射频磁控溅射法制备 SnO₂ :Sb 薄膜的 结构和光致发光性质研究*

王玉恒 马 瑾' 计 峰 余旭浒 张锡健 马洪磊

(山东大学物理与微电子学院,济南 250100) (2004年6月21日收到 2004年9月2日收到修改稿)

采用射频磁控溅射法在玻璃衬底上制备出锑掺杂的氧化锡(SnO₂ :Sb)薄膜.制备薄膜是具有纯氧化锡四方金 红石结构的多晶膜薄 ,晶粒生长的择优取向为[110].室温下光致发光测量结果表明,在 392 nm 附近存在强的紫外-紫光发射.研究了不同氧分压对薄膜结构及发光性质的影响,并对 SnO₂ :Sb 的光致发光机制进行了探索性研究.

关键词:SnO₂ Sb 薄膜,结构特征,光致发光,射频磁控溅射 PACC:6855,7855,8115C

1.引 言

近年来,由于市场对短波长发光器件的巨大需 求人们越来越关注宽禁带半导体的研究.ZnO(带 隙为 3.37 eV,激子束缚能为 60 meV)和 Mg 掺杂的 ZnO 一直是人们的研究热点^[1-5],并已有相应的发 光器件出现.最近,SnO₂ 材料引起了人们的关 注^[6-8].与 ZnO 相比,SnO₂ 有着更为优越的特征,首 先是更宽的带隙和更高的激子束缚能,室温下分别 是 3.6 eV 和 130 meV^[9];其次是较低的制备温度和 更高的化学稳定性.因此 SnO₂ 是一种很有前途的紫 外光和蓝光材料.

人们对 SnO₂ 薄膜的研究主要集中在透明导电 和气敏性质方面,光学性质的研究多限于透射、反射 和折射方面^{10—13},有关其光致发光方面的报道非常 少.制备 SnO₂ 薄膜有多种方法,如化学气相沉积法 (CVD)¹¹¹、溶胶凝胶法(sol-gel)^{14,151}、脉冲激光淀积 法(PLD)¹⁶¹和电子束蒸发法(EBE)¹⁷¹等,本文中,我 们采用射频磁控溅射方法制备了锑掺杂的氧化锡 (SnO₂ Sb)薄膜,在室温条件下发现了 SnO₂ :Sb 薄膜 在 392 nm 附近存在强的紫外—紫光发射,研究了不 同氧分压对薄膜发光性质的影响,并对 SnO₂ :Sb 的 光致发光机制进行了研究.

2. 实 验

用 JPGF-450 型射频磁控溅射系统在玻璃衬底 上制备 SnO₂ Sb 薄膜,系统的本底真空度为 10^{-3} Pa. 溅射所用陶瓷靶是由纯度为 99.99% SnO₂ 和 Sb₂O₃ 粉末经混合、球磨后压制成坯,再经 1300 ℃烧结而 成.靶中 Sb₂O₃ 的重量比是 4%,用纯度为 99.99% 的 氩气和氧气作为工作气体,由可控阀门分别控制气 体的流量.溅射过程中,控制真空室内氩气压强为 1 Pa,氧分压为 0.5—1.5 Pa,靶与衬底间的距离为 5 cm.溅射功率为 150 W,溅射时间为 25 min,衬底温度 为 100 ℃.

用 RIGAKU D/MAX-γA 型 x 射线衍射(XRD)仪 (CuKα辐射波长 0.154178 nm)测试样品的结构.用 APHM-0190型原子力显微镜(AFM)观测样品的表面 形貌.使用 TV-1900型紫外—可见光分光光度计测 量样品的吸收谱.使用激发源为 325 nm 的 He-Cd 激 光器的光谱仪测量样品的室温光致发光谱.

3. 结果和讨论

图 1 给出了 SnO₂ Sb 薄膜样品的 XRD 谱,曲线 *a* 和曲线 *b* 对应的氧分压分别为 0.5 和 1.5 Pa.由图

^{*}国家自然科学基金(批准号 90401004)和教育部科学技术研究重点项目(批准号 102165)资助的课题.

[†] E-mail : Jima@sdu.edu.cn

1 可以看出,样品为氧化锡四方金红石结构的多晶 薄膜,具有[110]方向的择优取向性.与曲线 a 相 比,曲线 b 各峰的半高宽明显变小(211)峰强度减 小(200)峰消失.这一结果表明,随着氧分压的增 大,制备样品的晶粒增大,晶格结构变好.通过 Scherrer 公式计算得到曲线 a 和曲线 b 所对应的平 均晶粒尺寸分别是 22.2 27.3 nm.氧分压较低时,由 于缺氧导致薄膜晶格不完整,晶粒较小;当氧分压增

图 1 不同氧分压下制备 SnO₂ Sb 样品的 XRD 谱 曲线 *a* 氧分 压为 0.5 Pa ,曲线 *b* 氧分压为 1.5 Pa

大时晶格结构变好 晶粒增大.

