Mn₅Ge_{2.7}M_{0.3}(M = Ga ,Al ,Sn)化合物的 磁性和磁熵变*

刘喜斌¹²⁾ 沈保根¹⁾

1)(中国科学院物理研究所磁学国家重点实验室,北京 100080)
 2)(中国人民武装警察部队学院基础部,廊坊 065000)
 (2005年6月8日收到;2005年7月29日收到修改稿)

研究了 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al sn)化合物的磁性和磁熵变.x射线衍射实验表明,研究的化合物均呈六 角 $Mn_5 Si_3$ 型结构. 三种原子对 Ge 原子的替代,使得平均 Mn 原子磁矩下降,但居里温度没有明显的变化.由于磁 矩的降低,导致磁熵变值的下降,在磁场变化为 4.0×10^6 A·m⁻¹时,对应于 M = Ga, Al 和 Sn 的样品,最大磁熵变值 ΔS_M^{max} 分别为 6.1 6.3 和 5.3 J·kg⁻¹K⁻¹,但磁熵变峰值的半高宽 ΔT_{FWHM} 有所增加.另外, $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al , Sn)化合物在高于居里温度的 Arrott 曲线上出现了一个不连续点,即样品在一定温度下的顺磁磁化率在某一临界磁 场下发生了突变,临界磁场与温度几乎呈正比关系.这可能是由于样品在加一定磁场时 3 d 带的费米能级发生了变 化,使得有效电子数的减少所致.

关键词: 居里温度, 平均 Mn 原子磁矩, 磁熵变, Arrott 图 PACC: 7550B

1.引 言

新型室温磁致冷材料的探索是磁性材料研究的 热点之一,无论在理论上还是实际应用上都具有重 要意义.根据热力学理论,铁磁性材料在居里温度 附近由于磁化强度随温度的变化曲线较为陡峭,能 够产生大的磁熵变 Δ*S*_M.从磁相变性质区分,磁致 冷材料主要有一级相变和二级相变材料两大类.具 有一级相变的磁致冷材料,其磁熵变值一般较大,但 磁熵变往往集中在相对窄的温区.具有二级相变的 磁致冷材料,其磁熵变值相对要小,但磁熵变峰一般 较为平坦,而且磁化强度随温度和磁场的变化往往 是可逆的.由于稀土元素的自旋角动量量子数大, 理论上稀土的磁熵变值应该较高,所以已往对磁致 冷材料的研究主要集中于稀土或它们的合金和化合 物,而对于 3 d 金属及其合金的研究相对较少.

 $Mn_5 Ge_3$ 化合物为二级相变的铁磁性材料,具有 六角 $Mn_5 Si_3$ 型晶体结构,空间群为 $P6_3/mcm$,其晶

图 1 Mn₅Ge₃ 化合物的晶体结构

体结构如图 1 所示. 由图 1 可见,在 $Mn_5 Ge_3$ 化合物 中,一个单胞含有两个分子式,Mn 原子占有两个晶 位,即 4 个 Mn1 原子占 4 d 晶位 6 个 Mn2 原子占 6g晶位,另外 Ge 原子也占 6g 晶位.中子衍射实验的 研究结果表明^[1,2],Mn1 原子和 Mn2 原子的磁矩并 不相同,每个 Mn 原子的平均磁矩为 2.6 $\mu_B^{[3]}$.由于 Mn^{2+} 和 Mn^{3+} 离子磁矩铁磁性耦合, $Mn_5 Ge_3$ 化合物 的饱和磁矩可达 150 $Am^2 \cdot kg^{-1}$,居里温度为 300

^{*}国家高技术研究发展计划(批准号 2001AA3204020)和国家自然科学基金(批准号 50271082)资助的课题.

