碳、碳氮和硼碳氮纳米管场发射性能的比较研究*

李 强1) 梁二军12)*

1) 郑州大学物理工程学院 材料物理教育部重点实验室,郑州 450052)
2) 东华大学应用物理系,上海 200051)
(2004年11月11日收到,2005年7月8日收到修改稿)

采用高温热解法在 860 ℃分别制备出了碳、碳氮和硼碳氮纳米管,提纯后利用丝网印刷工艺分别将它们制备成 薄膜,并测试了它们的场发射性能.结果表明,碳纳米管、碳氮纳米管和硼碳氮纳米管薄膜的开启电场分别为 2.22, 1.1 和 4.4 V/μm,当电场增加到 5.7 V/μm 时,它们的电流密度分别达到 1400,3000 μA/cm² 和小于 50 μA/cm².碳和碳 氮纳米管薄膜的场增强因子分别为 10062 和 11521.可见,碳氮纳米管的场发射性能优于碳纳米管,而硼碳氮纳米管 的场发射性能比前两者要差.解释了这三种纳米管场发射性能差别的原因.

关键词:碳纳米管,碳氮纳米管,硼碳氮纳米管,场发射 PACC:8120V,7970,6116D,7830

1.引 言

自 1991 年 Iijima 发现碳纳米管以来^[1],人们对 其性能的研究从未停止过,90 年代后期以来,场致 发射材料研究的热点集中到碳纳米管材料.纳米级 发射尖端、大长径比、高强度、高韧性、良好的热稳定 性和导电性等,使得碳纳米管成为更理想的场致发 射材料^[2],有望在冷发射电子枪、平板显示器等众多 领域中获得应用并显示出广阔的前景.目前有关碳 纳米管的场发射性能的研究可参见文献 3—11].

碳纳米管的电学性能与其螺旋性、形貌、层数、 直径及缺陷有关,而这些因素在制备过程中很难控 制.通过硼或氮的掺杂是控制碳质纳米管电学性能 的有效方法,掺杂后碳纳米管的电学性能主要取决 于其组分.理论研究预测,掺氮的碳纳米管表现为金 属性,导电性增强且与其螺旋性无关^[12].实验结果 也证实,碳氮纳米管具有优越的金属性能,其隧道电 导率普遍高于多壁碳纳米管,电子传输性能比多壁 碳纳米管优越^[13].Kurt等^[14]用等离子诱导热丝化学 气相沉积法,在沉积有镍的硅基底上得到碳氮纳米 管结构,场发射性能测试开启电场为4.7 V/μm,阈值 电场为9.9 V/μm.文献[15]采用微波等离子体诱导 化学气相沉积法,制备出定向生长的碳氮纳米管,场 发射性能测试开启电场为 1.0 V/µm. 文献 16 在氨 气流下,以热解的 FePc 做催化剂,在硅片上生成定 向的碳氮纳米管,场发射性能测试显示在电场为 1.5 V/µm 时开始发射电子,电场达到2.6 V/µm时获 得的电流密度为 80 μA/cm². 最近,我们采用高温热 解已二胺在沉积有铁催化剂的 p 型硅基底上制备出 了定向生长的碳氮纳米管,并研究了其场发射性 能17].关于硼碳氮纳米管的场发射特性研究与碳纳 米管和碳氮纳米管比较相对较少,文献18]用偏压 辅助热丝化学气相沉积法,制备出定向生长的硼碳 氮纳米管 并对其场发射性能进行了研究 这些研究 均是基于定向生长的纳米管,其场发射主要通过纳 米管顶端电子发射,由于直接生长在基底上而难以 提纯 含有大量的催化剂和非纳米管物质 其场发射 也包含了这些非纳米管物质的电子发射,一般情况 下 定向生长纳米管密度分布的均匀性较难控制 直 接比较不同种类纳米管的场发射性能有一定困难.

本文利用高温热解法分别制备出碳纳米管、碳 氮纳米管和硼碳氮纳米管,提纯后采用丝网印刷工 艺将其制作成薄膜,在相同的条件下测试它们的场 发射性能.多次实验证明,用丝网印刷工艺制作的纳 米管薄膜重复性好,所得到不同纳米管的场发射性 能具有较好的可比性.实验结果表明.碳氮纳米管的 场发射性能最好,碳纳米管次之,而硼碳氮纳米管

^{*} 河南省高校创新人才基金(批准号:1999-125)和东华大学引进人才基金(批准号:2351038)资助的课题.

