电子在超短激光脉冲修正场中的动力学特性研究*

华剑飞¹¹" 霍裕昆² 》林郁正¹ 陈 钊² 谢永杰² 张绍银² 阎 μ^2 徐俊杰²

¹(清华大学工程物理系,北京 100084)

2(复旦大学现代物理研究所,上海 200433)

(2004年3月19日收到2004年5月19日收到修改稿)

给出了一种精确描述超短、紧聚焦激光脉冲的新方法,其思路是根据两个无量纲小量 $\varepsilon = 1(\omega_0 t_0)$ 和 $s = 1/(\omega_0 t_0)$ 】 ($t_0 w_0$) 其中 $\omega_0 = ct_0$ 为中心振荡频率, t_0 为脉冲延迟时间, w_0 为激光束腰半径)进行展开来计算脉冲的高阶修正场. ($t_0 w_0$) 其中 $\omega_0 = ct_0$ 为中心振荡频率, t_0 为脉冲延迟时间, w_0 为激光束腰半径)进行展开来计算脉冲的高阶修正场. ($t_0 w_0$) 其中 $\omega_0 = ct_0$ 为中心振荡频率, t_0 为脉冲延迟时间, w_0 为激光束腰半径)进行展开来计算脉冲的高阶修正场.

关键词:超短激光脉冲,激光加速 PACC:4170,4262,9265R

1.引 言

近年来,超短激光脉冲技术得到了飞速发展,其 聚焦光强可达到 10²¹ W/cm^{2[1]}.如此超高强度的激光 脉冲可用来研究相对论领域光和物质的相互作用, 如超短 x 射线激光的产生、超高次谐波的产生、激光 粒子加速^[2-4]、实验室天体物理学^[5]以及快点火^[6] 等研究领域.

在这种强激光场中,电子可获得极高的加速梯度.当激光聚焦光强为 10^{20} W/cm² 时,其电场强度能达到 10^{7} MV/m,远远高于微波加速器中的加速电场(约为 10^{1} — 10^{2} MV/m).因此,基于强激光场的新型电子加速器的研究逐渐成为人们关注的热点,并且 也得到了理论和实验验证^[2,3].我们研究了真空中强激光场对电子的作用,发现由于聚焦激光束的衍射效应,使得激光束外缘存在着低相速度区,即光场相速度 ν_{ϕ} 小于 c 的区域,并基于这一特性提出了一种新的真空激光加速电子方法,即俘获加速机理 (capture and acceleration scenario,CAS)^{4]}.其物理原理是由于上述低相速度区中存在着较强的纵向电场分量,使得该低相速度区成为一个加速通道,因此注 入的相对论电子在相对长的时间内能保持在加速相 位上,并被纵向电场加速到极高能量.

由于目前超强激光脉冲的宽度已发展到飞秒量 级甚至是光波周期的量级⁷¹,而通用的描述仍是采 用长脉冲近似方法,因此有必要对超短脉冲进行更 精确的描述,并进一步研究它对电子在其光场中动 力学行为的影响,从而使理论模型更加完善和可靠. 本文首先提出了一种描述超短激光脉冲高阶修正的 普适方法并给出了基于近轴近似的激光高斯脉冲的 一阶修正表达式,然后研究电子在超短激光高斯脉 冲修正场中的动力学过程,最后总结了高阶修正场 对电子俘获加速模型的影响.

2. 超短激光脉冲场的普适表达形式

随着超短激光脉冲脉宽的不断变窄,其光谱宽 度和中心频率 ω₀ 的比例越来越大,不同频率成分 的光束由于发散特性和位相特性的不同,在远场时 空耦合会导致时空特性的变化.为了适应激光脉冲 技术的发展和满足超短激光脉冲应用研究的需要, 国际上已经开展了一系列描述短脉冲的工作^[8].目 前广泛采用的脉冲描述方法认为:其空间和时间因

^{*}国家自然科学基金(批准号:10335030,10076002),国家重点基础研究基金(批准号:G1999075200)资助的课题.

[†] E-mail :hjf00@mails.tsinghua.edu.cn

子相互独立,因此采用的方法是在近轴近似激光束 表达式的基础上添加一相同的脉冲时间因子项(即 长脉冲近似或者把它称为零阶修正场).这种描述方 法在长脉冲情况下能很好地成立,但是对于几十个 飞秒甚至更短的激光脉冲,就有必要对其进行修正. 针对超短激光脉冲存在着一定的频谱分布、不再是 简单的准单色场的特性,我们在频域积分中采用了 泰勒展开近似的方法,提出了一种新的描述超短激 光脉冲场的普适方法,并具体给出了光场分布的解 析形式.

