## 竖直振动颗粒物厚层中冲击力分岔现象\*

#### 姜泽辉† 李 斌 赵海发 王运鹰 戴智斌

(哈尔滨工业大学应用物理系 哈尔滨 150001) (2004年4月27日收到 2004年6月25日收到修改稿)

实验研究了竖直振动颗粒物厚层中颗粒对容器底部的压力.发现这种压力是脉冲式的,并表现出受振动加速 度控制的倍周期分岔现象.在颗粒层底部观察到颗粒密堆积在一起的聚集态.聚集态内颗粒的自由程较小,并像 一个整体一样运动.

关键词:颗粒物质,混沌,倍周期分岔,非弹性碰撞 PACC:4610,0547,0520D,0570J

### 1.引 言

对颗粒物质施加竖直方向上的简谐振动时,颗 粒体系呈现出多种复杂的运动形式,如成堆 (heaping)<sup>1,2]</sup>、对流(convection)<sup>3,4]</sup>、分离 (segregation)<sup>5-8]</sup>、表面斑图(surface standing wave)<sup>9]</sup> 等.产生这些运动形式的物理机理成为近年来颗粒 物质物理的研究热点<sup>[10–13]</sup>.理解振动颗粒物质的 行为,需要了解颗粒的浓度和速度的空间分布以及 与碰撞有关的一些参量.但在实验系统中这些参量 很难测到.最近,人们试图将颗粒的平均动能定义 为颗粒温度<sup>[14]</sup>,并将其作为表征"颗粒气"的一个宏 观参量.但对较厚的颗粒层能否适合还有待进一步 考察,因为在较厚的颗粒体系中总是伴随宏观的对 流运动,其性质在整体上并不是统计均匀的.

颗粒间的碰撞是非弹性的,这种非弹性碰撞不 停地消耗颗粒的动能,导致颗粒有聚集到一起的倾 向.如果忽略每个颗粒运动的具体细节,颗粒体系 整体上可以看作碰撞恢复系数为零,或者碰撞恢复 系数非常小的块体.在外界周期性振动的激励下, 体系质心的运动应当类似于恢复系数为零的球体, 并表现出受振动加速度控制的倍周期分岔现象,也 就是具有类似于非弹性蹦球<sup>[15-20]</sup>的行为特征.作 为控制参量,振动加速度通常与重力加速度 g 约 化 表示为  $\Gamma = A\omega^2/g = A(2\pi f)/g$ , f 和 A 为外加振 动的频率和振幅. 在竖直振动颗粒列的实验中,已 经证实了聚集态的存在,并观察到颗粒列与底部的 碰撞时间有分岔现象[10,21]. 最近数值模拟[22]表明, 重力和振动激励之间的竞争导致振动床中存在三种 状态 即聚集态、局部流化态和湍流态. 在振动颗粒 薄层斑图生成的实验研究中<sup>[9,23,24]</sup>,发现了飞行时 间的二倍周期和四倍周期分岔现象 分岔点分别为  $\Gamma_2 \approx 3.7$ 和  $\Gamma_4 \approx 7.6$  振动频率 f = 67Hz). 在水平振 动的实验中也发现了类似的分岔现象[4],与不同对 流模式相对应的二倍周期和四倍周期的分岔点分别 为 $\Gamma_2$  = 3.7 和  $\Gamma_4$  = 5.9,对此目前还没有给出合理 的物理模型.对于较厚(大于6个颗粒厚)的振动 床[25] 可以观察到随振动加速度的增加会出现成 堆、表面流化及拱起(arching)等现象.伴随出现的 是颗粒飞行时间的周期倍化,分岔点的理论值为  $\Gamma_2$  $\approx 3.7$  和  $\Gamma_4 \approx 6.6$ .

一个置于正弦振动台面上的非弹性球,其运动 是通过周期倍化通向混沌的<sup>15-201</sup>.如果不断增加 颗粒,就每一个个体而言,颗粒之间的多次非弹性碰 撞将使单球的运动特征破坏掉.但颗粒多到一定数 量的颗粒体系整体上是否还会具有一些类似于单球 的特征,这需要研究.本文研究了振动颗粒床中颗 粒对容器底部的冲击作用,发现这种冲击是倍周期 的.表明颗粒床的整体是以分谐波的方式振动,不 是杂乱无章的,具有单球体系的倍周期特征.

<sup>\*</sup>哈尔滨工业大学跨学科交叉性研究基金(批准号:HIT.MD2002.32)资助的课题.