当薄膜生长时,部分 Sb₂O₃ 会被氧化成 Sb₂O₅, 但 XRD 未探测到 Sb₂O₃ 和 Sb₂O₅ 相,这是由于 Sb³⁺ 和 Sb⁵⁺ 会占据 Sn 离子的位置,形成了替位式掺杂, 且样品中 Sb³⁺ /Sb⁵⁺ 的比率与薄膜制备时的温度以 及氧分压有很大关系^[18]. Sb 取代 Sn 位置这一过程 可由下面两个方程表示^[19]:

$$Sb_2O_3 \rightarrow 2Sb'_{Sn} + V''_0 + 3O_0^X$$
, (1)

 $Sb_2O_5 \rightarrow 2Sb_{sn}^{,*} + 2e' + 4O_0^{,*} + 1/2O_2(g)$, (2) 式中 $Sb_{sn}^{,*}$ 代表占据了 Sn 位置的 Sb ,且带有一个单 位的负电荷 ;Sb_{sn}^{,*} 也代表占据了 Sn 位置的 Sb ,但带 有一个正电荷 ; $V_0^{,*}$ 代表了一个带有两个正电荷的 氧空位 ; $O_0^{,*}$ 则是不带有任何电荷的处于原来位置的 氧元素 .从方程(1)(2)可以看出 ,Sb³⁺ 占据 Sn⁴⁺ 晶 格位置形成一个受主能级 ;而 Sb⁵⁺ 占据 Sn⁴⁺ 的晶格 位置形成施主能级^[20,21].

图 2 是不同氧分压下制备 SnO₂ Sb 薄膜的 AFM 图像 ,图 ((a)和图 ((b)对应的氧分压分别为 0.5 和 1.5 Pa.从图 2 可以看出 ,所制备的样品具有多晶结 构 制备氧分压升高时 ,晶粒更加致密 ,晶化程度变 化 ,晶粒尺寸变大 ,这与 XRD 的实验结果是一致的.

图 2 不同氧分压下制备 SnO₂ Sb 薄膜的 AFM 图像(2 µm×2 µm)(a) 氧分压为 0.5 Pa,(b) 氧分压为 1.5 Pa

图 3 给出了不同氧分压条件下制备 SnO₂ Sb 薄膜的吸收谱,曲线 *a* 和曲线 *b* 对应的氧分压分别为 0.5 和 1.5 Pa.与曲线 *b* 相比,曲线 *a* 向低能量方向 移动,即吸收边红移,表明样品的光学带隙变窄.直接禁带半导体的光学吸收系数可简写为

 $a(\hbar\omega) = A^{*}(\hbar\omega - E_{g})^{\prime 2}, \quad (3)$ 式中 , A^{*} 是常数 ; $\hbar\omega$ 代表光子能量 ;a 是吸收系数 ; E_{g} 是吸收带边(光学带隙),作 α^{2} -ħω 的关系曲线, 延长其直线部分与 ħω 轴相交,其交点就是相应的 光学带隙.由(3)式对曲线 a 和曲线 b 做图,可以得 到样品的光学带隙分别是 3.66 eV(338 nm)和 3.71 eV(334 nm),如图 4 所示.可以看出,结果明显高于 体材料 SnO₂ 的带隙 3.6 eV,这与其他人得到的结果 是一致的^[13]. 另外,1.5 Pa 氧分压下制备 SnO₂ :Sb 薄膜的光学带隙明显宽于 0.5 Pa 氧分压下制备的薄膜.这是由于 1.5 Pa 氧分压环境中制备薄膜的晶格 更加完善,由 Sb 形成的替位式掺杂更理想,晶格缺 陷形成的带尾态也减少,从而导致带隙展宽.

