周期轨迹与不可积体系的量子化: Henon-Heiles 体系的一个研究例子*

王培杰^{1)†} 吴国祯²⁾

¹(清华大学高等研究中心,北京 100084)
 ²(清华大学物理系 原子分子纳米科学教育部重点实验室,北京 100084)
 (2004年10月11日收到 2004年11月1日收到修改稿)

研究了两个振子耦合的 Henon-Heiles 体系的周期轨迹与量子化问题.结果表明 周期轨迹的作用量积分与体系的能量有着简单的线性关系.可以利用那些是整数值的周期轨迹的作用量积分对不可积体系进行半经典量子化. 由周期轨迹的物理内涵出发,揭示混沌体系的残余周期轨迹具有与量子化有关的性质.这对于认识和理解经典力 学与量子体系的联系关系及其物理内涵有着深刻而重要的意义.

关键词:周期轨迹,半经典量子化,混沌 PACC:0365S,4660D

1.引 言

长期以来 在量子力学的框架下 人们在分子振 动以及分子光谱学领域的理论研究取得了巨大的成 功与发展,但是对于分子高激发振动态体系,由于模 间强烈的非线性耦合 使得体系变为不可积 又由于 它是个多体体系 因此 运用传统量子力学波函数的 方法来处理它就会遇到很大的困难.然而,近年来, 经典力学理论的发展为这种不可积体系的研究打开 了新的思路,尤其是有关经典力学混沌理论的研究, 正引导人们思考与其相对应的量子特性问题^{1]}这 当中涉及到如何运用经典力学的思想和方法来研究 量子物理课题,而分子的振动,特别是分子高激发态 的振动研究正是这一思想的合理延伸,因为这时体 系的能量高 其量子态已接近于经典的行为 同时非 线性的效应又使得振动体系展现多种奇异结构与性 质 如分形和混沌等,因此,问题就变成如何运用半 经典的方法从非线性力学的角度来研究分子振动的 不可积体系,这是个引人入胜的课题,而这当中典型 的课题就是有关不可积体系(混沌体系)的半经典量 子化问题.

分子振动体系,由于非线性导致其成为不可积 乃至混沌体系.而有关这种混沌体系的量子化是至 今尚未解决的重要课题.量子化问题是量子力学的 重要的基本课题,它体现了量子力学体系的最本质 的特性.同时混沌体系问题,则集中体现了量子力学 和经典力学的联系.

对于一个不可积的体系,根据 KAM(Kolmogorov, Arnold, Moser 源理,体系中的周期轨迹多受破坏而 变为混沌不规则的运动,我们的工作^{2]}显示轨迹虽 然多为混沌的,但仍有大量的残存周期轨迹,这些周 期轨迹与体系的量子化有一定的联系关系 :即周期 轨迹中,短周期的轨迹的作用量的量子化(整数值) 正好可与低能态有对应关系,此外,我们也观察到相 空间中大量的混沌轨迹的极小混沌程度也与体系的 量子化有关^[3].上述这两个观察说明.不可积体系的 周期轨迹与混沌轨迹从不同的方面与体系的量子态 有着内禀的关联,但这些内含的具体确切情况仍不 明朗. Gutzwiller 虽然在 20 世纪 70 年代即提出从不 可积体系中的周期轨迹 人们是有可能求得量子化 的能级 但是他的方法比较复杂 需要求取大量的周 期轨迹,对于复杂的分子振动,他的方法显然是有困 难的.我们的方法^{2]}只牵涉到短的周期轨迹,虽然 主要对于较低的分子振动态有其适用性,但显然较 Gutzwiller 的方法简单容易.此外,我们所提出的相 空间大范围的混沌轨迹的极小混沌程度会与量子化

^{*} 国家自然科学基金(批准号 20373030 和 10347112)资助的课题.

[†]E-mail : peijiewang@lsad.tsinghua.edu.cn

的能级有关,则未见文献上有过报道.这是个新颖的 视角,它从另一个方面揭示量子态不仅如 Gutzwiller 所言与周期轨迹有关,且与混沌轨迹也有关联.此暗 示它们很可能是同一事物的两个方面和内涵.继续 深入探索上述初步的观察是很有意义的.

