4 × 10 Gb/s OTDM 系统中偏振模色散 自适应补偿的研究*

王目 \mathcal{H}^{1}) 李唐军¹) 娄采云²) 简水生¹) 霍 力²) 姚和军²) 曾 丽²) 崔 杰¹) 刁 操¹)

1(北京交通大学光波技术研究所,北京 100044)

2(清华大学电子工程系,北京 100084)

(2004年5月17日收到;2004年10月15日收到修改稿)

利用信号偏振度为反馈信号 基于可变步长最大值搜索算法实现了4×10 Gb/s 光时分复用(OTDM)系统偏振模 色散(PMD)自适应跟踪补偿实验.PMD补偿器为偏振控制器加可变时延线的四自由度结构.最大差分群时延(DGD) 补偿量为 25 ps,即信号的一个比特周期,补偿时间小于 50 ms.

关键词:偏振模色散,光时分复用系统,偏振度,自适应补偿 PACC:4281,4281F,4281D,4280W

1.引 言

随着单信道传输速率向 10 Gb/s,尤其是 40 Gb/s 的进一步发展,原来在光纤中被忽视的光纤偏振模 色散(PMD)问题逐渐成为限制光纤通信系统传输距 离的一个重要因素,因此自上个世纪 90 年代,尤其 是 90 年代末以来,如何抑制或消除 PMD 的系统影 响已引起研究人员的广泛关注,并迅速成为国际上 光纤通信领域的研究热点^[12].

PMD 抑制方法一般可分为以下四种(1)采用 新型工艺利用旋转和扭曲技术生产低 PMD 光纤,这 方面我们已做了严格的理论分析³¹,并进行了实验 验证(2)电域 PMD 补偿^[4](3)光域 PMD 补偿⁵¹; (4)采用性能稳定的调制码型抑制 PMD⁶¹.第一种 主要是针对未来铺设的光纤,现在光纤生产厂商提 供的光纤其 PMD 系数基本上小于 0.05 ps/ $\sqrt{\text{km}}$.而 后三种抑制方法主要针对已经铺设的光缆.一些较 早铺设的光纤经测量其 PMD 系数甚至已经达到 2 ps/ $\sqrt{\text{km}}$,严重影响系统的进一步升级.光域 PMD 补 偿技术具有补偿结构简单,信号透明,响应速率快等 优点,也是最有希望解决 40 Gb/s 以上高速光通信系 统并能实用化的方案,从而受到了国际上研究人员 的广泛重视.

由于 PMD 随环境和波长等变化的随机特性, PMD 补偿必须首先对线路 PMD 进行在线监测,并利 用监测信号反馈控制 PMD 补偿器和时延线 进行动 态自适应补偿.目前 PMD 在线监测主要基于以下三 种反馈信号(1)电 0 值或眼图张启度[7](2)偏振 度(DOP)^{8,9]}(3)基带射频(BF)信号谱^[5],而信号 DOP 作为反馈控制信号具有其它方式所无法比拟的 优势:可对线路 PMD 变化实时做出响应,具有良好 的误码率相关性,并且不受系统传输速率的限制,因 此本文以输出信号 DOP 为反馈信号,PMD 补偿器采 用偏振控制器 + 可变时延线的四自由度结构并对其 参数进行调节,实现了4×10 Gb/s 光时分复用 (OTDM)系统 PMD 自适应跟踪补偿实验,最大差分 群时延(DGD)补偿量为 25 ps,即信号的一个比特周 期,补偿时间小于50ms,补偿效果依据50Gb/s光通 信信号分析仪(Textronix CSA8000)上曲线脉冲的形 状、前后沿进行判断与验证.

2.PMD 自适应补偿系统

2.1.4×10 Gb/s 信号的产生

在时分复用过程中由于各信道之间将会产生相 互干扰使得 OTDM 系统对脉冲宽度和脉冲消光比等

^{*}国家高技术研究发展计划(批准号 2001AA122042)和国家自然科学基金(批准号 60377015 和 60177027)资助的课题。

都有严格的限制,从而对光源的要求也非常严格,系 统中光源选用了分布式反馈(DFB)半导体激光器加 电吸收调制器(EAM)产生脉冲的结构,其具有稳定 性好,抖动小和低噪声等优点.DFB+EAM产生的光 脉冲串经过EDFA放大后,进入脉冲压缩器,利用色 散补偿光纤和梳状色散光纤链分别进行线性和非线 性压缩,使脉冲宽度约为3.5 ps.压缩后脉冲经过 Mach-Zehnder 铌酸锂调制器产生10 Gb/s 2²³ – 1 伪随 机信号(PRBS),并进入时分复用器生成40 Gb/s 归 零码(RZ)信号,如图1所示.

