利用 x 射线小角散射技术研究微晶硅薄膜的微结构*

周炳卿^{1,2,}" 刘丰珍¹) 朱美芳¹) 谷锦华¹) 周玉琴¹) 刘金龙¹) 董宝中³) 李国华⁴) 丁 琨⁴)

1(中国科学院研究生院物理系,北京 100039)

2(内蒙古师范大学物理系,呼和浩特 010022)

3(中国科学院高能物理研究所北京同步辐射实验室,北京 100039)

4(中国科学院半导体研究所,北京 100083)

(2004年8月10日收到2004年9月16日收到修改稿)

采用 x 射线小角散射(SAXS)技术研究了由射频等离子体增强化学气相沉积(rf-PECVD),热丝化学气相沉积(HWCVD)和等离子体助热丝化学气相沉积(PE-HWCVD)技术制备的微晶硅(μ c-Si:H)薄膜的微结构,实验发现,在相同晶态比的情况下,PECVD沉积的 μ c-Si:H薄膜微空洞体积比小结构较致密,HWCVD沉积的 μ -Si:H薄膜微空洞体积比大结构较为疏松,PE-HWCVD沉积的 μ c-Si:H薄膜,由于等离子体的敲打作用,与HWCVD样品相比微结构得到明显改善,采用HWCVD二步法和PE-HWCVD加适量Ar离子分别沉积 μ c-Si:H薄膜,实验表明,微结构参数得到了进一步改善.45°倾角的SAXS测量显示,不同方法制备的 μ c-Si:H薄膜中微空洞分布都呈各向异性.红外光谱测量也证实了SAXS的结果.

关键词:微晶硅薄膜,微结构,微空洞,x射线小角散射 PACC:6100,7870C,8115H

1.引 言

氢化微晶硅(μc-Si :H)薄膜材料由于其既具有 非晶硅(a-Si H)的高吸收系数 (又具有单晶硅(c-Si) 的高稳定性的优点,因而成为未来廉价、稳定、高效 太阳能电池的首选材料之一,受到了极大的关 注^[12].目前,制备 µc-Si:H 薄膜的方法主要有等离 子体增强化学气相沉积(PECVD) 包括射频 PECVD (rf-PECVD)和甚高频 PECVD),热丝化学气相沉积 (HWCVD)和电子回旋共振化学气相沉积(ECRCVD) 等技术.但是无论采用那一种技术,高晶态比的 µc-Si H 薄膜内部往往存在微空洞^[3] 微空洞的存在严 重影响了薄膜的光电性能,制约了薄膜稳定性和太 阳电池效率的进一步提高.微空洞的产生与 μc-Si :Η 薄膜的沉积过程有着极大的关系 因此 研究不同的 沉积技术,优化沉积参数,改善 µc-Si :H 薄膜的微结 构 降低 µc-Si :H 薄膜中微空洞 ,获得致密的 µc-Si: H 薄膜已经成为一个非常重要的课题.

x 射线小角散射(SAXS) 技术是探测与研究材料

中微空洞的一种有效方法^[4]. SAXS 发生在原光束附 近几度范围内,仅与散射体的形状、大小分布以及周 围介质电子云密度差有关. µc-Si :H 薄膜可以看成是 由 Si 基质与微空洞组成的两相系统,两相的电子云 密度差很大,适合 SAXS 分析. 利用同步辐射光源作 为 x 射线源,强度高,准直性好,可提高实验的分辨 率 缩短实验时间.

本工作利用 SAXS 技术研究了用 ff-PECVD, HWCVD 和等离子体助热丝化学气相沉积(PE-HWCVD)方法制备的 μc-Si :H 薄膜中微空洞的大小、 体积比、取向等微结构参数,讨论了不同沉积方法和 沉积参数对 μc-Si :H 薄膜的 SAXS 参数及微结构的 影响.

2. 实 验

微晶硅薄膜采用 rf-PECVD, HWCVD和 PE-HWCVD等方法制备.沉积条件如表1所示.衬底包括1737F玻璃(测光电性质),双面抛单晶Si片(测 红外光谱)和高纯AI箔(99.999% SAXS使用).

^{*}国家基础发展规划(973)项目基金(批准号 :C2000028208)和中国科学院高能物理研究所北京同步辐射实验室资助的课题.