不失一般性,对于沿 x 向极化、z 向传播的激光 束,其精确的激光脉冲形式可表示为

$$\mathcal{T}(\omega_0 ; t_0 ; w_0) = \int_{-\infty}^{+\infty} \tilde{A}(t_0 ; \omega_0 , \omega) \cdot \prod(\omega ; w_0) \times \exp(i\omega\tau) d\omega , \qquad (1)$$

其中 $T(\omega_0; t_0; w_0)$ 为中心振荡频率为 ω_0 、脉冲延迟 时间为 t_0 、束腰半径为 w_0 的激光脉冲的任一电磁场 分量(这里忽略了振幅常量).另外引入 $\tilde{A}(t_0; \omega_0, \omega)$ 表示归一化的频谱分布函数, $\prod(\omega; w_0) \times \exp(i\omega\tau)$ 表示相应频率为 ω 、束腰半径为 w_0 的准单色激光束 的电磁场分量,其中 $\prod(\omega; w_0)$ 相对于频率 ω 的变 化是个缓变量,同时 $\tau = t - z/c$.由于 Maxwell 方程 不显含频率因子 ω ,因此经过这种积分变换之后的 $T(\omega_0; t_0; w_0)$ 和 $\prod(\omega; w_0)$ 一样也能满足 Maxwell 方程.由于直接求解(1)式的解析形式存在着一定 难度,所以考虑把缓变量 $\prod(\omega; w_0)$ 在中心频率 ω_0 处进行泰勒展开,得

$$\prod (\omega i w_0) = \sum_{n=0} \frac{1}{n!} \frac{d^n \prod (\omega i w_0)}{d\omega^n} \Big|_{\omega = \omega_0} (\omega - \omega_0)^n.$$
(2)

把2 试代入(1)式可得

$$\mathcal{T}(\omega_0 \not a_0 \not w_0) = \sum_{n=0} \frac{1}{n!} \frac{\mathrm{d}^n \prod (\omega \not w_0)}{\mathrm{d}\omega^n} \Big|_{\omega = \omega_0} \mathrm{e}^{\mathrm{i}\omega_0 \tau} B^n_{(\tau \not a_0)},$$
(3)

其中

$$B^{n}_{\tau,t_{0}} = \int_{-\infty}^{\infty} \tilde{A}(t_{0};\omega_{0},\omega) e^{(\omega-\omega_{0})\tau}(\omega-\omega_{0})^{n} d\omega.$$
(4)

(3)式中, $\frac{1}{n!} \frac{d^n \prod (\omega; w_0)}{d\omega^n} \Big|_{\omega = \omega_0}$ 可认为是 n 阶 的空间修正因子, B^n_{τ, t_0} 为 n 阶的时间修正因子.如 果考虑到紧聚焦激光束的高阶修正⁹¹,这种包括时间和空间修正的解析表达式则可被用于描述任意脉 冲形状的超短、紧聚焦的激光脉冲.

假设超短激光脉冲频谱分布采用典型的高斯分 布形式

 $\tilde{A}(t_0;\omega_0,\omega) = (t_0/\sqrt{2\pi})\exp\{-[(\omega - \omega_0)t_0]/2\},$ 则根据(3)式可给出激光脉冲场的具体解析表达形式

 $T(\omega_0 \ it_0 \ iw_0 \) = \prod (\omega_0 \ iw_0 \) e^{i\omega_0 \tau} e^{-\tau^2/2t_0^2}$

$$+ \frac{d \prod (\omega; w_0)}{d\omega} \Big|_{\omega = \omega_0} e^{i\omega_0 \tau} \Big(\frac{i\tau}{t_0^2}\Big) e^{-\tau^2/2t_0^2} \\ + \frac{1}{2} \frac{d^2 \prod (\omega; w_0)}{d\omega^2} \Big|_{\omega = \omega_0} \\ \times e^{i\omega_0 \tau} \frac{1}{t_0^2} \Big(1 - \frac{\tau^2}{t_0^2}\Big) e^{-\tau^2/2t_0^2} + h.o.,$$
(5)

