 下,不同 j_c/j_a 制备的 MAO 膜的伏安特性曲 线 曲线 a 为铝合金基体 曲线 b 为 $j_c/j_a = 0.6$,曲线 c 为 $j_c/j_a = 0.7$,曲线 d 为 $j_c/j_a = 0.8$

4. 结 论

本文利用自制工作于稳流方式的 MAO 电源并 研究了阳极电流密度 j_a 和阴极、阳极电流密度比 j_e/j_a 对铝合金 MAO 膜物理和化学特性的影响 ,通过 实验可得到下述结论.

1) j_a 和 j_e/j_a 对 MAO 膜的特性影响很大.通过 改变 j_a 和 j_e/j_a ,可对铝合金 MAO 陶瓷膜的成分、微 结构、力学特性和耐腐蚀性能进行控制.

2)高 j_a 制备的陶瓷膜主要含 α -Al₂O₃,较低 j_a 制备的陶瓷膜主要含 γ -Al₂O₃.

3)MAO 膜的显微硬度和抗点腐蚀性能受 j_a 和 j_c/j_a 的影响很大.当 $j_a = 15$ A/dm² $j_c/j_a = 0.7$ 时,所 制备陶瓷膜的显微硬度最高(42.14 GPa),抗点腐蚀 性能最强,这种优异的性能应归功于该陶瓷膜的致 密结构.

- [1] Yerokhin A L, Nie X, Leyland A 2000 Surf. Coat. Technol. 130 195
- [2] He Z W, Zhen C M, Fang Z B et al 2003 Acta Phys. Sin. 52 3130 (in Chinese)[何志巍、甄聪棉、方泽波等 2003 物理学报 52 3130]
- [3] Sundararajan G , Krishna L R 2003 Surf. Coat. Technol. 167 269
- [4] Li J J, Wu H H, Long B Y et al 2005 Acta Phys. Sin. 54 1447 (in Chinese)[李俊杰、吴汉华、龙北玉等 2005 物理学报 54 1447]
- [5] Lorimer P J , Mason J T , Paniwnyk L 1999 Chin . Phys. 8 S319
- [6] Liu Z W , Jun K W , Roh H S 2002 J. Mol. Catal. A 189 283
- [7] Wu H H , Jin Z S , Long B Y et al 2003 Chin . Phys. Lett. 20 1815
- [8] Wu H H, Long B H, Lü X Y et al 2005 Acta Phys. Sin. 54 1697 (in Chinese)[吴汉华、龙北红、吕宪义等 2005 物理学报 54 1697]
- [9] Yang G L , Lü X Y , Bai Y Z et al 2002 J. Alloy. Compd. 345 196
- [10] Yerokhin A.L., Snizhko L.O., Gurevina N.L. et al 2004 Surf. Coat.

Technol. 177-178 779

- [11] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G et al 2000 Surf. Coat. Technol. 123 24
- [12] Wu H H, Yu F R, Li J J et al 2004 J. Inorg. Mater. 19 617 (in Chinese)[吴汉华、于凤荣、李俊杰等 2004 无机材料学报 19 617]
- [13] Wang Y M , Jiang B L , Lei T Q et al 2004 Mater . Lett . 58 1907
- [14] Xue W, Deng Z, Lai Y et al 1998 J. Am. Ceram. Soc. 81 1365
- [15] Gnedenkov S V, Khrisanfova O A, Zavidnaya A G et al 2001 Surf. Coat. Technol. 145 146
- [16] McPherson R 1973 J. Mater. Sci. 8 851
- [17] Nie X , Leyland A , Matthews A 2000 Surf. Coat. Technol. 125 407
- [18] Yerokhin A L, Nie X, Leyland A et al 1999 Surf. Coat. Technol. 122 73
- [19] Wu H H , Lü X Y , Long B H et al 2005 Mater . Lett . 59 370
- [20] Erokhine A , Voevodin A A , Schmertzler R D *et al* 1998 US Patent 5720866

Effect of current density on physical and chemical properties of microarc oxidation coatings of aluminium alloy

Wu Han-Hua¹⁽²⁾ Wang Jian-Bo²) Long Bei-Yu¹) Lü Xian-Yi²) Long Bei-Hong²)

Jin Zeng-Sun²) Bai Yi-Zhen³) Bi Dong-Mei¹)

1 X College of Physics , Jilin University , Changchun 130023 , China)

2) State Key Laboratory for Superhard Materials, Jilin University, Changchun 130012, China)

3 X State Key Laboratory of Materials Modification by Laser , Ion and Electron Beams , Department of Physics ,

Dalian University of Technology, Dalian 116024, China)

(Received 24 March 2005; revised manuscript received 18 July 2005)

Abstract

Ultra-hard ceramic coatings with microhardness of 42.14 GPa have been synthesized on the Al alloy substrate by microarc oxidation (MAO) technique. The effects of anodic current density j_a and the ratio of cathodic to anodic current density j_c/j_a on the mechanical property and phase composition of MAO coatings have been studied by microhardness test and x-ray diffraction , respectively. In addition , the microstructure and corrosion resistance of the coatings were analyzed by scanning electron microscopy and pitting corrosion test , respectively. The results show that the samples prepared at high anodic current density consist mainly of α -Al₂O₃ , while the samples fabricated at low anodic current density are composed almost entirely of γ -Al₂O₃.

Keywords : microarc oxidation , microhardness , current density , pitting corrosion PACC : 6150J , 6160 , 8245