图 1 40 Gb/s PMD 自适应补偿实验系统

2.2. PMD 仿真器

系统中采用了一种基于磁光晶体的程控的 PMD 仿真器.它由 6 段偏振旋转器和磁光晶体与延 迟器(双折射晶体)组成的 DGD 产生器构成.其突出 优点是响应快(响应时间小于 1 ms),体积小,重复性 好.PMD 仿真器的变化速度可随意编程,产生具有 Maxwell 分布的 PMD 统计变化情况.DGD 变化范围 为 – 34.9 ps—34.9 ps.变化精度为 1.3 ps.同时,在该 6 段旋转器和延迟器前加一个由磁光晶体制作的 1/ 4 波片,通过电压控制可以随机改变波片方位角,从 而改变线路中的信号偏振态,在此的作用是用来模 拟偏振主轴的变化.采用 HP8509B 偏振分析仪 Jones 矩阵本征值法,图 2(a)和 2(b)分别给出一阶 PMD 和存在高阶 PMD 的情况下的 PMD 仿真器的 DGD 与 光源波长的变化关系曲线.

2.3. PMD 补偿器

一个完整的光域 PMD 补偿器主要包括三个部 分:补偿单元、反馈信号和控制单元,如图 1 中所示. 补偿单元是由偏振控制器 + 可变时延线组成,实验 中偏振控制器选用了 EOspace 公司的铌酸锂材料的 偏振控制器,其分为三级,依次可认为 1/4 波片、半 波片和 1/4 波片,其控制可变量为波片的方位角,因 此一个偏振控制器有三个自由度,每一个自由度由

两个电压控制.其显著优点是:响应速度快,可小于 100 ns;无限制自由复位且对温度不敏感.可变时延 线为基于双折射晶体结构的动态可变 DGD (DynaDelay[™] DGD-6B2, General Photonics Co.),其 DGD 变化范围为 – 45 ps—45 ps,变化精度为 1.36 ps 响应时间为 200—1200 μs.

系统中采用具有模拟带宽 700kHz 的在线偏振 计(PolaDetect[™], General Photonics Co.)获得线路输 出信号 DOP,并反馈到控制单元.控制电路选用了高 速的数字信号处理(DSP)系统模块 C6711DSK(工作 频率 150 MHz)板实现.偏振计采用1:4 偏振分束器, 将线路中输出信号分成四路偏振光信号,然后利用 起偏器和四分之一波片将信号光分别转化四个不同 的偏振态:水平线性偏振态,垂直方向线性偏振态, 45°方向线性偏振态和圆偏振态.最后利用探测器件 将四路光信号光电转换为相应四个电压,并以4路 模拟信号的方式模数转换(A/D)后发送到高密度现 场可编程逻辑器件(FPGA)芯片及 C6711 评估板,经 过算法进行处理后,产生7路控制信号,通过数模转 换(D/A)后变成模拟信号,并送至运算放大器放大, 分别控制 PC 和可变时延线对信号 DOP 进行优化, 从而实现线路 PMD 补偿.

3. 实验结果与分析

评价一个动态 PMD 补偿器的性能主要为两个 方面:补偿效果和优化补偿时间.

3.1. 补偿效果

PMD 仿真器 DGD 在 ± 25 ps 即一个比特周期内

变化,变化速度为 0.1 step/s,变化规律统计上服从 Maxwell 分布 但又考虑了实际光纤 PMD 渐变的特 点.PMD 仿真器中扰频器亦即 1/4 波片的方位角是 线性变化的 ,变化范围为 0°-180° 相当于控制电压 从 - 8 V-8 V 作周期变化 速度为 0.1 V/2 s. 而实际 线路中 PMD 的变化情况 ,DGD 一般最大为 0.015 ps/ min ,偏振主态旋转速率为 7°/min^[10].因此该仿真器 的变化远快于实际光纤的 PMD 变化情况.图 3(a)为 40 Gb/s 信号背靠背眼图,经过 PMD 仿真器后,由于 PMD 仿真器的 DGD 和偏振态的随机变化、信号的输 出眼图也相应的随机恶化 图 3(b)为经过 PMD 仿真 器某一时刻未补偿时的信号眼图,可以看出其基本 上已经完全闭合,经过 PMD 补偿器并进行动态跟踪 补偿后,可以看出 40 Gb/s OTDM 系统终端输出信号 眼图开启度得到显著提高(如图 3(c)所示).在 PMD 仿真器变化和 PMD 补偿器同时进行动态补偿的情 况下 观察信号输出眼图 发现其基本上一直维持如 图 3 c)相近的眼图开启度,该实验结果有效的表明 了 PMD 补偿器的补偿性能和自适应优化算法的稳 定性,图4为OTDM系统(a)解复用后某一路10Gb/s 信号的背靠背眼图 (b) 经过PMD仿真器未补偿前

图 3 40 Gb/s OTDM 系统信号(a)背靠背眼图、(b) 经过 PMD 仿真器后未补偿时眼图、(c) 经过 PMD 补偿器补偿后眼图

图 4 OTDM 系统 a)解复用后某一路 10 Gb/s RZ 信号的背靠背眼图 (b)经过 PMD 仿真器未补偿前解复用眼图和(c)经过 PMD 补偿器补偿 后解复用眼图 解复用眼图和(c)经过 PMD 补偿器补偿后解复用眼 图 同样验证了补偿器的补偿效果.