<sup>&</sup>lt;sup>†</sup> 通讯联系人. E-mail:zehuijiang@yahoo.com

#### 2. 实验装置与结果

实验是在不同内径的圆筒形玻璃容器中进行 的.容器底采用铝合金以减少静电作用.在容器和 振动台面之间是一压力传感器,用来记录容器底传 来的力,这个力包含颗粒床和容器二者的贡献.由 于压电晶体的形变很小(微米量级),而且其共振频 率远大于激振频率,传感器形变对整个系统运动状 态的影响可忽略.台面在竖直方向以正弦方式 振动.

在内径为 18.3mm 的容器中装入 46.59g 直径为 1.0±0.01mm 的不锈钢球时,测得的压力随时间的 变化曲线如图 1 实线所示.振动频率为 40Hz,颗粒 层的厚度约为 18mm.由于容器与压力传感器是刚 性连接的,它对压力的贡献主要是 40Hz 的谐波,而 且可以通过 FFT 滤波技术将其滤掉.由此得到所有 颗粒对容器底的压力,如图 1 虚线所示.尖脉冲的 出现反映出颗粒床相对台面的运动是冲击式的,脉 冲峰高反映了二者相碰时相对速度的大小.

显见 颗粒整体的运动有节律 ,而且随激振强度 的增加 ,其对台面的相对速度经历了二周期倍化、四 周期倍化、混沌和三周期倍化.脉冲峰高的变化过 程如图 2 所示.图 2 中各分岔点依次为  $\Gamma_2 = 3.75$ ,  $\Gamma_4 = 6.80$ 和  $\Gamma_3 = 9.22$ . 阴影区( 混沌区 )表示在此 范围内冲击力( 仍是脉冲式的 )不是长时间有序的 , 可以有四倍周期、五倍周期、八倍周期等 ,但都不稳 定 ,很快又会被其他的脉冲序列代替.超过这个区 域 颗粒立刻进入稳定的三倍周期运动.

实验中采用的颗粒有两种:一种是合金钢球,直径为 0.50,0.70 和 1.00mm;另一种是平均直径为 1.0 和 2.0mm的玻璃球.玻璃容器的内径为 14.2, 18.3 和 40.0mm.在这两种颗粒体系中都可以看到二倍周期和四倍周期的分岔,分岔点都在 $\Gamma = 4.0$ 和 $\Gamma = 7.0$ 附近.但三倍周期分岔只在金属颗粒床中出现,而且与容器的内径有一定的关系.下面将讨论产生倍周期运动的机理.

#### 3. 产生倍周期运动的机理

压力信号中出现脉冲表明颗粒层主要是整体上 下运动的. 尽管层中每个颗粒的运动具有一定的随 机性,但大量堆积在一起的颗粒,其自由程较小,频



图 1 加速度 *Г* 取不同值时冲击力随时间的变化 振动频率 *f* = 40Hz,从上到下 *Г* = 1.80,2.97 *A*.11,7.75 *&*.31 和 9.40. 虚线 为去掉 40Hz 信号后,所得颗粒对容器底部的冲击力,实线为压 力随时间的变化



图 2 颗粒冲击力强度的倍周期分岔图 振动频率同图 1,颗粒 为直径 1.00 ± 0.01mm 的不锈钢珠,阴影部分为混沌区

繁的非弹性碰撞连续地消耗体系的动能,使得颗粒 密堆积在一起,整体上类似于一个完全非弹性体. 对一个完全非弹性体施加竖直方向的振动时是可以 导致倍周期运动的出现的.

这里采用完全非弹性蹦球模型<sup>[17,18]</sup>来计算颗 粒层相对台面的速度.一个完全非弹性球置于以简 谐方式振动的台面上 ,台面的位移表示为

 $x(t) = A \sin \omega t$ . (1) 由于球是完全非弹性的,只有当台面的加速度小于 -g时( $\Gamma < 1$ ),球才会脱离台面被抛起,否则,球就 会" 黏附"在台面上,并与台面以相同的速度运动. 如果在  $t_0$ 时刻球被抛起,它再次落到台面上的时刻 t 由

$$A\sin\omega t_0 + (u_0 + A\omega\cos\omega t_0) (t - t_0) - \frac{1}{2}g(t - t_0)^2$$
  
=  $A\sin\omega t$  (2)

决定,其中 $u_0$ 为球的相对起跳速度,取为零值,因为 起跳时球和台面的速度相同.在t时刻,如果起跳 条件( $\Gamma < 1$ )得到满足,球会立即再次起跳.否则, 它将'黏附'在台面上等待下一个振动周期内的起跳 机会.在这个等待过程中,球对前面的运动特征失 去'记忆",与台面保持相同的运动状态.这种机理 会导致倍周期(相对于台面的振动周期)运动的产 生.图3给出f = 40Hz, $\Gamma = 2.6$ 和 $\Gamma = 4.2$ 时,球的 运动情况. $\Gamma = 4.2$ 时球的运动是二倍周期的,也就 是在两个振动周期内球连续跳跃两次,并且每两个 振动周期完成一次完全相同的重复运动,而 $\Gamma = 2.6$ 时是与施加振动同周期的,即在每个振动周期内仅 跳跃一次.



