## 热峰模型在聚碳酸酯非晶化潜径迹中的应用\*

孙友梅 朱智勇 王志光 刘 杰 张崇宏 金运范

(中国科学院近代物理研究所,兰州 730000)

(2004年3月31日收到;2004年7月8日收到修改稿)

为了描述快重离子在聚合物中的潜径迹行为,用不同能量的快重离子(1.158 GeVFe<sup>56</sup>,1.755 GeVXe<sup>136</sup>及 2.636 GeVU<sup>238</sup>) 辐照叠层半结晶聚碳酸酯膜(Makrofol KG型) 结合 x 射线衍射测量技术,在较宽的电子能损(1.9—17.1 keV/nm 和离子注量( $5 \times 10^{10}$ — $3 \times 10^{12}$  cm<sup>-2</sup>) 范围研究了离子在半结晶聚碳酸酯中引起的非晶化过程.应用径迹饱和模型假设(损伤过程只发生在面积为  $\sigma$  的柱形径迹内),分别给出了 Fe ,Xe 和 U 离子在不同电子能损下辐照聚碳酸酯时的平均非晶化径迹半径.用热峰模型对实验结果进行了检验,结果表明 Szenes 的热峰模型较好地描述了离子在聚合物中的潜径迹行为.

关键词:离子辐照,聚碳酸酯,非晶化,潜径迹 PACC:6180J,6180M,6110M

## 1.引 言

大量研究结果表明 离子辐照聚合物将导致聚 合物结构和组分发生不可逆的改性,快重离子在聚 合物中主要通过电离和激发过程在离子路径附近几 个纳米的径迹中损失能量,径迹芯中的能量沉积密 度高达若干 keV/nm<sup>3</sup>,而聚合物的键能只有几个电 子伏.因此,与传统轻离子及低能重离子辐照相比, 柱形径迹内具有复杂的损伤过程 如主链断裂、自由 基形成、交联、三键及非饱和键的产生等等,对于半 结晶聚合物辐照后还会产生非晶化现象,目前,描述 绝缘体中激发电子能量转换为靶原子动能的转变机 制主要有两种唯象模型——库仑爆炸模型和热峰模 型,库仑爆炸模型假定,离子在其路径产生强的电离 和激发而引发非稳定带,在库仑排斥下电离原子脱 离非电离基体<sup>[12]</sup>. 热峰模型应用了所给材料的电 子和原子子系统的热性能 离子在固体中的能量沉 积导致离子径迹附近瞬间温度剧增进而达到熔融 态 然后通过热传导冷却<sup>[3]</sup>.Szenes 等将分析绝缘体 中非晶化径迹而建立起的热峰模型[4]成功地应用到 了聚合物材料 PVDF 和 PET<sup>[56]</sup>,在本文中我们试图 用这一方法来描述高能重离子在聚碳酸酯(PC)中 的非晶化径迹行为.

## 2. 实验描述

实验用样品为 20 µm 厚的半结晶 PC( Makrofol KG型),从德国 Bayer 公司购进,样品密度为 1.2 g/cm<sup>3</sup> 结晶度大约 35% 熔点为 220 ℃. 对应每一辐 照注量组 样品采用多层重叠辐照 每层对应不同能 损值 总的叠层厚度大于离子在材料中的投影射程 加射程歧离).离子束垂直样品表面在真空室温环境 辐照 用 1.158 GeVFe<sup>56</sup>和 1.755 GeVXe<sup>136</sup>离子的辐照 实验在兰州重离子加速器(HIRFL)的辐照终端完 成 用 2.636 GeVU<sup>238</sup>离子的辐照在德国 Darmstadt 的 UNILAC 装置上完成, 辐照期间为避免样品过热, 离 子束流通量控制在  $3 \times 10^8 \, \mathrm{s}^{-1} \, \mathrm{cm}^{-2}$ 以下,总的辐照注 量是通过在线测量离子穿过三层铝箔发射的二次电 子电荷,并用法拉第筒测量值校准确定,Fe和 Xe 辐 照实验时铝箔总厚度为 24 µm, 而 U 辐照时为 2.35  $\mu$ m. Fe 离子选取的辐照注量组为 5 × 10<sup>11</sup> ,1 × 10<sup>12</sup> 和  $3 \times 10^{12}$  cm<sup>-2</sup>; Xe 离子为  $5 \times 10^{10}$ ,  $1 \times 10^{11}$ ,  $5 \times 10^{11}$ , 1 ×10<sup>12</sup> cm<sup>-2</sup> 儿离子为1×10<sup>10</sup> 3×10<sup>11</sup> cm<sup>-2</sup>. 每层 PC 中的平均电子能损值用 TRIM 程序计算,x 射线衍射 (XRD)测量用常规衍射仪(D/max-RB型)完成,测量 选用 Cu  $K_{\alpha}$  辐射 扫描速度为 2°/min.

<sup>\*</sup>甘肃省自然科学基金(批准号 ZS031-A25-030-C)和国家自然科学基金(批准号:10125522,10375079)资助的课题.