[†]E-mail: zhoubq@mails.gscas.ac.cn.

$表 1$ μc -Si 沿 溥膑的沉积 \overline{s} 致													
编号	沉积方法	氢稀释度/% [H ₂][SiH ₄ +H ₂]	沉积压力 /Pa	射频功率 (´mW/cm²)	热丝温度 /℃	衬底温度 /℃	电极间距 /cm						
PE212	PECVD	99	1000	356		200	2						
HW152	HWCVD	95	5		1760	250							
PH85	PE-HWCVD	95	5	80	1760	250	4						
HW153	HWCVD	98/95 [*]	5		1760	250							
PH86	PE-HWCVD	95 + Ar*	5	80	1760	250	4						

* 98/95 表示先以 98%氢稀释度沉积 5min ,再以 95% 的氢稀释度沉积 ,95 + Ar 表示以 95% 的氢稀释度沉积 ,同时通少量 Ar 离子 .

SAXS 实验是在中国科学院高能物理研究所同 步辐射实验室小角散射实验站进行的.为了增强散 射强度,薄膜厚度大于 1 μ m,实验时把 Al 箔对叠成 4 层进行.聚焦光斑为 3.2mm × 1.5mm,样品处光子能 量为 3—12keV,能量分辨率 $\Delta E/E$ 为 2 × 10⁻⁴,光子 通量为 2 × 10¹⁰ s⁻¹,入射 x 射线波长为 0.154nm.实 验站使用成像板探测器探测散射信号,像素尺寸设 定为 100 μ m,样品和成像板之间距离为 1495nm.

通过傅里叶变换红外吸收谱(FTIR)来确定薄膜 的成键情况和微结构因子 R^* ,微结构因子的定义 为 $R^* = I_{\rm H}(2090) I_{I_{\rm H}}(2000) + I_{\rm H}(2090)], I_{\rm H}(2000)$ 和 $I_{\rm H}(2090) 分别表示红外吸收谱中 2000 cm^{-1} 和$ $2090 cm^{-1} 处 Si – H 和 H – Si – H 伸缩键的积分强$ $度,同时通过 FTIR 计算薄膜的氢含量 <math>C_{\rm H}$.薄膜的质 量密度 ρ 用悬浮法测定.薄膜厚度通过透射谱估 算.薄膜的晶态比^[5]通过 Raman 谱(T64000)解谱得 到,所研究样品的晶态比大约都为 70%.

3. 结果与讨论

图 1 为 PE212, HW152 和 PH85 三个样品的 SAXS 散射强度曲线, 纵坐标 (*h*)为相对散射强度, $h = \frac{4\pi \sin\theta}{\lambda}$ 是散射矢量, 20 是散射角, $\lambda = 0.154$ nm 为 x射线波长.采用两相系统近似,可从SAXS曲线计 算 μ c-Si :H 薄膜材料中微空洞的体积比 V_t ,此时散 射强度 I(h)与微空洞的体积比 V_t 的关系为^[6]

$$Q = \int_{0}^{\infty} h I(h) dh = 2\pi^{2} I_{e} V(\Delta \rho)^{2} V_{f}(1 - V_{f}) (1)$$

式中 I_a 为单电子散射强度 $\Delta \rho$ 为二相系统的电子密度差 ,V为 x射线照射的散射体的体积 ,Q为积分不变量 ,可通过散射强度 I(h)向两个方向外推积分得到^[7].

图 1 µc-Si :H 薄膜样品的 SAXS 曲线

根据中华人民共和国国家标准 GB/T 13221-1991 对 x射线小角散射粒度分布的计算方法,计算 出微空洞的平均尺度 \bar{R} ,1—5nm 的微空洞所占的体 积分数 V_{1-5} 等参数.计算结果如表 2 所示.