[;] 通讯联系人. E-mail :ejliang@163.com

2. 实 验

采用高温热解方法分别制备碳纳米管、碳氮纳 米管和硼碳氮纳米管 然后将其提纯 具体制备和提 纯方法见文献 19-23].根据我们在不同温度下生 长的碳纳米管、碳氮纳米管和硼碳氮纳米管的电子 显微镜和拉曼光谱观察 在 860 ℃左右生长的纳米 管具有较好的质量 所以本实验中的纳米管全部在 860 ℃下生长,将提纯后不同种类的纳米管在乙醇 溶液中超声振动 使纳米管分散开 然后再将乙醇挥 发掉,采用质量比为 95%:5% 的松油醇和乙级纤维 素的混合液为有机溶剂和分散好的纳米管粉末混合 调配成丝网印刷浆料,有机溶剂与纳米管的质量比 为 3:2. 衬底采用铝箔片 ,先用砂纸打磨去除表面氧 化层 然后分别浸入丙酮、乙醇溶液中超声清洗 ,干 燥后使用,印刷工具采用手动丝网印刷台,制得的薄 膜在 H₂/N₂ 气氛下 500 ℃加热 20 min 使混合物中有 机浆料挥发

用 JEM-2010 型透射电子显微镜(TEM)观察纳 米管的形貌,样品的拉曼光谱用 RENISHAW RM2000 型显微拉曼光谱仪测试,激发波长为 633 nm.场致电 子发射性能测试在高真空系统(5.0×10⁻⁵ Pa)中进 行.把丝网印刷制得的纳米管薄膜作为阴极,用镀有 荧光粉的氧化铟锡(ITO)阳极收集发射的电子,阴 极、阳极之间的绝缘隔离层为厚度 270 µm 的云母 片.用直流电源驱动,连续改变阴极、阳极间的电压, 用微安表记录发射电流.测试电压-电流特性曲线. 在一定的电场作用下,电子从纳米管薄膜逸出,并以 一定的能量轰击荧光屏,激发荧光屏发光,用电荷耦 合器件(CCD)记录薄膜的场致发射图像.

3. 结果及讨论

图 1 是制得的碳纳米管、碳氮纳米管和硼碳氮 纳米管典型的 TEM 照片.从图 1 可以看出,碳纳米 管为常规中空管,碳氮纳米管和硼碳氮纳米管成"竹 节状"结构.

图 2 是三种纳米管薄膜的拉曼光谱,图中 D 带和 G 带的相对强度(I_D/I_G)是样品无序程度或缺陷 密集度的反映^[20 24].图 χ a)是碳纳米管薄膜的拉曼 光谱,其 D 带和 G 带的相对强度为 0.5334, D 带的

图 1 纳米管的 TEM 照片 (a) 碳纳米管 (b) 碳氮纳米管, (c) 硼碳氮纳米管

二阶模 D^* 高而且尖锐 ,图 2(b)是碳氮纳米管薄膜 的拉曼光谱 , $I_D/I_c = 1.0288$,说明样品的无序程度或 缺陷密集度较高 ,与碳氮纳米管薄膜相似 ,硼碳氮纳 米管的 D 带和 G 带的相对强度值较大 , $I_D/I_c =$ 0.9699 , D^* 带强度较弱.这是由于硼碳氮纳米管与 碳氮纳米管同属掺杂类纳米管 ,结晶有序度相对碳 纳米管较低引起的.

图 2 纳米管薄膜的拉曼光谱 (a)碳纳米管薄膜(b)碳氮纳米 管薄膜(c)硼碳氮纳米管薄膜

图 3 是碳纳米管、碳氮纳米管和硼碳氮纳米管 的 *J-E* 曲线 ,*J* 为发射电流密度 ,*E* 为所加电场.实 验中测得碳纳米管的开启电场为 2.22 V/μm ,当电场 增加到 5.7 V/μm 时 ,电流密度达到 1400 μA/cm².碳 氮纳米管的开启电场为 1.1 V/ μ m ,当电场增加到 5.7 V/ μ m 时,电流密度达到 3000 μ A/cm² ,高于同样 条件下的碳纳米管薄膜. 硼碳氮纳米管的开启电场 为 4.4 V/ μ m ,然而硼碳氮纳米管的发射电流却非常 微弱 ,当电场升至 5.7 V/ μ m 时 ,电流密度仍在 50 μ A/cm²以下 ,远远小于在同样条件下的碳纳米管 和碳氮纳米管的电流密度 .此处开启电场定义为 :当 电流密度达到 10 μ A/cm² 时的电场强度 .

图 3 纳米管薄膜的 J-E 曲线 曲线 a 为碳氮纳米管 ,曲线 b 为碳纳米管 ,曲线 c 为硼碳氮纳米管

图 4 为碳纳米管、碳氮纳米管、硼碳氮纳米管的 发射照片.从图 4 可以看出:碳氮纳米管的发射点最 多、亮度最高、发射性能最好;硼碳氮纳米管的发射 点密度最小、发射亮度最低、发射性能最差;而碳纳 米管界于二者之间,与图 3 的结果一致.