具有两个振子耦合的 Henon-Heiles^[4](HH)体系 是一个著名的混沌体系的例子,它是具有对称性势 能天体问题的一个模型.后来人们发现很多类的三 体系统^[5],当只考虑 Taylor 展开的前三项时,可以简 化成一个 Henon-Heiles 类型的哈密顿体系.和 Henon-Heiles 模型相关的其他问题可参见文献 6].

本文中,我们将详细探讨 HH 振动体系的周期 轨迹与量子化问题.

2.HH 体系的哈密顿量

HH 体系哈密顿可以写成如下形式^[4]:

 $H = \frac{1}{2} (p_x^2 + p_y^2 + x^2 + y^2) + \lambda x (y^2 - \frac{1}{3}x^2),$ 这里的 x 和 y 是振子的位置坐标,而 p_x 和 p_y 是相 对应的共轭动量, λ 是非谐耦合常数.如果用极坐标 表示,则由 $x = r\cos\theta$ 和 $y = r\sin\theta$ 替换上式,则哈密 顿变为

$$H = \frac{1}{2} (p_r^2 + r^2 + p_{\theta}^2/r^2) - \frac{1}{3} \lambda r^3 \cos 3\theta$$

对于哈密顿量 $H(x, p_x, y, p_y)$, 同样运用经典运动方程来求得体系随时间演化的动力学:

$\frac{\mathrm{d}}{\mathrm{d}t}$	$\begin{pmatrix} x \end{pmatrix}$	=	p_x	
	у		p_y	
	p_x		$-x - \lambda (y^2 + x^2)$	•
	(p_y)		$(-y-2\lambda xy)$	

通过对运动方程的数值积分,可以获得体系的 轨迹在相空间的动力学行为.可以看出, ν(r, θ)势 能具有 120°旋转对称轴,在对称元素操作下满足 C₃ 群对称性^[7].

我们根据轨迹的角动量的多少,可以将体系的 轨迹分为两类,分别称作"librating"和"precessing" 类型.

如果运用庞加莱截面(x ,p_x) y = 0 ,p_y < 0 时) 观察体系的动力学,我们发现在 0 < E < 11.972 的范 围内,体系显示出有丰富的动力学行为:当 0 < E < 4.987 时,相空间主要由准周期轨迹组成.随能量增 加,当 4.987 < E < 11.972 ,准周期轨迹逐渐遭到破 坏,出现小的混沌区域,最终在 *E* = 11.972 时,体 系主要为混沌运动,准周期轨迹在相空间中仅成为 两个在混沌轨迹中间的小岛.

3. HH 体系的周期 1 轨迹

对于 HH 体系,我们感兴趣的是用其周期轨迹 进行量子化的问题.这首先需要找出它的周期轨迹. 对于周期轨迹的找取,我们采用线段迭代交点方 法^[8].为表述方便我们用 p^1 表示周期 1.到目前为 止,我们共找到了 4 类不同的周期 1 轨迹,其中 A(" apex "), B(" base "), 和 Q(" circle ")周期 1 产生于势能的最低点,而 S(" saddle ")产生于势能的鞍点.A, B,和 S 类的周期 1 是 librating 轨迹, 而 C 是 $precessing 类型轨迹.由于哈密顿势能的 <math>C_3$ 对称性, 共有 11 个(3 个 A 3 个 B, 2 个 C 3 个 S)这样的周 期 1 轨迹.我们分别用符号 $p_{A}^1, p_{B}^1, p_{C}^1, p_{S}^1, a_{S}$.

我们知道,体系的鞍点势能是 11.972,所以当 E > 11.972,体系才会有 p_s^1 . 当 E < 11.972,S 类的 周期 1 不会产生,此时体系只有 8 个不同的 p_A^1 , p_B^1 , p_c^1 .如图 1(a)所示 3 个不同但简并的 p_B^1 或者 p_A^1 互 相成 120°,240°旋转对称,而 2 个不同但简并的 p_c^1 分别对应于顺时针或逆时针旋转.同时,图 1(c)给 出了它们 3 维相空间投影,对于 p_s^1 ,如图 1(d)所示, 它反映了体系在鞍点附近的局域运动.