5885

K^[45]. 人们通过元素替代对 Mn₅Ge₃ 化合物从理论 和实验上进行了大量研究.例如用 Si Sn Pb Sb 等 原子部分替代 Ge, Mn₅Ge₃的磁性发生了较大变 化^[6--8]. 对于 Si 替代^[6],可能由于体积效应导致化 合物的居里温度和 Mn 原子的平均磁矩均下降;对 于 Sb 替代^[8],可导致化合物的居里温度增加,但平 均 Mn 原子磁矩下降 :而对于 Sn 和 Pb 替代^[7] 居里 温度和平均 Mn 原子磁矩变化规律比较复杂. 另外, 在 Mn, Ge, 化合物中引入间隙原子 C^[5] ,其电子结构 发生明显变化,使居里温度强烈上升.这些研究结 果表明 "Mn Gea 系列化合物的磁性不仅依赖于体积 效应,也依赖于电子结构的变化.因此,继续对 Mn₅Ge₃ 系列化合物的结构与磁性 ,尤其是对磁热效 应进行研究 无论在理论上还是实际应用上都具有 较为重要的意义.为此,本文研究了具有六角 Mn_5Si_3 型结构的 $Mn_5Ge_2 M_0$ (M = Ga, Al, Sn)化合 物的磁性和磁熵变,希望获得更多的关于 Mn 基化 合物磁热效应的信息.

2. 实验方法

用电弧熔炼的方法制备了 $MnGe_{3-x}M_x(M = Ga, Al Sn)$ 化合物及 Mn_5Ge_3 化合物样品.将纯度超过

99.9%的原料按化学配比称量后,在高纯氩气保护 下在电弧炉中进行熔炼.为保证样品的均匀性,每 个样品均反复熔炼三、四次.对于M = Ga和 Sn 的 样品,质量损失在2%—3%左右;对于M = Al的样 品质量损失在10%左右.将熔炼好的样品封在真 空石英管中,在973 K 温度下热处理10 d,然后在冷 水中淬火.晶体结构采用 x 射线衍射仪(Cu 靶, $\lambda =$ 0.1541 nm)进行分析,然后利用超导量子干涉磁强计 进行磁性测量,磁矩测量的精度为3×10⁻¹⁰ Am².

3. 实验结果及讨论

经 x 射线衍射分析表明,在 $Mn_5 Ge_{3-x}M_x$ 化合物 中,用 Ga, Al 和 Sn 替代 Ge,以六角 $Mn_5 Si_3$ 型晶体结 构为主相的成分范围分别为 $0 \le x \le 0.9$ $0 \le x \le 0.4$ 和 $0 \le x \le 0.6$. 这表明保持六角 $Mn_5 Si_3$ 型单相结构 的替代范围相对较窄,因为 Mn 原子与 Ga, Al 和 Sn 原子之间非常容易形成 2:1 相和 3:1 相. 随着替代 量的增加,可以完全转变成六角 Ni_2 In 型结构或六 角 Ni_3 Sn 结构,例如 $Mn_5 Sn_3^{181}$ 就是 Ni_2 In(hp6)型晶体 结构. 对于 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al Sn)化合物,由 于 Ga, Al Sn 的原子半径都大于 Ge,它们对 Ge 的替 代使晶胞体积略有增加,如表 1 所示.

表 1 $Mn_5 Ge_3 Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al, Sn, Sb)化合物的晶胞参数、居里温度 T_C 和每个 Mn 原子的平均磁矩 μ_{Mn}

	a/nm	c/nm	c/a	v/nm^3	$T_{\rm C}/K$	$\mu_{ m Mn}/\mu_{ m B}$
$\mathrm{Mn}_5\mathrm{Ge}_3$	0.7184	0.5053	0.703	0.226	300	2.74
$Mn_5Ge_{2.7}Ga_{0.3}$	0.7241	0.5037	0.696	0.229	302	2.39
$Mn_5Ge_{2.7}Al_{0.3}$	0.7207	0.5040	0.699	0.227	303	2.40
$Mn_5Ge_{2.7}Sn_{0.3}$	0.7174	0.5067	0.706	0.226	305	2.07
$Mn_5Ge_{2.7}Sb_{0.3}$	_	—	_	—	312	1.79

注: Mn₅Ge_{2.7}Sb_{0.3}的数据引自文献 9].