图 <u>f</u>(a) 是碳纳米管场发射拟合 Fowler-Nordheim (F-N)曲线.从图 5 可以看到, F-N 曲线呈线性关系, 说明碳纳米管的电子发射过程是由于隧道效应引起 的场 致 电 子 发 射. 拟 合 F-N 曲 线 的 斜 率 是 -7.58658, 取 碳 纳 米 管 功 函 数 与 石 墨 值 相 同 (5 eV)¹⁸¹,由 F-N 曲线斜率 - 6.38 × 10³ $\frac{\Phi^{3/2}}{\beta}$ 得碳纳 米管的增强因子 β = 10062.

图 f(b)是碳氮纳米管场发射拟合 F-N 曲线,此 曲线也呈线性关系.说明碳氮纳米管的电子发射过 程也是由于隧道效应引起的场致电子发射.拟合 F-N 曲线的斜率是 – 7.58658,碳氮纳米管功函数为 4.3 eV^[25],得到其场增强因子 β = 11521,高于碳纳米 管.如此大的场增强因子是该薄膜具有较好发射性 能的原因.而碳氮纳米管顶端局域态的存在以及管 壁上缺陷态的存在则是构成该薄膜具有较大场发射 电流密度的重要原因^[26].

图 4 纳米管薄膜的场发射照片 (a)碳纳米管 (b)碳氮纳米 管 (c)硼碳氮纳米管 切^[27-30],气体分子吸附在发射尖端,有助于硼碳氮 纳米管的电子发射,而硼碳氮纳米管自身的发射对 总发射电流的贡献并不大.

图 5 纳米管薄膜场发射拟合 F-N 曲线 (a) 减纳米管(b) 减氮 纳米管(c) 硼碳氮纳米管

以上结果表明,碳氮纳米管具有比碳纳米管更 优越的场致电子发射性能.碳氮纳米管和硼碳氮纳 米管同属于掺杂纳米管,具有类似的形貌结构,管壁 上存在大量的缺陷,拉曼光谱也表明,碳氮纳米管和 硼碳氮纳米管和缺陷密集度远远大于碳纳米管.一 般认为,管壁上的缺陷对电子场致发射起着重要作 用,但比较图1和图3可知,掺杂元素的种类比纳米 管形貌对电子场致发射的影响要大得多,用氮原子 部分替代碳原子的格点位置 由于氮是 V 族元素 在 碳纳米管中电离时能够施放电子而产生导电电子。 这说明碳氮纳米管中的氮起施主杂质的作用并在禁 带中引入施主能级 因此在相同的外电场作用下 碳 氮纳米管会比碳纳米管有更大的电子发射密度,而 硼是Ⅲ族元素 在碳纳米管中能够接受电子而形成 导电空穴 表现为受主杂质并在禁带中引入受主能 级,对于硼碳氮纳米管,由于同时存在着施主和受主 杂质 其导电类型取决于杂质的补偿作用 当受主浓 度大于施主浓度时 施主能级上的全部电子跃迁到 受主能级上 受主能级上多余的空穴可以跃迁到价 带成为导电空穴 成为以空穴导电为主 这就不难理 解硼碳氮纳米管的场致电子发射性能很差的原因.

4. 结 论

采用高温热解法在 860 ℃分别制备出了碳、碳 氮和硼碳氮纳米管,利用丝网印刷工艺分别将它们 制成薄膜,在各种条件都相同的情况下比较三者场 发射性能.结果表明,碳氮纳米管的场发射性能要优 于碳纳米管,而硼碳氮纳米管的发射性能要远弱于 碳纳米管和碳氮纳米管.这主要是由于掺杂的氮原 子起施主杂质作用,在外电场的作用下向纳米管的 导带提供更多的导电电子,使其场发射性能得以提 高,而硼元素的掺杂则起受主杂质作用,在外电场的 作用下俘获电子并向价带提供导电空穴.可见掺杂 改变了纳米管的电子结构,掺杂元素的种类和浓度 决定了纳米管的导电类型.因此,我们可以通过掺杂 来获得具有特定电学性能的纳米管材料.