4. 周期1轨迹与量子化

对于不同的周期,定义其作用量积分 L 为

$$L = \frac{1}{2\pi} \oint \boldsymbol{p}_{\alpha} d\alpha = \frac{1}{2\pi} \left(\oint p_{x} dx + \oint p_{y} dy \right).$$

为了方便,我们分别用 $L(p_{A}^{1}), L(p_{B}^{1}), L(p_{C}^{1}),$ $L(p_{S}^{1})$ 表示 A, B, C, S类型周期 1 轨迹的作用量积 分.当我们观察不同的量子本征能级的作用量积分 时,发现这些本征能级的作用量积分都近似为整数, 如图 2 所示.因此,我们可以运用这些为整数的作用 量积分来推测本征能级的位置.这就是我们所说的 运用周期轨迹的作用量积分来量子化不可积体系. 这个关系可以表示如下:

$$e_1 = 0.932149 n_1 + 0.1474846;$$

$$e_2 = 1.0186 n_2 - 0.0296;$$

$$e_3 = 0.9513 n_3 + 0.0905;$$

(d)

其中 n_1 , n_2 , n_3 为正数 (它们实际上是作用量积分 $L(p_A^1)$, $L(p_C^1)$, $L(p_B^1)$), 而 e_i 指相应的能量.这些等 式由图 2 的数据拟合得到.对于上述等式中的这种 线性关系也并非偶然的(参见文献 9)附录 C), 我 们知道,作用量是能量和周期的函数,可以表示为: $\frac{\Delta S}{\Delta E} = T$,其中,T为周期,当作用量量子化时,即当 $\Delta S = n\hbar$ 时,n = 1,2,3,..., $E = \Delta S/T = n\hbar\nu$,这正

是量子力学中的能量公式.我们发现,对于一个本征 能级,必有一个整数 n_1 , n_2 或者 n_3 ,反之未必成 立.这里 n_3 由 n_1 和 n_2 限制,原因是 p_B^1 给出了由 p_A^1 和 p_C^1 定出的能级谱图的更精细结构.即 n_3 给出 的能级应介于由 n_1 和 n_2 所给出的能级中间.

概括地 我们可以由如下步骤将量子本征能级 重构:

(ii)令 n₂ = 3 A r... 我们有图 3(b)之能级.

()iii)在图 $\mathfrak{X}(a)$ (b)中由箭头所连接的能级中, 插入合适的 e_3 (对应于 $n_3 = 5$, 6, 7, ...)能级.如(c) 所示.(d)表示总和(a) (b) (c)之能级.这些和(e) 之由量子力学方法所得的能级是很相近的.表1显 示了这些能级,除能级1外,其误差均小于2%.对 于更高的激发态,由于体系的非线性特性增强,致使 上述的周期轨迹的作用量积分和本征能级的线性关 系不再成立,这限制了我们的数值计算.

这里的 p_A^1 和 p_c^1 的作用类似于 DCN 体系中的 对称和反对称的 p_s^1 , p_a^1 (详见参考文献 2])可以将 量子能谱的轮廓定出.此处, p_A^1 定出了一个分布轮 廓的上沿,而 p_c^1 定出了其下沿.即 $L(p_A^1)$ 的作用量 是整数的值定出的量子能级是 1, 2, 3, 5, 8, 11, 15, 20, 25. 如图 3 中的 a 列, 而由 $L(p_c^1)$ 定出的

表 1 由整数的 $I(p_A^1), I(p_B^1), I(p_B^1)$ 所构建的能级以及量子方法所得的能级

能级	p_{A}^{1}	p_{C}^{1}	p_{B}^{1}	重构能级	量子能级	偏差
1	1.0796			1.0796	0.9986	0.08111
2	2.0118			2.0118	1.9901	0.0109
3	2.9439			2.9439	2.9562	- 0.00416
4		3.0262		3.0262	2.9853	0.0137
5	3.8761			3.8761	3.926	- 0.01271
6					3.9824	
7		4.0448		4.0448	3.9858	0.0148
8	4.8082			4.8082	4.8702	- 0.01273
9			4.8468	4.8468	4.8987	- 0.01059
10		5.0634		5.0634	4.9863	0.01546
11	5.7404			5.7404	5.817	- 0.01317
12			5.798	5.798	5.867	- 0.01176
13					5.8815	
14		6.082		6.082	5.9913	0.01514
15	6.6725			6.6725	6.7379	- 0.00971
16			6.7493	6.7493	6.7649	- 0.00231
17					6.8354	
18					6.9989	
19		7.1006		7.1006	6.9994	0.01446
20	7.6047			7.6047	7.6595	- 0.00715
21					7.6977	
22			7.7006	7.7006	7.7369	- 0.00469
23					7.8327	
24		8.1192		8.1192	8.0094	0.01371
25	8.5368			8.5368	8.5541	- 0.00202
26					8.5764	
27			8.6518	8.6518	8.6779	- 0.00301
28					8.8113	
29					8.8152	
30		9.1377		9.1377	9.0217	0.01286