表 2 µc-Si :H 薄膜的相关参数

编号	$V_{\rm f}$ / %	\overline{R} /nm	$V_{1-5}/\%$	ρ(g/cm ³)	R^*	$C_{\rm H}/{\rm at}$. %	$r_{\rm d}$ (nm/s)
PE212	1.96	5.8	77.0	2.284	0.348	0.7	1.5
HW152	4.38	11.2	59.7	2.232	0.583	2.8	2.6
PH85	3.39	5.5	81.5	2.189	0.534	3.4	2.7
HW153	3.12	6.5	75.1	2.236	0.537		
PH86	2.47	5.2	82.6	2.206	0.493		

54 卷

从表 2 可以看到, PECVD 沉积的 µc-Si :H 薄膜 (PE212)比较致密,微空洞的体积比和平均尺度都 比较小.HWCVD 沉积的 µ-Si H 薄膜(HW152) 材料 较为疏松 微空洞体积比和平均尺度都比较大,两种 方法的沉积速率不同是造成致密度差别的原因之 — PE212样品的沉积速率较低($r_d = 1.5$ nm/s),而 HW152 样品的生长速率较高($r_{d} = 2.6$ nm/s);同时两 个样品的沉积机理也有差异,在 PECVD 过程中,带 电反应基元对薄膜适当的"敲打"作用,可以提高薄 膜致密度 减少微空洞体积比 在 HWCVD 沉积过程 中 反应气体通过高温热丝(1760℃)产生大量原子 氢 原子氢有利于 Si 网络的弛豫 促使薄膜晶化 同 时使反应气体分解充分 薄膜生长速率高 但这容易 形成微空洞 造成薄膜微空洞的体积比和平均尺度 较大,考虑到以上实验结果,采用 PE-HWCVD 技术 沉积 μc-Si :H 薄膜(PH85),薄膜生长速率和 HWCVD (HW152)相比没有变化,但是由于等离子体的敲打 作用 薄膜变得致密 微空洞体积比和平均尺度都相 应减小.这里需要说明一点,单从质量密度值的大小 不能说明那种薄膜是致密或疏松的 因为各种薄膜 的氢含量不同(如表2所示).

用 FTIR 来分析薄膜的成键情况,可得到的微 结构因子 R^* 列在表 2 中. PECVD,HWCVD 和 PE-HWCVD 不同技术沉积的 μ c-Si :H 薄膜的微结构因 子 R^* 分别为 0.348 μ c-Si :H 薄膜的微结构因 子 R^* 分别为 0.348 μ c-Si 和 0.534.一般认为红外 谱中 2090cm⁻¹处的吸收峰是由薄膜微空洞内表面 SiH₂ 基团的 Si-H 伸缩键引起^[3],所以微结构因子 R^* 与空洞体积比 V_f 相对应.结合表 2 的 SAXS 参 数 发现随着 R^* 的增加,薄膜微空洞体积比 V_f 增 大 表明 SAXS 数据与 FTIR 测得的结果是相符的.

为了减小样品的空洞体积比,改善其微结构,我 们用 HWCVD 二步法沉积 μc-Si :H 薄膜,首先用 98%的氢稀释沉积 5min,之后再用 95%的氢稀释沉 积 50mir(HW153).而对 PE-HWCVD 沉积的 μc-Si :H 薄膜,在与 PH85 样品相同的沉积条件下,再加入少 量的 Ar离子(3 scem,PH86),其 SAXS 曲线如图 2 所 示(为便于比较,把 PE212,HW152 和 PH85 样品的 SAXS 曲线也作于图 2 中).从曲线可以看到, HWCVD 二步法和 PE-HWCVD 加适当 Ar 离子沉积 的 μc-Si :H 薄膜的 SAXS 曲线与原来曲线相比都有 了改善.把从 SAXS 曲线计算得到的相应参数的结 果列于表 2 结果显示,HWCVD 二步法制备的 μc-Si : H 薄膜,微空洞体积比明显减小,平均微空洞尺度从 11.2nm 降到 6.5nm,1—5nm 的小尺度的微空洞从 59.7% 增加到 75.1%.这主要是由于在反应初期的 高氢稀释增加了成核密度,从而阻止了后期菜花状 大晶粒的形成,薄膜变得比较致密.PE-HWCVD 再加 适量 Ar 离子沉积的 μc-Si :H 薄膜,其微结构也得到 了明显的改善,这可能是由于等离子体中引入适量 的 Ar 离子,可以更有效的实现离子"敲打"的作用, 从而使薄膜更加致密.

图 2 改进沉积条件后 µc-Si H 薄膜 SAXS 曲线

图 3 µc-Si :H 薄膜 45°倾角 SAXS 曲线

将 PE212, HW152 和 PH85 三个样品取 45°倾角 做 SAXS 实验,来观察 μ c-Si :H 薄膜中微空洞的取 向.图 3 给出 PECVD 制备的样品的 0°和 45°倾角 SAXS 曲线, 从图中可以看到两曲线明显的差别,表 明 μ c-Si :H 薄膜中微空洞的分布是各向异性的,这 与 μ c-Si :H 薄膜呈柱状生长有关^[8].