- [1] Iijima S 1991 Nature 354 56
- [2] Rinzler A G , Hafner J H , Nikolaev P et al 1995 Science 269 1150
- [3] Gollins P G , Zettl A 1996 Appl. Phys. Lett. 69 1969
- [4] Gulyaev Y V, Sinitsyn N I 1996 9th Int. Vac. Microelectron. Conf. 12 206
- [5] Gulyaev Y V, Chernozatonikill L A 1996 9th Int. Vac. Microelectron. Conf. 12 5
- [6] Baughman R , Zakhidov A A , Heer W A 2002 Science 297 788
- [7] Bonard J M, Kind H, Stockli T et al 2001 Solid State Electron. 45 893
- [8] Sun J P, Zhang Z X, Hou S M et al 2001 Acta Phys. Sin. 50 1805 (in Chinese) 孙建平、张兆祥、侯士敏等 2001 物理学报 50 1805]
- [9] Zhang Z X, Hou S M, Zhao X Y et al 2002 Acta Phys. Sin. 51 434 (in Chinese) 张兆祥、侯士敏、赵兴钰等 2002 物理学报 51 434]
- [10] Zhang Z X, Zhang G M, Hou S M et al 2003 Acta Phys. Sin. 52 1282 (in Chinese] 张兆祥、张耿民、侯士敏等 2003 物理学报 52 1282]
- [11] Song J H, Zhang G M, Zhang Z X et al 2004 Acta Phys. Sin. 53 4392 (in Chinese] 宋教花、张耿民、张兆祥等 2004 物理学报 53 4392]
- [12] Migamoto Y, Cohen ML, Louie S G 1997 Solid State Commun. 102 605
- [13] Sen R, Satishkumar B C, Govindaraj A et al 1998 Chem. Phys. Lett. 287 671
- [14] Kurt R , Bonared J M , Karimi A 2001 Carbon . 39 1723
- $\left[\ 15 \ \right] \quad Ma \ X \ C$, Wang E G , Zhou W Z et al 1999 Appl . Phys . Lett . 75

3105

- [16] Wang X B, Liu Y Q, Zhu D B et al 2002 J. Phys. Chem. B 106 2186
- [17] Ding P, Chao M J, Liang E J et al 2004 Acta Phys. Sin. 53 2786 (in Chinese)[丁 佩、晁明举、梁二军等 2004 物理学报 53 2786]
- [18] Bai X D , Guo J D , Yu J et al 2000 Appl. Phys. Lett. 76 2624
- [19] Liang E J, Zhang H R, Liu Y Z et al 2002 J. Light Scat. 13 205 (in Chinese]梁二军、张红瑞、刘一真等 2002 光散射学报 13 205]
- [20] Liang E J , Ding P , Zhang H R et al 2004 Diam. Rel. Mat. 13 69
- [21] Zhang H R, Liang E J, Ding P et al 2002 Acta Phys. Sin. 51 2901(in Chinese]张红瑞、梁二军、丁 佩等 2002 物理学报 51 2901]
- [22] Zhang H R, Guo X Y, Ding P et al 2003 Acta Phys. Sin. **52** 1808 (in Chiense) 张红瑞、郭新勇、丁 佩等 2003 物理学报 **52** 1808]
- [23] Chao M J, Ding P, Zhang H R *et al* 2004 Acta Phys. Sin. **53** 936 (in Chinese] 晃明举、丁 佩、张红瑞等 2004 物理学报 **53** 936]
- [24] Dawashima Y, Katagiri G 1995 Phys. Rev. B 52 10053
- [25] Zhong D Y, Liu S, Zhang G Y et al 2001 J. Appl. Phys. 89 5939
- [26] Satyanarayana S, Hart A, Milne W I et al 1997 Appl. Phys. Lett. 71 1430
- [27] Dean K A, Chalamala B R 1999 J. Appl. Phys. 85 3832
- [28] Dean K A, Chalamala B R 2000 Appl. Phys. Lett. 76 375
- [29] Semet V, Binh VT, Vincent P et al 2002 Appl. Phys. Lett. 81 343
- [30] Sun J P , Zhang Z X , Hou S M et al 2002 Appl. Phys. A 75 479

Li Qiang¹) Liang Er-Jun¹^{(2)†}

 Key Laboratory of Materials Physics of Ministry of Education ,School of Physical Science and Engineering ,Zhengzhou University ,Zhengzhou 450052 ,China)
Department of Applied Physics ,Donghua University ,Shanghai 200051 ,China)

(Received 11 November 2004; revised manuscript received 8 July 2005)

Abstract

Carbon CN_x and BCN nanotubes were synthesized by pyrolysis at 860 °C and purified. Thin films of the purified samples were fabricated by a screen-printing method. The field emission effect of these films was compared. It was found that the turn-on field was 2.22 A.1 and 4.4 V/ μ m and the current density at 5.7 V/ μ m was 1400 AOO and $< 50 \,\mu$ A/cm² for C , CN_x and BCN nanotubes respectively. The electron field emission property of the CN_x nanotubes was better than the carbon nanotubes while that of BCN nanotubes was the worst. The origin of the differences in field emission of these films was explained.

Keywords : carbon nanotubes , CN_x nanotubes , BCN nanotubes , field emission **PACC** : 8120V , 7970 , 6116D , 7830

^{*} Project supported by the Foundation of University Pioneer-Talents of Henan Province , China (Grant No. 1999-125) and the Foundation for Introduced Scholars of Donghua University , China (Grant No. 2351038).

[†] Corresponding author. E-mail :ejliang@163.com