图 3 不同氧分压下制备 SnO₂ :Sb 样品的吸收谱 曲线 *a* 氧分 压为 0.5 Pa,曲线 *b* 氧分压为 1.5 Pa

图 4 不同氧分压下制备 SnO₂ Sb 薄膜的吸收系数随光子能量 的变化 (a)氧分压为 0.5 Pa (b)氧分压为 1.5 Pa

图 5 给出了不同氧分压下制备薄膜的室温光致 发光谱 曲线 a、曲线 b、曲线 c 对应的氧分压分别 为 0.5 1.0 1.5 Pa,从曲线 b 和曲线 c 中,我们首次 观测到了一个很强的位于 392 nm(3.16 eV)的紫外 ---紫光发射峰,另外在430 nm(2.88 eV)附近有一个 肩部 510 nm (2.43 eV)附近还有一个较宽的弱峰;而 曲线 a 中的紫外—紫光发射非常弱,另外在 430 nm 附近有一个很弱的宽峰,在多晶和纳米晶体氧化物 中 、氧空位是最常见的缺陷 ,一般在发光过程中起到 辐射中心的作用.由于我们采用磁控溅射法制备 SnO₂ Sb 薄膜,因此样品中存在着氧空位.从样品的 光致发光谱强度的变化可以看到相对于1.0和1.5 Pa氧压下制备的薄膜,低氧压环境下制备 SnO; Sb 薄膜的紫外—紫光发射强度不但没有因氧空位的增 多而增大,反而减小,这一结果表明:氧空位对 SnO₂:Sb 薄膜的紫外—紫光发射并不起关键作用.

在 Sb 的替位式掺杂作用下 ,SnO₂ :Sb 薄膜中形 成了施主和受主能级 ,由于紫外—紫光发射的能量 位置远小于样品的光学带隙 ,紫外—紫光发射的主 要原因 归结于施主能级 到受主能级的跃迁.当 SnO₂ Sb 样品在低氧环境下(图 5 曲线 *a*)生成时 ,薄 膜中会形成大量的缺陷及杂质能级 ,导致非辐射复 合增强^[22],削弱了由 Sb 形成的施主能级和受主能 级间的跃迁发射 ;而且晶格生长的不完善 ,影响到替 位式掺杂的形成 ,进而影响了施主能级和受主能级 的形成 ,因此发光峰强度很弱 .对于在较高氧环境下 生成的 SnO₂ Sb 薄膜(图 5 曲线 *b* 和曲线 *c*),一方面 由于晶粒增大、晶格结构变好 ,择优取向更明显 ,使 得 SnO₂ Sb 薄膜中缺陷和杂质能级减少 ,导致非辐

图 5 不同氧分压下制备 SnO₂ Sb 薄膜的光致发光谱 曲线 *a* 氧分压为 0.5 Pa,曲线 *b* 氧分压为 1.0 Pa,曲线 *c* 氧分压为 1.5 Pa 射复合减少;另一方面,晶格结构变好,替位式掺杂 更加理想,施主能级和受主能级增强,从而导致了发 光峰强度的增强.另外,图5中曲线。的紫外—紫光 峰的强度大于曲线 b 的强度,这进一步证明随氧分 压的增加发光峰强度增强.

四方晶系面间距可由下述公式得到:

$$\frac{1}{d_1^2} = \frac{2}{a^2} , \qquad (4)$$

$$\frac{1}{d_2^2} = \frac{1}{a^2} + \frac{1}{c^2} , \qquad (5)$$

式中 ,*a*,*c* 是晶格参数 ;*d*₁ 是(110)面的面间距,*d*₂ 是(101)面的面间距.通过(4)(5)式可计算得到: 0.5 Pa 氧氛围中制备薄膜的晶格常数 *a* 为 0.4750 nm,*c* 为 0.3189 nm ;1.5 Pa 氧氛围中制备薄膜的 *a* 为 0.4742 nm,*c* 为 0.3182 nm.相比于 SnO₂ 的标准值 (a = 0.4738 nm,*c* = 0.3178 nm),可以看出 0.5 Pa 氧 分压下制备薄膜的晶格畸变程度大于 1.5 Pa 氧分压 下制备薄膜的晶格畸变程度.因为 Sb⁵⁺, Sn⁴⁺, Sb³⁺ 的离子半径分别是 0.074 nm ρ .083 nm ρ .090 nm^[23], 0.5 Pa 氧分压下制备薄膜的晶格畸变大,说明替位 式掺杂以 Sb³⁺ 为主,由 Sb⁵⁺ 形成的施主少,发光峰 弱,薄膜在1.5 Pa 氧气氛围中生长时,部分 Sb³⁺ 被 氧化成 Sb⁵⁺,晶格畸变减弱,有更多的施主形成,从 而使得发光峰明显增强.

图 5 中 430 和 510 nm 附近的发光峰可能起源于 样品中固有缺陷能级间的跃迁发射,原因目前尚不 清楚,有待进一步的研究.