图 3 f = 40Hz,  $\Gamma = 2.6$ 和 $\Gamma = 4.2$ 时, 正弦振动台面上完全非弹 性球的运动情况 实线为台面的位置随时间的变化, 虚线为球 的位置.振幅较大者为 $\Gamma = 4.2$ 时的情况.水平线与实线的交点 代表此时 $\Gamma = 1$ ,即可能的起跳点

 $u = (u_0 + A\omega \cos\omega t_0) - g(t - t_0) - A\omega \cos\omega t.$  (3)

根据(3) 式可以计算出球每次与台面相碰时的相对 速度(每次碰撞后,球与台面的相对速度为零;"着 陆"速度决定冲击力强度的大小).图4给出不同 值时, μ 的取值情况(图中数据已取绝对值).图4 中数据点密集的区域为混沌区,在 Γ 取值1—19范

围内 球经历了 4 个混沌区, 在混沌区之间是倍周 期运动. 在  $\Gamma_2 = 3.72$  处 ,发生二倍周期分岔. 之 后 在  $\Gamma'_{4} = 4.60$  处,由双枝变成单枝. 在  $\Gamma_{4} = 6.59$ 处 四倍周期分岔,然后,迅速进入第一混沌区,在 各混沌区中仍存在许多倍周期窗口. 第一混沌区 (参见图 4 内插图) 中部校宽的区域为三枝五倍周期 窗口 箭头所指处是进入混沌区前发生的一次八倍 周期分岔(Γ=7.22). 在Γ=7.44处, 第一混沌区结 束 并立刻进入两枝三倍周期运动. 图4标出的其 他各分岔点分别为  $\Gamma'_3 = 7.79$ ,  $\Gamma_6 = 9.60$ ,  $\Gamma'_4 =$ 10.95 ,  $\Gamma_8 = 12.72$  ,  $\Gamma_5' = 14.10$  ,  $\Gamma_{10} = 15.85$  和  $\Gamma_6' =$ 17.25. 二倍周期分岔点与实验结果一致,四倍周期 和三倍周期分岔点的实验值比计算值略大,这可能 是由于颗粒与器壁的摩擦力及空气的阻滞力随颗粒 速度的增大而变大的缘故, 另外, 实验中观察到在 三倍周期分岔之前存在一个混沌区 ,这与计算结果 一致,但实验中这个区域较宽,这可归因于随机涨 落的影响 这也说明在  $\Gamma$  较大或颗粒运动速度较大 时,完全非弹性球模型还不够细致,



图 4 球相对速度分岔图 振动频率同图 1

图 5 给出球与台面连续两次碰撞之间的飞行时 间( 根据 2 )式 )随振动加速度的变化情况 ,其中飞行 时间已与台面振动周期 *T* 约化. 很显然 ,倍周期分 岔都发生在约化飞行时间为整数的时刻. 分岔点同 图 4. 计算也表明 ,约化飞行时间的分岔情况与施加 频率无关.

文献 9 研究了直径为 0.15—0.18mm 的铜球薄 层中薄层脱离杯底后的飞行时间,测量结果与完全 非弹性球模型基本一致(文献 9 图 3). 表面斑图与 飞行时间的周期倍化有一定的对应关系,例如,67Hz