其中式(5)右边的第一项就是一般采用的长脉冲形式.如果取激光束为近轴近似情况下的 Hermite-Gaussian(0,0),其沿 x 方向极化、z 向传播,则横向 电场量为

$$E_{x} = E_{0} \frac{w_{0}}{w(z)} \exp\left[i(\omega t - kz) + i\varphi(z) + i\varphi(z) + i\varphi_{0} - r^{2}\left(\frac{1}{w^{2}(z)} + \frac{ik}{2R(z)}\right)\right], \quad (6)$$

该式采用了常用参数^[10].其他电场和磁场分量分别 通过 $E_z \approx -(i/k) (\partial E_x/\partial x) 和 B = (i/\omega) \nabla \times E$ 计算 得到.这样根据(5)式可得到基于高斯频谱分布的激 光脉冲场的高阶修正表达式:其零阶修正场形式即 一般的长脉冲近似表达式^[10],而一阶修正场的具体 表达式为

$$E_{x_{2}0} = E_{x} \exp(-\tau^{2}/2t_{0}^{2}), \qquad (7a)$$

$$E_{x_{1}} = [1 + \varepsilon \sigma \Theta (2\zeta i + 2\zeta \rho^{2} \Theta)] E_{x_{0}} , \qquad (7b)$$

$$E_{y_1} = 0$$
, (7c)

$$E_{z_{-1}} = s \{ -2\Theta \, [1 + \varepsilon \sigma \Theta (2\zeta i + 1 + 2\zeta \rho^2 \Theta)] E_{x_{-0}} ,$$
(7d)

$$cB_{x_{1}} = s^{2} \xi \eta (-4\Theta^{2} [1 + \epsilon \sigma \Theta (2\zeta i + 2 + 2\zeta \rho^{2} \Theta)]E_{x_{0}},$$
(7e)

$$cB_{y_1} = \{1 + \varepsilon\sigma\Theta(2\zeta i + 2\zeta\rho^2\Theta) + s^2(-2\rho^2\Theta^2 + 4\Theta^2\xi^2) \times [1 + \varepsilon\sigma\Theta(2\zeta i + 2 + 2\zeta\rho^2\Theta)]\}E_{x=0}, \quad (7f)$$

 $cB_{z_1} = s\eta \left(-2\Theta \mathbf{I} + \varepsilon \sigma \Theta (2\zeta \mathbf{i} + 1 + 2\zeta \rho^2 \Theta) \mathbf{I} \mathbf{E}_{x_0} \right),$ (7g)

其中 $\xi = x/w_0$, $\eta = y/w_0$, $\rho^2 = \xi^2 + \eta^2$, $\zeta = z/k_0 w_0^2$, Θ = 1($i + 2\zeta$), $\sigma = \tau/t_0$. 从(7)式中发现, 超短激光高 斯脉冲的修正表达式可被表示成两个无量纲小量 ε = 1($\omega_0 t_0$)和 s = 1($k_0 w_0$)的展开形式,其中 ε 和 s分别表示脉宽大小和激光束的聚焦程度. 从这种修 正场形式还可以发现超短激光脉冲在传输过程中时 空特性是密切相关的,不仅时间分布上与空间变量 有关,亦表现空间分布上与脉宽有关. 同样相位项里 亦存在着时空耦合,此时表现的频率也与空间分布 有关. 根据上述思路,可以很方便的推导出超短激光 高斯脉冲的更高阶修正形式.

下面以上述的一阶修正场 $E_{z_{-1}}$ 为例来具体分 析其振幅和相位的修正效果.引入变量 $\chi = 1 + \epsilon \partial \Theta$ ×($2\zeta i + 1 + 2\zeta \rho^2 \Theta$)来表征一阶修正场 $E_{z_{-1}}$ 修正量 (相对于零阶修正场 $E_{z_{-0}} = s\xi(-2\Theta)E_{x_{-0}}$)的振幅 和相位变化情况.由于电子和超短激光脉冲的相互 作用主要发生在瑞利长度和脉宽量级范围之内(否 则电子感受到的电磁场作用力非常小),因此满足 $2\zeta < 1$ 和 $\sigma \sim 10^{\circ}$ 的条件.这种情况下,对 χ 进行整 理可得