4.结 论

采用射频磁控溅射法在玻璃衬底上制备出 SnO₂ Sb 薄膜.制备薄膜是具有纯氧化锡四方金红石 结构的多晶膜薄 晶粒生长的择优取向为[110].室温 下光致发光测量结果表明,在 392 nm 附近存在强的 紫外—紫光发射.掺杂的 Sb 元素是以 Sb_{Sn}和 Sb_{Sn}的形 式存在于 SnO₂ 晶格中,并形成了施主能级和受主能 级.随制备氧分压的升高,晶格结构变好,晶粒变大, 替位式掺杂更加理想.SnO₂ Sb 薄膜的紫外—紫光发 射的主要原因归结于施主能级到受主能级的跃迁.

- [1] Kong Y C , Yu D P , Zhang B et al 2001 Appl . Phys . Lett . 78 407
- [2] Lin B X, Fu Z X, Jia Y B *et al* 2001 Acta Phys. Sin. **50** 2208(in Chinese)[林碧霞、傅竹西、贾云波等 2001 物理学报 **50** 2208]
- [3] Zou L, Wang L, Huang J Y et al 2003 Acta Phys. Sin. 52 935(in Chinese I 邹 璐、汪 雷、黄静云等 2003 物理学报 52 935]
- [4] Chen N B, Wu H Z, Qiu D J 2004 Acta Phys. Sin. 53 311 (in Chinese) [陈奶波、吴惠桢、邱东江 2004 物理学报 53 311]
- [5] Li H Q, Ning Z Y, Cheng S H et al 2004 Acta Phys. Sin. 53 867
 (in Chinese)[李伙全、宁兆远、程珊华等 2004 物理学报 53 867]
- [6] Jeong J , Choi S P , Chang C I et al 2003 Solid State Commun. 127 595
- [7] Kim T W 2001 Mat. Res. Bull. 36 349
- [8] Gu F, Wang S F 2003 Chem. Phys. Lett. 372 451
- [9] Yu B L , Zhu C S , Gan F X 1997 Opt . Mater . 7 15
- [10] Hao X T , Ma J , Zhang D H et al 2002 Appl . Surf . Sci. 189 157
- [11] Ray S C , Karanjai M K , Dasgupta D 1997 Thin Solid Films 307 221
- [12] Ma J , Hao X T , Huang S L et al 2003 Appl . Surf . Sci . 214 208
- [13] Terrier C , Chatelon J P , Roger J A 1997 Thin Solid Films 295 95

- [14] Gu F, Wang S F, Lü M K et al 2003 Inorg. Chem. Commun. 6 882
- [15] Yu B L, Wu X C, Chen W J et al 1995 Acta Phys. Sin. 44 660 (in Chinese)[余保龙、吴晓春、陈文驹等 1995 物理学报 44 660]
- [16] Kimura H , Fukumura T , Koinum H et al 2000 Phys. E 10 265
- [17] Wu M, Wang Y, Tang X F et al 2000 Acta Phys. Sin. 49 1015
 [吴 明、王 珏、汤学峰等 2000 物理学报 49 1015]
- [18] Ovenston A , Sprinceana D , Walls J R et al 1994 J. Mat. Sci. 29 4946
- [19] Fayat J , Castro M S 2003 J. Euro . Ceram . Soc . 23 1598
- $\left[\ 20 \ \right]$ $\ \ Tan \ J \ R$, Shen L Z , Fu X S et al 2004 Dyes and Pigments $61 \ 31$
- [21] Terrier C , Chatelon J P , Berjoan R et al 1995 Thin Solid Films 263 37
- [22] Zhang D H, Wang Q P, Xue Z Y 2003 Acta Phys. Sin. **52** 1484 (in Chinese)[张德恒、王卿璞、薛忠营 2003 物理学报 **52** 1484]
- [23] Gržta B, Tkalčec E, Goebbert C et al 2002 J. Phys. Chem. Solids 63 765

Wang Yu-Heng Ma Jin Ji Feng Yu Xu-Hu Zhang Xi-Jian Ma Hong-Lei

(School of Physics and Microelectronics , Shandong University , Jinan 250100 , China)
 (Received 21 June 2004 ; revised manuscript received 2 September 2004)

Abstract

 SnO_2 Sb films have been prepared on glass substrates by rf magnetron sputtering method. The prepared samples are polycrystalline thin films with rutile structure of pure SnO_2 and have orientation of [110] direction. The photoluminescence of the samples was measured at room temperature. An ultraviolet-violet luminescence peak near 392 nm was observed. The effect of different oxygen partial pressures on the structure and luminescence was investigated , and the luminescent mechanism was also tentatively investigated.

Keywords : SnO₂ Sb thin films , structural character , photoluminescence , rf magnetron sputtering method **PACC** : 6855 , 7855 , 8115C

^{*} Project supported by the National Natural Science Foundation of China(Grant No. 90401004) and the Science and Technology Study Accented Term of the Ministry of Education of China (Grant No. 02165).