图 2 给出了 $M_{n_5}Ge_{2.7} M_{0.3}$ (M = Ga, Al, Sn, Sb^{[91}) 和 $M_{n_5}Ge_3$ 化合物在 5 K 下的磁化曲线. 从图 2 的实 验曲线计算出了化合物中每个 Mn 原子的平均磁矩 μ_{Mn} ,其数值列于表 1. 在 $M_{n_5}Ge_{2.7} M_{0.3}$ 化合物中,用 Ga, Al 和 Sn 部分替代 Ge,导致了 μ_{Mn} 的降低. 纯 $M_{n_5}Ge_3$ 化合物的 μ_{Mn} 为 2.74 μ_B ,而 $M_{n_5}Ge_{2.7} M_{0.3}$ 样 品当 M = Ga, Al 和 Sn 时的 μ_{Mn} 值分别为 2.39 μ_B , 2.40 μ_B 和 2.07 μ_B . 由表 1 可见 Sb 替代 Ge 也导致 了 μ_{Mn} 的降低. M = Sb样品的 μ_{Mn} 和 T_c 的值引自文 献 9]. 在 8000 A·m⁻¹磁场下测量了 Mn₅Ge_{2.7} $M_{0.3}$ (M = Ga, Al, Sn)和 Mn₅Ge₃ 化合物的热磁曲线,如图 3 所示. 从热磁曲线 $\frac{dM}{dT}$ 的最大值所对应的温度确定了样品的居里温度(见表 1). 当 M = Ga, Al 和 Sn 时, 其居里温度 T_c 分别为 302,303 和 305 K. Mn₅Ge₃ 的 居里温度为 300 K,与文献 4 9 报道的值基本一致. 为便于比较,表 1 也列出了 Mn₅Ge_{2.7}Sb_{0.3}的 T_c 值^[9]. 对于 Mn₅Ge_{2.7} $M_{0.3}$ (M = Ga, Al Sn)化合物,居里温度 主要是由 Mn-Mn 原子间的交换作用决定的, M 原子

图 2 Mn₅ Ge_{2.7} M_{0.3}(*M* = Ga , Al , Sn , Sb)和 Mn₅ Ge₃ 化合物在 5 K 下的磁化曲线

替代 Ge 使居里温度基本保持不变或略微上升,说明 M 原子的替代基本不改变 Mn-Mn 原子间的交换 作用强弱.

图 3 在 8000 A·m⁻¹磁场下 Mn₅Ge_{2.7} $M_{0.3}$ (M = Ga, Al, Sn)及 Mn₅Ge₃ 样品的热磁曲线

在居里温度附近,测量了 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al Sn)化合物的等温磁化曲线,见图 4. 在 T_c 附近 和稍远离 T_c 的温区,测量的升温步长分别为 2 和 5 K. 磁热效应可由在外场 *H* 的作用下的等温磁熵变 ΔS_M (T, ΔH)来表征. 根据热力学理论, ΔS_M (T, ΔH)的数值可以利用麦克斯韦关系计算^[10],

$$\Delta S_{\rm M}(T \ \Delta H) = S_{\rm M}(T \ H) - S_{\rm M}(T \ D)$$
$$= \int_0^H \left(\frac{\partial M}{\partial T}\right) dH. \qquad (1)$$

在实验中 △S_M(T △H)的数值一般通过测量不同温度下的磁化曲线,并利用下式进行近似计算:

$$-\Delta S_{\rm M} = \sum_{i} \frac{1}{T_{i+1} - T_{i}} (M_{i} - M_{i+1}) \Delta H_{i} , (2)$$

图 4 Mn₅Ge_{2.7} M_{0.3}(M = Ga, Al, Sn)化合物的等温磁化曲线 (a)M = Ga, (b)M = Al, (c)M = Sn