#### 3. 实验结果和讨论

为减少 XRD 测量时的相对误差,所有测量样品 都被剪成相同大小,然后固定在玻璃衬底上进行测 量.图1对某些典型电子能损值的不同离子辐照 PC 的 XRD 谱随辐照注量的变化进行了比较,由图 1 可 见 三种离子辐照下的 XRD 谱具有相同的衍射谱 形 未辐照 PC 中,在  $2\theta \approx 17.5^{\circ}$ (即  $d \approx 0.506$  nm, 这里  $d = \lambda/2\sin\theta$  表示晶面间距 )处存在一个很强的 衍射主峰相同电子能损 S。 辐照下, 主峰强度随辐 照注量的增加而逐渐减少,从图1还可看出,高注量 辐照下样品几乎完全非晶化,对  $S_a = 4.2$  keV/nm 的 Fe 离子辐照完全非晶化的剂量在大约 3 × 10<sup>12</sup>  $cm^{-2}$ ,而对 S<sub>e</sub> = 10.2 keV/nm 的 Xe 离子辐照完全非 晶化的剂量约为  $1 \times 10^{12}$  cm<sup>-2</sup> 表明高电子能损辐照 具有大的损伤截面,在  $d \approx 0.393$  nm 处有一个宽峰, 它来自玻璃衬底的贡献,为了定量描述非晶化程度, 我们用 Lorentz 函数通过固定峰位和半高全宽对主 峰和玻璃干扰峰进行了拟合,作为示例 图2显示了



图 1 在不同离子典型电子能损辐照下,PC的特征衍射峰随辐 照注量的演化

对未辐照 PC 的 XRD 谱的 Lorentz 多峰拟合 ,图 2 中 的圆点曲线为测量谱 ,虚线为固定的衍射主峰和玻 璃峰 ,实线为总拟合谱形.通过相似的拟合 ,不同辐 照条件下对应的 PC 的主衍射峰强度 /( 主峰面积 ) 被给出 ,应用饱和径迹假设 即非晶化过程只发生在 离子入射路径附近的柱形径迹内 ),衍射峰强度 / 随 辐照注量 Φ 的增加而呈指数衰减 ,亦即

$$I = I_0 e^{-\sigma_a \Phi} ,$$

其中  $\sigma_a = \pi R_a^2$  为非晶化截面  $R_a$  为柱形径迹的半  $Q_a = \pi R_a^2$  为非晶化截面  $R_a$  为柱形径迹的半  $Q_a = \pi R_a^2$  为未辐照 PC 样品的主峰衍射强度.



图 2 未辐照 PC 的 XRD 谱的 Lorentz 多峰拟合

图 3 给出了某些电子能损的不同离子辐照 PC 的归一化衍射强度随辐照注量的变化趋势.图 3 中 的实验误差(约 10%)主要来自辐照注量的实验测 量.通过对实验曲线的指数拟合,导出了对应的非晶 化半径,非晶化径迹半径的平方随电子能损的变化 趋势如图 4 所示.图 4 给出的径迹半径平方的误差 (约 20%)一部分来自辐照注量,另一部分来自每一



图 3 某些特定能损下, PC 的归一化 XRD 主衍射峰强度随 Fe, Xe 及 U 离子辐照剂量的变化趋势 图中曲线为实验点的指数 拟合

层的平均电子能损估计所引起的误差.

近年来,Szenes 将绝缘体材料中建立的热峰模型已经成功地应用于聚合物 PVDF 和 PET 非晶化径迹的分析中<sup>[2]</sup>,热峰模型预言了有效径迹半径 *R*。的平方与电子能损的关系式如下:

$$\begin{split} R_e^2 &= a^2(0) \ln (S_e/S_{et}) \qquad (S_e < 2.7S_{et}), \\ R_e^2 &= a^2(0) S_e (2.7S_{et}) \qquad (S_e > 2.7S_{et}), \\ \end{split}$$

其中

 $S_{\rm et} = \pi \rho c T_0 a^2 (0) g.$ 

这里 , $\rho$  为材料的密度 ;c 为材料的平均质量热容 ;  $T_0$  为辐照温度  $T_{ir}$ 与熔点温度  $T_m$  的温差 ; $gS_e$ 则表 示电子激发转换为热峰的份额(g 效率),对于绝缘 体中的高速离子已经发现  $g = 0.1^{f^{41}}$ ,在此我们认 为该值同样也适合于聚合物 ;而参数 a(0)为峰温度 最高时温度分布的初始高斯宽度.在此模型中径迹 形成的电子能损阈值  $S_{et}$ 和  $a^2(0)$ 是表征模型的主 要参数.我们将以上公式应用在重离子辐照 PC 的 径迹估算中 对于室温下辐照的 PC ,从模型的理论估 算已知  $T_m = 493.5$  K ,  $T_{ir} = 295.5$  K ,  $\rho = 1200$  kg/m<sup>3</sup>及 g = 0.17 PC 的质量热容根据文献 7 )给出的公式计 算得到 即 c = 1.60 kJ/kg·K.从计算结果我们得到了 拟合参数  $a^2(0) = 53$  nm<sup>2</sup> 及  $S_{et} = 2.35$  keV/nm.