时 从  $\Gamma \approx 2.4$  到飞行时间二倍周期( $\Gamma_2^{exp} = 4.2$ )之 前是以 f/2 振荡的条纹 ,之后依次出现蜂窝结构( $\Gamma'_3$ 之前)、纽线  $\Gamma \approx 5.6$ 之前)及四方结构 :在飞行时间 四倍周期( $\Gamma_4^{exp} = 7.5$ )之后,又是以 f/4 振荡的蜂窝 结构;  $\Gamma > 7.8$ ,则为无序结构,在玻璃球的深床  $\mathbf{P}^{[25]}$ 观察到随  $\Gamma$  的增大会出现成堆、小幅表面波、 拱起和大幅表面波等现象,这些运动形式之间的转 变与频率无关(15—40Hz),但与 Γ 及颗粒层的厚度 (大于 5 个颗粒厚) 有关. 在  $\Gamma \approx 1.2$  时,开始出现对 流造成的成堆现象. $\Gamma \approx 2.2$ (与厚度有一定关系)时 成堆现象消失,开始出现小幅表面波.在 $\Gamma_2$ 和 $\Gamma'_2$ 附近出现有波腹波节的拱起现象,之后出现大幅表 面波. 值得注意的是, Wassgren 等人<sup>[25]</sup>观察到 $\Gamma_2$ 和 Γ', 会随厚度的减小而增加. 例如,对于 1.28mm 的 玻璃球,当厚度由约30个厚减到5.5时,Γ,和Γ, 由 2.9 和 4.5 增加到 4.2 和 5.8. 对于 3.00mm 的玻 璃球也有类似现象.产生这种效果的原因目前尚不 清楚,也可能是空气的阻尼作用.因为对更细的玻 璃珠(0.63 和 0.8mm) 看到的是相反的过程<sup>[26]</sup>.有 趣的是 ,三明治式分离<sup>[8]</sup>就是发生在二倍周期和四 倍周期之间(参见文献 8 图 3). 尽管三明治式分离 的物理机理目前尚不十分清楚,但倍周期运动对分 离结构是否有影响需要研究.



图 5 球飞行时间分岔图 振动频率同图 1,飞行时间已被振动 周期 T 约化

类似于文献 25 介绍的现象,在本文的实验中,  $\Gamma > 1$ 时出现成堆现象.对流导致颗粒在容器的一 侧隆起,并在上表面形成一个斜坡,颗粒斜坡滚下. 这种对流的速度随  $\Gamma$ 的增加而增大,但整体看起来 颗粒处于密堆积状态.在  $\Gamma > 2.4$ 时,斜面逐渐变 平 对流形式变为颗粒沿器壁缓慢向下运动, 接近 二倍周期分岔点时,上表面的几层(2---3层)颗粒的 运动明显加剧 变得较疏松 接近四倍周期分岔点 时,上层被流化的颗粒层数增多,运动进一步加剧, 出现大幅表面波,这种趋势会一直保持下去,不管 上层颗粒的运动形式如何变化,底部始终有部分颗 粒保持密堆积状态 而且器壁附近的颗粒沿器壁缓 慢向下运动,颗粒床底部的这种颗粒聚集态是产生 倍周期运动的主要原因, 在这个区域内, 颗粒的运 动几乎是同步的 ,它整体的上下运动对容器底产生 冲击式的压力,减小或增大颗粒层的总厚度,对分 岔点的影响不大,但是当厚度减小到接近某个临界 值时, $\Gamma_2$ 会显著增大.图 6 给出在内径为 4.3mm 的 玻璃管内 几种金属球的二倍周期分岔点随总颗粒 数的变化情况,在这个过程中,只要有聚集态存在, 就会有倍周期运动. 但是, 当厚度小于临界厚度时, 聚集态和脉冲信号均消失,体系类似于气态. 在较 粗的容器(40.0mm)内, $\Gamma_2$ 的这种增大趋势变得不 明显,导致这种现象的物理机理还有待研究。



图 6 二倍周期分岔点随颗粒个数的变化 振动频率 f = 30Hz, 玻璃管内径为 4.3mm,钢球直径为 0.5mm( □ ),0.7mm( △ ), 1.0mm( ○ )

在本文的实验中,二倍周期分岔和四倍周期分 岔在玻璃颗粒层和金属颗粒层中都可以观察到,而 且 $\Gamma_2$ 和 $\Gamma_4$ 的取值在 30—60Hz 范围内基本不变. 但三倍周期分岔只在金属颗粒层中出现,而且 $\Gamma_3$ 与容器内径有关,例如, $\phi$ 为0.5和1mm的钢球,在 内径为14.2和18.3mm的容器内,三倍周期分岔点 都在 $\Gamma_3 = 9.22$ 附近,但在 40.0mm的容器内,对 1mm的钢球当 $\Gamma_3$ 接近10时才出现,而对0.5mm的 钢球,在 $\Gamma < 10$ 范围内没有出现三倍周期分岔.产 生这种现象的原因可能是容器较粗时,对颗粒的约 束放宽,容易出现更复杂的运动形式,如拱起或多个 对流卷等.总之,对振动颗粒层中的整体运动,仍有 许多问题有待研究,尤其倍周期分岔与颗粒的密度、 尺寸及容器的尺寸等因素的关系.