式中 M_i 和 M_{i+1} 分别为在磁场H下且温度分别为 T_i 和 T_{i+1} 时的磁化强度.根据(2)式,我们计算了 Mn₅Ge_{2.7} $M_{0.3}$ (M = Ga ,Al ,Sn)样品在不同温度和磁场变化时的磁熵变.对于室温磁制冷材料 ,不仅要求其相变点在室温附近 ,而且要有较强的制冷能力.表征磁制冷能力的大小主要有两个参数 :一 是 ΔS_{M} ($T \ \Delta H$)曲线的峰值 ,即最大磁熵变值 ΔS_{M}^{max} ($T \ \Delta H$)曲线的峰值 ,即最大磁熵变值 -半高时温区的大小 ,即 ΔS_{M} ($T \ \Delta H$)曲线半高宽 值 δT_{FWHM} .从图 4 的测量结果计算了 Mn₅Ge_{2.7} $M_{0.3}$ (M = Ga ,Al ,Sn)样品的磁熵变值 ΔS_{M}^{max} ($T \ \Delta H$)和半 高宽值 δT_{FWHM} ,数值见表 3.图 5 给出了样品在磁场 变化为 1.6×10⁶和4.0×10⁶ A·m⁻¹的磁熵变与温度 关系曲线 ,其中 Mn₅Ge₃ 化合物的磁熵变与温度的关 系曲线引自文献 9]. 由图 5 可见 , $Mn_5 Ge_{2.7} M_{0.3}$ (*M* = Ga ,Al ,Sn)样品的 ΔS_{M}^{max} (*T* ΔH)值比 $Mn_5 Ge_3$ 样品 要小 ,在磁场变化为 4.0 × 10⁶ A·m⁻¹时 ,分别为 6.1 , 6.3 和 5.3 J·kg⁻¹ K⁻¹ ;在磁场变化为 1.6 × 10⁶ A·m⁻¹时 ,分别为 3.2 ,3.3 和 2.8 J·kg⁻¹ K⁻¹ . ΔS_{M}^{max} (*T* ΔH)的减小是由于 Ga ,Al ,Sn 对 Ge 的替代使磁 矩降低所致. 同时从表 3 也可以看到 ,*M* 原子替代 Ge 原子可使 δT_{FWHM} 值有所增加 ,在磁场变化 $\Delta H =$ 4.0 × 10⁶ A·m⁻¹的情况下 δT_{FWHM} 值增加比较明显.

表 3 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al Sn) 化合物的最大磁熵变值 ΔS_{max}^{max} ($T \bigtriangleup H$) 和峰值半高宽 δT_{FWHM}

	$\Delta S_{\mathrm{M}}^{\mathrm{max}}(T,\Delta H)$	I)′J∙kg ⁻¹ K ⁻¹	$\delta T_{ m FWHM}/ m K$		
М	$\Delta H = 1.6$	$\Delta H = 4.0$	$\Delta H = 1.6$	$\Delta H = 4.0$	
	$\times 10^{6} \text{ A} \cdot \text{m}^{-1}$	$\times10^{6}~{\rm A}\cdot{\rm m}^{-1}$	$\times10^{6}~{\rm A}\cdot{\rm m}^{-1}$	$\times10^6~{\rm A}\!\cdot\!{\rm m}^{-1}$	
Ga	- 3.2	-6.1	35	56	
Al	- 3.3	-6.3	33	51	
Sn	-2.8	-5.3	32	53	

图 5 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al, Sn)和 $Mn_5 Ge_3$ 化合物⁹1在磁场 变化为 $1.6 \times 10^6 A \cdot m^{-1}$ (a)和 $4.0 \times 10^6 A \cdot m^{-1}$ (b)时磁熵变与温度的关系