图 4 用 XRD 测量得到的非晶化半径与热峰模型理论计算结果的比较 图中实线为用公式计算的有效径迹半径 ,虚线为用  $R_a^2$  =  $aR_a^2$  修正后的结果

图 4 中实线为热峰模型的计算结果,可见由 XRD 测量的非晶化半径和用热峰模型计算的理论 结果数值上还不能完全等同,这主要原因是计算中 各参数的取值及实验测量中所引起的误差.为了检 验公式是否能够正确地描述实验曲线的形状,我们 假设

$$R_{\rm a}^2 = \alpha R_{\rm e}^2$$

式中  $\alpha$  为适当的参数.如果  $\alpha$  为常数,则表示热峰 模型预言的有效径迹半径  $R_e$  的平方与电子能损的 关系是正确的,如果  $\alpha = 1$ ,则表示理论计算中所选 用参数完全满足实验结果;如果  $\alpha \neq 1$ ,则表示理论 计算和实验结果之间还存在整体偏差.这种整体偏 差一方面可能来自计算中 g 值的选取,另一方面可 能是由于实验方法造成的系统偏离.通过使得实验 和计算值之间的差值最小来估计  $\alpha$  的值.对于图 4 的实验值给出  $\alpha = 1.4$ ,然后用公式拟合  $R_a^2$ 得到图 4 中虚线 结果表明实验曲线的形状完全可以由此 公式来描述.从 XRD 和傅里叶红外变换测量的结 果,我们推出了同样的模型参数  $a^2(0) = 79.5$  nm<sup>2</sup>及  $S_{et} = 2.4$  keV/nm.实验结果和理论预言的相符是对 热峰模型在聚合物中应用可能性的最好体现.

### 4.结 论

本文利用快重离子的高能量特性,采用不同离 子及多层辐照的方法获得了不同电子能损辐照下的 样品.通过对样品的 XRD 测量,研究了不同电子能 损下衍射强度随辐照剂量的演变过程,在此基础上 实验获得了不同电子能损下的非晶化径迹半径.利 用材料的密度、熔点、质量热容及辐照温度等参数, 用热峰模型理论计算了不同电子能损下的有效径迹 半径.对实验和理论的径迹半径平方与电子能损的 关系曲线比较表明,两者只有斜率的差别,即热峰模 型可以较好地描述实验曲线的形状.这表明在对模 型中所涉及的参数进一步改进后,热峰模型完全可 以在理论上预言离子在聚合物中的有效径迹.

- [1] Dunlop A, Lesueur D, Legrand P et al 1994 Nucl. Instrum. Meth. B 90 330
- [2] Fleischer R L, Price P B, Walker R M 1965 J. Appl. Phys. 36 3645
- [3] Toulemonde M, Dufour C, Paumier E 1992 Phys. Rev. B 46 14362
- [4] Szenes G 1995 Phys. Rev. B 51 8026
- [5] Szenes G , Havancsák K , Skuratov V et al 2000 Nucl. Instrum. Meth. B 166—167 933

物理学报

Data 12 94

[6] Szenes G 1999 Nucl. Instrum. Meth. B 155 301

[7] Gaur U, Lau SF, Wunderlich B 1983 J. Phys. Chem. Ref.

# Application of the thermal spike model to amorphous latent tracks in polycarbonate \*

Sun You-Mei Zhu Zhi-Yong Wang Zhi-Guang Liu Jie Zhang Chong-Hong Jin Yun-Fan

(Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China)

(Received 31 March 2004; revised manuscript received 8 July 2004)

#### Abstract

To describe the damage process of polymer in the energetic heavy-ion tracks by thermal spike model, polycarbonate foil ( PC ,Makrofol KG ) stacks were irradiated with various swift heavy ions (  $1.158 \text{ GeVFe}^{56}$ ,  $1.755 \text{ GeVXe}^{136}$  and  $2.636 \text{ GeVU}^{238}$  ) in a very wide range of electronic stopping power (from 1.9 to 17.1 keV/nm) and the range of fluence from  $1 \times 10^{10}$  to  $3 \times 10^{12}$  ions/cm<sup>2</sup>. The amorphization processes in the irradiated PC were studied by x-ray diffraction. By using the saturated track model (the damaging process only occur in the cylindrical track of area  $\sigma$ ), the mean damage radii of tracks of the amorphization were calculated for Fe , Xe and U ion irradiation. The results obtained by using the thermal spike model , proved to be reasonable.

Keywords : ion irradiation , polycarbonate , amorphization , latent tracks PACC : 6180J , 6180M , 6110M

54 卷

<sup>\*</sup> Project supported by the Natural Science Foundation of Gansu Province, China (Grant No. ZS031-A25-030-C) and National Natural Science Foundation of China (Grant Nos. 10125522, 10375079).