0

0

2

4

6

能量

图 2 作用量积分 $I(p_A^1), I(p_C^1)$ 与能量 E 的关系. 图中的竖线 表示本征能级所在位置.为表示清楚 图中没有给出 $I(p_B^1)$

8

10

量子能级是 1,2,4,7,10,14,18,24,30 如图 3 中的 b列.这样,我们可以将本征能谱分成了 10 个 序列.

图 3 由整数的(a) $I(p_{a}^{l})$,(b) $I(p_{c}^{l})$,(c) $I(p_{b}^{l})$ 所构建的量 子能级.箭头表示在(a)(b)中由虚线所连接的能级中间插入具 有整数的 $I(p_{b}^{l})$ 的能级.(d)为(a)(b)(c)能级之总和(e)为由 量子方法所得之能级

表 2 是 Noid¹⁰¹和 Marcus¹¹¹用半经典方法得出 的 HH 体系的量子能级,可以用主量子数将能谱分 成不同的序列,每个序列具有相同的 *n* 和不同的角 量子数 $(l = 0, \pm 1, ..., \pm n)$.需要指出的是,为什 么 p_A^1 和 p_c^1 可以将量子能谱的轮廓定出?由图 2 (a)可以看出, p_c^1 具有最小的径向动量 $p_{,}($ 这一点可 以利用极坐标得以验证),而 p_A^1 具有最小的角动量 p_{0} .因此,我们利用 p_A^1 ,可以将表 2 中的每一列中的 具有最小角量子数的能级重构,同样,我们利用 p_c^1 可以将每一列中的具有最大角量子数的能级重构, 注意到 p_B^1 的 $p_{,r}, p_{,0}$ 值界于 p_A^1 和 p_c^1 之间,所以,利 用 p_B^1 将由 p_A^1 和 p_c^1 定出的能级之间的能级重构也 是可以理解的.

对于 *I*(*p*¹/_s),它只反映了鞍点附近的局域特性, 对于重构整个能级没有帮助.需要指出的是,对于表 1,我们列出的可重构的能级约占量子能级的 2/3,而 另外的约 1/3 能级没有用周期轨迹进行重构,这是 因为我们用数值方法求得的周期轨迹类型有限,到 目前为止,我们仅观察到了上述 4 种类型的周期轨 迹,我们相信可能还存在一些未经发现的周期轨迹, 它们可能将整个能级重构.

能级	(l ,n)	标度能量
1	{(0 0)}	0.9986
2	(±1,1)}	1.9901
3	(0,2)ן	2.9562
4	(±2,2)	2.9853
5	(±1,3))	3.9260
6	(± 3 3)	3.9824
7		3.9858
8	(0 A)	4.8702
9	$(\pm 2 A)$	4.8987
10	(±4 A)	4.9863
11	$(\pm 15)_{1}$	5.8170
12	(±35)	5.8670
13	(5.8815
14	$(\pm 55)^{J}$	5.9913
15	(±0,6)	6.7379
16	(±2,6)	6.7649
17	(± 4.6)	6.8354
18	$(\pm 6 \beta)^{J}$	6.9989
19		6.9994
20	(±1,7)	7.6595
21	(±3,7)	7.6977
22	}	7.7369
23	(±5,7)	7.8327
24	(±7,7) ^J	8.0094
25	(0,8)]	8.5541
26	(±28)	8.5764
27	(±48)	8.6779
28	$(\pm 6 \ 8)$	8.8113
29		8.8152
30	(± 8 8)	9.0217
31	(±9,9)}	10.0354
32		10.0356
33	(⁰ ,10)	10.3052
34	(_{± 10} ,10)	11.0497

5.结 论

我们研究的振动体系,由于模间耦合作用增强, 使得体系的非线性作用加剧.这种非线性导致体系 的不可积性,使得体系的周期轨迹遭到破坏.运用传 统的作用量积分方法来量子化体系遇到了困难. Einstein 早在 1917 年就深刻思考了这种困难¹¹¹,并

表 2 Noid 和 Marcus 用半经典方法得出的 HH 体系 的量子能级^[10] 我们的工作表明,当体系处于较低的激发态时, 由于周期轨迹并没有完全破坏掉,类比于上述不变 椭圆环面上的破洞不太严重,我们仍可以运用这种 周期轨迹的作用量积分来量子化.我们的研究揭示 了混沌体系的残余周期轨迹具有与量子化有关的性 质.这充分说明了周期轨迹的重要性.