根据平均场理论,铁磁体在居里温度 T_{c} 附近磁熵变值 ΔS_{M} 与外加磁场H的关系为^[10]

$$\Delta S_{\rm M} = -1.07 g R \left(\frac{g_{\rm J} \mu_{\rm B} J H}{k_{\rm B} T_{\rm C}} \right)^{2/3}.$$
 (3)

由(3)式可以看出铁磁体在居里温度附近的磁熵变 值 $\Delta S_{\rm M}$ 与 $H^{2/3}$ 成正比,这就是磁热效应的 $H^{2/3}$ 定 律.图6和图7分别给出了 ${\rm Mn_5Ge}_{2.7} M_{0.3}$ ($M = {\rm Ga}$, Al Sn)化合物在居里温度附近的 $\Delta S_{\rm M}$ -H和 $\Delta S_{\rm M}$ - $H^{2/3}$ 的关系曲线.从图7可以看到, $\Delta S_{\rm M}$ 与 $H^{2/3}$ 呈线 性关系,这表明在 ${\rm Mn_5Ge}_{2.7} M_{0.3}$ ($M = {\rm Ga}$, Al Sn)化合 物中 Mn 原子的磁矩具有很强的局域特征.

图 6 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al Sn)化合物在居里温度附近磁熵 $\mathfrak{G} = \Delta S_M$ 与外磁场 H 之间的关系

图 7 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al Sn)化合物在居里温度附近磁熵 $\mathfrak{G} = \Delta S_M 与 H^{2/3}$ 之间的关系

图 8 为 Mn₅Ge_{2.7} $M_{0.3}$ (M = Ga, Al, Sn)化合物的 Arrott 图. 由图 8 可以看到, Mn₅Ge_{2.7} $M_{0.3}$ 化合物具备 典型的二级相变特征. 值得注意的是,在高于居里 温度时, Arrott 曲线上出现了不连续点,而且温度越 高越明显,即当磁场增加到某一数值时,样品的顺磁 磁化率在一定温度下有一个突然减小的过程. 若将 该磁场值称为临界磁场 H_c ,那么可以看到,温度越 高临界磁场 H_c 越高. 图 9 给出了 Mn₅Ge_{2.7} $M_{0.3}$ (M

5888

图 8 $Mn_5 Ge_{2,7} M_{0,3}$ (M = Ga, Al Sn)化合物的 Arrott 图 (a)M = Ga (b)M = Al (c)M = Sn

= Ga ,Al ,Sn)化合物的临界磁场 H_e 与温度 T 的关系. 从图 9 可以看到临界磁场 H_e 随温度 T 的增加 而单调增加. 按照经典理论 ,金属中电子的顺磁磁 化率可以表示为^[11]

$$\chi = \frac{3n\mu_{\rm B}^2}{2E_0} \left[1 - \frac{\pi^2}{12} \left(\frac{k_{\rm B}T}{E_0} \right)^2 \right] , \qquad (4)$$

式中, k_B为玻耳兹曼常数, n为正负两种取向的电

图 9 $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al Sn) 化合物的临界场 H_c 与温度 T 的关系

子数的差额,即有效电子数,E₀为T=0K时的费米 能量.因此当温度一定时,顺磁磁化率的突然变化 可以解释为当外加磁场增加到一定程度时,费米面 的能量发生了突变,从而使得n值减小,顺磁磁化 率降低.温度越高电子的能量越高,改变费米面能 量所需要的外加磁场也就越高.