 $\gamma \approx 1 + 2\zeta \varepsilon \sigma [2 + (4\zeta^2 - 1)\rho^2]$

+ iɛd $4\zeta^{2}(1 - 2\rho^{2}) - 1$]. (8) 在 $\varepsilon = 1(\omega_{0}t_{0})$ 为小量的情况下,发现振幅修正主要 受右边第二项影响,在激光脉宽量级范围内,其振幅 修正量主要由 ε 决定,横向分布 $\rho^{2} = 2(1 - 4\zeta^{2})$ 处 修正效果为零,而相位修正则主要受右边第三项影 响,其修正量的大小也主要由 ε 决定,在激光束中 心(即 $\zeta = 0$)处横向坐标的贡献为零.因此对于几个 光波周期以上的超短激光脉冲,脉冲中心附近脉宽 量级的范围内,其振幅和相位修正影响都相当小,均 在 ε 的量级甚至更小($\omega_{0}t_{0} = 30$ 约合 $\varepsilon \sim 10^{-2}$),完 全可以忽略不计.

3. 电子在超短激光高斯脉冲修正场中 的动力学特性

我们以前的工作都是基于长脉冲近似的激光脉 冲表达式,发现电子和激光脉冲作用时存在着 CAS 加速机理^[4].本文采用上述超短激光高斯脉冲的修 正式,通过三维的粒子模拟程序求解 Lorentz-Newton 方程,从而进一步研究电子和超短激光脉冲场作用 的动力学特性.

图 1 给出了 $\omega_0 t_0 = 30$ 时 超短激光高斯脉冲零

阶和一阶修正场条件下电子的动力学轨迹,图 1(b) 中的虚线表示激光束的包络.可以发现这两种条件 下电子的动力学特性区别非常小(其中运动轨迹、能 量增益、电子运动速度曲线已经很难分辨开).虽然 如图 1(d)所示,零阶和一阶修正情况下,电子感受 到的激光场相速度 v_{ϕ} 在非激光束中心区域差别比 较明显,但是由于电子和激光脉冲的作用主要发生 在激光束中心附近几个脉宽的范围之内(即 $kz \sim \omega_0 t_0 = 30$),所以在 CAS 机理起决定性作用的这段区 间内(即激光束中心附近几个脉宽的范围)电子运动 速度 v_e 和感受到的激光场相速度 v_{ϕ} 之间的关系即 $v_e > v_{\phi}$ 依然存在.另外由于电磁场量的修正也不明 显,使得低相速度区内存在纵向电场的电子俘获加 速条件没有受到破坏,因此 CAS 加速机理在超短激 光脉冲高阶修正条件下也依然能成立。

图 1 激光场强 $a_0 \equiv eE_0/m_e\omega_0 c = 20$ 时,电子在超短激光高斯 脉冲零阶和一阶修正场中的动力学特征 (a)电子和激光相互 作用示意图 (b)电子的运动轨道(x向运动)(c)能量增益 γ_f ; (d)电子运动速度 v_e 和电子感受到的相速度 v_{ϕ} (其中激光参数 $k_0 w_0 = 60 \omega_0 t_0 = 30$;电子入射动量为 $p_{xi}(m_0 c) = 1$, $p_{yi}(m_0 c)$ = 0 和 $p_{zi}(m_0 c) = 10$,入射角度为 $\theta = \arctan(0.1)$)

图 2 不同的激光脉宽条件下(第1组为 $\omega_0 t_0 = 10$,第2组为 $\omega_0 t_0 = 20$,第3组为 $\omega_0 t_0 = 30$),电子获得的能量增益 γ_f 和激光 场初相位 φ_0 的关系(" ▼"", △"", ■"为一阶修正情况;点划线、 实线、虚线为零阶修正情况;其他参数同图1)

宽度 $\omega_0 t_0 > 20$ 时,电子俘获加速机理(CAS)的研究 还可采用超短激光脉冲场的零阶修正(即长脉冲近 似)表达式 ;当 $\omega_0 t_0 < 20$ 时有必要对激光脉冲表达 式进行高阶修正.

4.结 论

本文对超短激光脉冲场的描述进行了研究,得 到了一种普适的计算高阶修正的方法.针对高斯脉 冲的激光场,给出了按照两个无量纲小量 $\epsilon = 1/$ ($\omega_0 t_0$)和 $s = 1/(k_0 w_0$)进行高阶展开的解析表达 式,其中 ϵ 和s分别表示脉冲场的脉宽大小和激光 束的聚焦程度.这一解析结果便于理论推导和数值 模拟.具体给出了基于近轴近似的高斯脉冲一阶修 正场,并与零阶场(长脉冲近似)做比较,发现在激光 脉冲中心脉宽量级的范围内高阶场的振幅、相位的 修正量(相对于零阶场)都在 ϵ 的量级甚至更小.另 外对电子被 CAS 机理加速特性的研究还发现,对于 脉冲宽度 $\omega_0 t_0 > 20$ 的情况,超短激光脉冲场的描述 可以采用零阶修正形式,高阶修正可以忽略;而当 $\omega_0 t_0 < 20$ 时则需要采用高阶修正.