回顾 Gutzwiller 的周期轨迹理论,他就强调了体系的周期轨迹隐含着体系的动力学内涵,并且能够体现体系的量子力学特性.又 KAM 定理详细阐明了周期轨迹在体系遭到破坏的过程中的存活情况.当体系所受的扰动增加时,尽管此时体系的混沌程度不断增加,但这些存活下来的周期轨迹对相空间却起到了'支撑'作用,是体系的运动骨架.我们的工作揭示周期轨迹包含着与体系量子化有关的信息.需要强调的是,一个量子态总有作用量积分是整数值的周期轨迹,反之,未必成立!即当周期轨迹的作用

量积分为整数时对应的能量未必是量子态能级.

通过这种经典的方法对不可积体系的量子化问 题的研究 我们获得了对分子振动体系动力学的更 深刻的理解,我们用经典的概念对哈密顿体系的动 力学演化过程进行了详细的观测和探讨 从中发现 了许多在量子力学方法中所体察不到的特性,它不 仅能够使我们从经典的角度去理解认识分子的振 动,而且这些新的视角也是量子观点的重要补充,也 丰富了我们对量子物理的认识,并且还揭示了被量 子力学的波函数所掩盖了的重要物理内涵,不可积 体系的量子化的研究和探讨不仅对于分子光谱学及 分子振动的混沌理论研究具有重要意义 而且对于 认识和理解经典力学与量子体系的联系关系及其物 理内涵有着深刻而重要的意义,我们这一课题的研 究也进一步说明了量子力学和经典力学之间是有着 密切的联系 而这一关系始终是基本而又重要的科 学前沿问题.

- Gutzwiller M C 1990 Chaos in Classical and Quantum Mechanics (New York : Springer-Verlag New York Inc.) B0
- [2] Wang P and Wu G Z 2003 Chem. Phys. Lett. 375 279
- [3] Wang P and Wu G Z 2002 Phys. Rev. A 66 022116
- [4] H'enon M and Heiles C 1964 Astron. J. 69 449
- [5] Lunsford G H and Ford J 1972 J. Math. Phys. 13 700
- [6] Bastos de Figueiredo J C , Grotta Ragazzo C and Malta C P 1998 Phys.

Lett . A 241 35

- [7] Elliott J P and Dawber P G 1979 Symmetry in Physics, Vol. 1(New York 'Oxford U.P.) 12
- [8] Gao J and Delos J B 1994 Phys. Rev. A 49 869
- [9] Mengli Du and Delos J B 1988 Phys. Rev. A 38 1913
- [10] Noid D W and Marcus R A 1977 J. Chem. Phys. 67 559
- [11] Einstein A 1917 Verh. Dtsch. Phys. Ges. (Berlin) 19 82

Quantization of non-integrable Hamiltonian by periodic orbits : an example of the study on chaotic Henon-Heiles system *

Wang Pei-Jie^{1)†} Wu Guo-Zhen^{2)}

¹(*Center for Advanced Study*, *Tsinghua University*, *Beijing* 100084, *China*) ²(*Department of Physics*, *Tsinghua University*, *Beijing* 100084, *China*) (Received 11 October 2004; revised manuscript received 1 November 2004)

Abstract

Action integrals of the periodic orbits of non-integrable (chaotic) two-dimensional system of Henon-Heiles were analyzed to show simple linear relations. This enables us to obtain by extrapolation all the action integrals of any periodic orbits and at any energies from very few arbitrary action integrals. Based on this property, a very simple and easy semiclassical quantization algorithm by numerical arithmetics was proposed for low-energy excitations which are classically chaotic. The result is good agreement with that obtained by the exact quantal method.

Keywords : periodic orbit , quantization , chaos PACC : 0365S , 4660D

^{*} Project supported by the National Natural Science Foundation of China Grant Nos. 20373030 and 10347112).

 $^{^{\}dagger}\text{E-mail:peijiewang@lsad.tsinghua.edu.cn}$