4. 结 论

SAXS 技术是研究 μc-Si :H 薄膜中微空洞的大 小、体积比、取向等参数的一种有效的手段,实验结 果发现 射频 PECVD 沉积的 μc-Si :H 薄膜微空洞体 积比、微空洞平均尺度比较小,结构较致密.HWCVD 沉积的 μc-Si :H 薄膜微空洞体积比、平均尺度较大, 结构较疏松.PE-HWCVD 沉积的 μc-Si :H 薄膜由于 等离子体的敲打作用,致使微空洞体积比、微空洞平 均尺度和 HWCVD 相比有所降低,结构较为致密.

采用 HWCVD 二步法生长 µc-Si :H 薄膜 ,由于生

长初期的高氢稀释增加了成核密度,致使 μe-Si :H 薄膜的微结构得到了改善,微空洞体积比,微空洞平 均尺度都有所减小,结构较为致密.采用 PE-HWCVD 加适量 Ar 离子,薄膜微结构进一步得到了改善. μe-Si :H 薄膜 45°倾角 SAXS 实验表明,微空洞的分布是 各向异性的.

- [1] Meier J et al 1996 Mater. Res. Soc. Symp. Proc. 420 3
- [2] Rath J K 2002 Solar Energy Materials & Solar Cells 76 431
- [3] Guha S et al 1992 Appl. Phys. Lett. 61 1444
- [4] Williamson D L 1995 Mat. Res. Soc. Symp. Proc. 377 251
- [5] Droz C et al 2004 Solar Energy Materials & Solar Cells 81 61
- [6] Williamson D L et al 1989 Appl. Phys. Lett. 55 783
- [7] Zhao H et al 2004 Acta Phys. Sin. 53 1251 (in Chinese] 赵 辉 等 2004 物理学报 53 1251]
- [8] Zhu M et al 2000 Thin Solid Films 360 205

The microstructure of hydrogenated microcrystalline silicon thin films studied by small-angle x-ray scattering *

Zhou Bing-Qing^{1,2})[†] Liu Feng-Zhen¹) Zhu Mei-Fang¹) Gu Jin-Hua¹) Zhou Yu-Qin¹) Liu Jin-Long¹)

Dong Bao-Zhong³) Li Guo-Hua⁴) Ding Kun⁴)

¹ (Department of Physics , Graduate School , Chinese Academy of Sciences , Beijing 100039 , China)

² (Department of Physics , Inner Mongolia Normal University , Huhhot , 010022 , China)

³ (Beijing Synchrotron Radiation Laboratory , Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100039 , China)

⁴)(Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China)

(Received 10 August 2004; revised manuscript received 16 September 2004)

Abstract

The microstructures of hydrogenated microcrystalline silicon (μ c-Si :H) thin films, prepared by plasma-enhanced chemical vapor deposition (PECVD), hot wire CVD (HWCVD) and plasma assisted HWCVD (PE-HWCVD), have been analyzed by the small angle x-ray scattering SAXS) measurement. The SAXS data show that the microstructures of the μ c-Si :H films display different characteristics for different deposition techniques. For films deposited by PECVD, the volume fraction of micro-voids and mean size are smaller than those in HWCVD sample. Aided by suitable ion-bombardment, PE-HWCVD samples show a more compact structure than the HWCVD sample. The microstructure parameters of the μ c-Si :H thin films deposited by two-steps HWCVD and PE-HWCVD with Ar ions are evidently improved. The result of 45° tilting SAXS measurement indicates that the distribution of micro-voids in the film is anisotropic. The Fouriertransform infrared spectra confirm the SAXS data.

Keywords : hydrogenated microcrystalline silicon thin film , microstructure , micro-voids , small-angle x-ray scattering PACC : 6100 , 7870C , 8115H

^{*} Project supported by the State Key Development Program for Basic Research of China (973) (Grant No. G2000028208), and the Open Project from Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics, Chinese Academy of Sciences.

[†]E-mail : zhoubq@mails.gscas.ac.cn.