- [1] Aoyama M et al 2003 Opt. Lett. 28 1594
 Fisch N J and Malkin V M 2003 Phys. Plasmas 10 2056
- Salamin Y I et al 2002 Phys. Rev. ST Accel. Beams 5 101301
 Bahari A and Taranukhin V D 2003 Quantum Electronics 33 563
- [3] Malka G et al 1997 Phys. Rev. Lett. 78 3314
 Malka V et al 2002 Science 298 1596
- Wang J X et al 1999 Phys. Rev. E 58 6575
 Pang J et al 2002 Phys. Rev. E 66 066501
 Hua J F et al 2003 Nucl. Instr. and Meth. A 508 211
- [5] Jin Z et al 2001 Acta Phys. Sin. 50 365 (in Chinese] 金展等 2001 物理学报 50 365]
- [6] Zhang J T *et al* 2001 Acta Phys. Sin. 50 921 (in Chinese)[张家 泰等 2001 物理学报 50 921]
- [7] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
 Kryukov P G 2001 Quantum Electron. 31 95
 Huber R et al 2003 Opt. Lett. 28 2118

Seres J et al 2003 Opt. Lett. 28 1832

- [8] Porras M A 1998 Phys. Rev. E 58 1086
 Sheppard C J R and Gan X S 1997 Opt. Commun. 133 1
 George N and Radic S 1997 Opt. Commun. 139 1
 Fu X Q et al 2002 Phys. Rev. E 65 056611
 Wang Z Y et al 1997 IEEE J. Quantum Electron. 33 566
 Mironov V A 1999 JETP 89 18
 Esarey E et al 1995 J. Opt. Soc. Am. B 12 1695
 Wang P X and Wang J X 2002 Appl. Phys. Lett. 81 4473
 [9] Lax M et al 1975 Phys. Rev. A 11 1365
- [9] Lax M et al 1975 Phys. Rev. A 11 1365
 Davis L W 1979 Phys. Rev. A 19 1177
 Barton J P and Alexander D R 1989 J. Appl. Phys. 66 2800
 Cao N et al 2002 Opt. Commun. 204 7
- [10] Svelto O and Hanna D C 1989 Principles of Lasers (New York : Plenum) p418

Hua Jian-Fei^{1);} Huo Yu-Kun^{2)} Lin Yu-Zheng^{1)} Chen Zhao^{2)} Xie Yong-Jie^{2)} Zhang Shao-Yin^{2)} Yan Zheng^{2)} Xu Jun-Jie^{2)}

¹ (*Department of Engineering Physics*, *Tsinghua University*, *Beijing* 100084, *China*) ² (*Institute of Modern Physics*, *Fudan University*, *Shanghai* 200433, *China*)

(Received 19 March 2004; revised manuscript received 19 May 2004)

Abstract

High-order correction to the fields of ultrashort, tightly-focused laser pulses expressed in power series of $\varepsilon = 1$ ($\omega_0 t_0$) and s = 1 ($k_0 w_0$) ($\omega_0 = ck_0$ the central oscillatory frequency, t_0 the pulse duration, w_0 the beam waist radius), are derived. Based on paraxial approximation, the first-order correction terms to the Gaussian pulses are explicitly given. Their corrections of amplitude and phase, are found to be related to the variable of ε . Applying them to the study of the electron dynamics in the intense laser pulse field, we found that as long as $\omega_0 t_0 > 20$, the zeroth-order approximation (long pulse approximation) is adequate for describing the interaction. For $\omega_0 t_0 < 20$, higher-order corrections have to be taken into account.

Keywords : ultrashort laser pulse , laser acceleration PACC : 4170 , 4262 , 9265R

^{*} Project supported by the National Natural Science Foundation of China Grant Nos. 10335030 and 10076002), the National Key Basic Research Special Foundation of China Grant No. G1999075200).

[†] E-mail :hjf00@mails.tsinghua.edu.cn