#### 4. 结 论

对颗粒层与容器底之间冲击力的研究表明,颗 粒层底部的聚集态导致颗粒中存在整体的上下运动,从而对容器底产生脉冲式压力.颗粒的整体运 动是倍周期的,且受约化振动加速度 Г 的控制.对此,完全非弹性蹦球模型能给出较好的描述,但当 Г 较大时,颗粒的运动速度增加,运动形式更加复杂 (如大幅表面波等),完全非弹性蹦球模型变得不够 细致.实验中观察到的颗粒冲击力的倍周期分岔不 同于 Feigenbaum 型分岔.计算表明倍周期分岔点是 普适的,与颗粒的性质无关,但实验证明三倍周期分 岔与颗粒的性质及容器的尺寸有关,对此还应作进 一步研究.

- [1] Evesque P and Rajchenbach J 1988 Phys. Rev. Lett. 62 44
- [2] Pak H K , Van Doorn E and Behringer R P 1995 Phys. Rev. Lett.
  76 4643
- [3] Aoki K M, Akiyama T, Maki Y and Watanabe T 1996 Phys. Rev. E 54 874
- [4] Medved M 2002 Phys. Rev. E 65 21305
- [5] Harwood C F 1977 Powder Tech. 16 51
- [6] Rosato A, Strandburg K J, Prinz F and Swendsen R H 1987 Phys. Rev. Lett. 58 1038
- [7] Yan X, Shi Q, Hou M, Lu K and Chen C K 2003 Phys. Rev. Lett. 90 14302
- [8] Jiang Z H, Lu K Q, Hou M Y, Chen W and Chen X J 2003 Acta Phys. Sin. 52 2244 (in Chinese)[姜泽辉、陆坤权、厚美瑛、 陈 唯、陈相君 2003 物理学报 52 2244]
- [9] Melo F , Umbanhowar P B and Swinney H L 1995 Phys. Rev. Lett. 75 3838
- [10] Duran J 2000 Sands , Powders , and Grains (New York Springer)
- [11] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys.
  68 1259

- [12] de Gennes P G 1999 Rev. Mod. Phys. 71 S374
- [13] Kadanoff L P 1999 Rev. Mod. Phys. 71 435
- [14] Puglisi A, Loreto V, Marconi U M B and Vulpiani A 1999 Phys. Rev. E 59 5582
- [15] Pierański P 1983 J. Phys. 44 573
- [16] Pierański P, Kowalik Z and Franaszek M 1985 J. Phys. 46 681
- [17] Tufillaro N B and Albano A M 1986 Am. J. Phys. 54 939
- [18] Pierański P and Malecki J 1986 Phys. Rev. E 34 582
- [19] Mehta A and Luck J M 1990 Phys. Rev. Lett. 65 393
- [20] Luck J M and Mehta A 1993 Phys. Rev. E 48 3988
- [21] Luding S , Clément E , Blumen A , Rajchenbach J and Duran J 1994 Phys. Rev. E 49 1634
- [22] Isobe M 2001 Phys. Rev. E 64 31304
- $\left[ \begin{array}{c} 23 \end{array} \right] \,$  Mujica N , Caballero L and Melo F 1999 Physica A 263 362
- [24] Mujica N and Melo F 2000 Phys. Rev. E 63 11303
- [ 25 ] Wassgren C R , Brennen C E and Hunt M L 1996 J. Appl. Mech. 63 712
- [26] Douady S , Fauve S and Laroche C 1989 Europhys . Lett . 8 621

# Phenomena of impact bifurcations in vertically vibrated granular beds \*

Jiang Ze-Hui Li Bin Zhao Hai-Fa Wang Yun-Ying Dai Zhi-Bin

( Department of Applied Physics , Harbin Institute of Technology , Harbin 150001 , China ) ( Received 27 April 2004 ; revised manuscript received 25 June 2004 )

#### Abstract

The pressure of granular mass on container bottom has been experimentally investigated in vertically vibrated granular beds. Pulse signals are found of the pressure , and the pulse strength undergoes subharmonic bifurcations controlled by the scaled vibration acceleration. Condensed state of particles is observed at the bed bottom , in which the particles are closely packed , with small free path , and move like a bulk block.

**Keywords** : granular materials , chaos , period-doubling bifurcation , inelastic collision **PACC** : 4610 , 0547 , 0520D , 0570J

<sup>\*</sup> Project supported by the Interdisciplinary Fund of Harbin Institute of Technology , China (Grant No. HIT. MD2002.32).