4. 结 论

 $Mn_5 Ge_{2.7} M_{0.3}$ (*M* = Ga ,Al ,Sn)化合物均呈六角 Mn₅Si₃型结构. 三种原子对 Ge 原子的替代 ,使得平 均 Mn 原子磁矩下降 ,但居里温度没有明显变化. 由于磁矩的降低 ,导致磁熵变值的下降. 在磁场 变化为 4.0×10^6 A·m⁻¹时 ,最大磁熵变值分别为 6.1 ,6.3 和 5.3 J·kg⁻¹K⁻¹ ;在磁场变化为 1.6×10^6 A·m⁻¹时 ,分别为 3.2 ,3.3 和 2.8 J·kg⁻¹K⁻¹ ,但磁熵 变峰值的半高宽 δT_{FWHM} 有所增加. 研究发现 , $Mn_5 Ge_{2.7} M_{0.3}$ (*M* = Ga ,Al Sn)化合物在高于居里温 度的 Arrott 曲线上出现了一个不连续点 ,即样品在 一定温度下的顺磁磁化率在某一临界磁场下发生了 突变 ,临界磁场与温度几乎呈正比关系.这可能是由 于样品在加一定磁场时 3 d 带的费米能级发生了变 化 ,使得有效电子数减小所致.

- [1] Ciszewski R 1963 Phys. Stat. Sol. 3 1999
- [2] Forsyth J B, Brown P J 1990 J. Phys. : Condens. Matter 2713
- [3] Kappel G , Fischer G , Jaegle A 1973 Phys. Lett. A 45 267
- [4] Beckman O, Lundgren L 1991 Handbook of Magnetic Materials
 - Vol.6 Buschow K H J ed (Amsterdam : North Holland) p271
- [5] Gajdzik M, Sürgess C, Kelemen M T et al 2000 J. Magn. Magn. Mater. 221 252
- [6] Kappel G , Fischer G , Jaegle A 1976 Phys. Stat. Sol. (a) 34 691
- [7] Zhang Y, Runge A P, Shan Z S et al 1994 J. Appl. Phys. 75 701
- [8] Songlin , Dagula , Tegus O et al 2002 J. Alloys Compd. 337 269

- [9] Panissod P , Qachaou A , Kappel G 1984 J. Phys. C 17 5799
- [10] Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334

[11] Dai D S , Qian K M 2000 Ferromagnetism (Beijing Science Press)

p60 (in Chinese)[戴道生、钱昆明 2000 铁磁学(上册)(北京: 科学出版社)第 60页]

Magnetic properties and magnetocaloric effects of $Mn_5Ge_{2.7} M_{0.3}$ (M = Ga , AI , Sn) compounds *

Liu Xi-Bin¹⁽²⁾ Shen Bao-Gen¹

1) State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China)

2) Fundamental Department , Chinese People 's Armed Police Force Academy , Langfang 065000 , China)

(Received 8 June 2005 ; revised manuscript received 29 July 2005)

Abstract

The magnetic properties and magnetocaloric effects of $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al, Sn) compounds have been studied. All samples crystallize in the hexagonal $Mn_5 Si_3$ -type structure with space group $P6_3/mcm$. The average Mn magnetic moment decreases and the Curie temperature remains almost unchanged by the substitution of M for Ge. The magnetic entropy changes in these compounds are determined from the temperature and field dependence of the magnetization using the thermodynamic Maxwell relation. The substitution of M for Ge reduces the magnitude of the magnetic entropy changes for a field changes of $4.0 \times 10^6 \text{ A} \cdot \text{m}^{-1}$ are 6.1, 6.3, and $5.3 \text{ J} \cdot \text{kg}^{-1} \text{ K}^{-1}$ for M = Ga, Al , and Sn , respectively. In addition , anomalies are found in the Arrott curves of $Mn_5 Ge_{2.7} M_{0.3}$ (M = Ga, Al , Sn) compounds under a critical field H_c when the temperature is higher than the Curie temperature T_C , which indicates that the paramagnetic susceptibilities of these compounds change sharply. The value of H_c increases almost linearly with increasing temperature. This phenomenon is probably due to the change of Fermi energy by the applied magnetic field , which reduces the number of the effective charges.

Keywords : Curie temperature , average Mn magnetic moment , magnetic entropy change , Arrott curves PACC : 7550B

^{*} Project supported by the National High Technology Development Program of China (Grant No. 2001AA3204020) and the National Natural Science Foundation of China (Grant No. 50271082).