3.2. 补偿时间

PMD补偿器的补偿响应时间主要由控制算法 优化步数 控制电路单步处理时间和光器件电压响 应时间决定,其中控制电路响应时间主要包括 A/D 采样速率和响应时间、D/A 及运算放大器响应时间、 处理器的工作频率等,系统中所采用的 A/D, D/A 转 换器 运算放大器皆具有 10M 以上带宽 因此响应 时间主要限制在采样频率上,实验采用 200 kHz 的 采样频率(实验系统最大可支持 700 kHz 的采样速 率 对反馈信号进行采样 也就是说对斯托克斯参数 及 DOP 值的采样周期为 5 us. 为克服反馈信号的测 量误差对补偿带来的影响,对其多次取样平均(20 个值平均一次,此取样次数可以调整),这样读取一 次有效反馈信号的周期为 100 µs.处理器选用了高 速的 DSP 处理芯片 其工作频率为 150 MHz.运算一 个时钟周期为 6.67 ns,而一个时钟周期可以运算 7-8个指令,因此在一个取样间隔100 us内,可以 处理约 15000 以上个指令.

控制优化算法为变步长最大值全局搜索算法, 算法利用反馈信号的大小来判断对 PC 和可变时延 线的调节方向和调节步长,最终使反馈信号 DOP 值 达到最大.步长的选择非常关键,对 PC 的方位角或 者可变时延线 DGD 调节过大,则容易导致信号在最 优点附近振荡,太小则 DOP 的变化容易被线路非线 性、放大器噪声和光源不稳定性等因素湮没,从而无 法对下一步调节方向做出正确判断.因此在该算法 中根据不同的 DOP 门限设定不同的调节层数和步 长,有效的解决这一问题.并且考虑实际中 PC 和可 变时延线不同的响应时间(PC 响应时间小于 100 ns, 而可变时延线较慢为 200—1200 µs),算法亦进行了 优化,采用首先重点调节 PC,然后再调节 DGD 的策 略.

通过以上各个选用器件响应时间、DSP 芯片处 理速度和算法的复杂性的分析可知:当调节一步 PC 所用时间主要限制在 DOP 采样速率上,为一个有效

反馈信号采样周期 100 µs;而调节一步 DGD 所用时 间主要限制在 DynaDelay 的响应时间上,为 1200 µs. 多次的实验结果表明 从程序开始初始化到系统达 到最优化整个过程最多调节 PC 60 步 调节 DGD 30 步 因此其最大 PMD 补偿响应时间约为 60 × 100 µs + 30 × 1200 µs = 42 ms,在这个过程完成以后,算法 将处于实时跟踪补偿状态,可及时根据线路 PMD 变 化情况做出调整,可以看出该 PMD 补偿速度主要受 限在 DGD 调节响应时间上.图 5 为 PMD 仿真器处 干某一静止状态 控制程序在单步调试执行(一步指 对 PC 或者 DGD 的一个调节动作)的情况下 PMD 优 化补偿中信号输出偏振态在邦加球上的变化过程 (利用 Agilent HP8509B 测得),在邦加球上的每个状 态点对应一步,可以看出,信号 DOP 最大值并未达 到理想值1.而是0.893 这主要是由于光源、线路中 非线性和放大器噪声引起的.

图 5 线路输出偏振态在 PMD 补偿时的变化过程

4.结 论

本文利用信号 DOP 偏振度为反馈信号,PC + 可 变时延线结构的四自由度 PMD 补偿器,基于最大值 搜索算法实现了 4 × 10 Gb/s OTDM 系统 PMD 动态自 适应跟踪补偿实验.对比信号未补偿前,补偿后以及 背靠背眼图,验证了算法快速的全局收敛特性,及 PMD 补偿器的补偿性能.

- [1] Gisin N , Vonder Weid J P and Pellaux J P 1991 J. Lightwave Technol. 9 821
- [2] Ha J Y , Lee J H , Chung H S and Chung Y C 2004 Optical Fiber Communication Conference (Optical Society of America , Washington DC) ThF5
- [3] Wang M G , Li T J and Jian S S 2003 Optics Express 11 2403
- [4] Bülow H, Buchali F, Baumert W, Ballentin R and Wehren T 2000 Electron. Lett. 36 163
- [5] Sandel D , Yoshida-Dierolf M , Noe R , Schopflin A , Gottwald E and Fischer G 1998 Electron. Lett. 34 2258
- [6] Sunnerud H , Karlsson M and Andrekson P A 2001 IEEE Photon .

Technol. Lett. 13 448

- [7] Buchali F, Lanne S, Thiéry J P, Baumert W and Bülow H 2001 Optical Fiber Communication Conference (Optical Society of America, Washington DC) TuP5
- [8] Chou P C , Fini J M and Haus H A 2001 IEEE Photon . Techn . Lett . 13 568
- [9] Wang M G, Li T J and Jian S S 2003 Acta Phys. Sin. 52 2818(in Chinese)[王目光、李唐军、简水生 2003 物理学报 52 2818]
- [10] Ogaki K , Nakada M , Miyakawa T , Nagao Y and Nishijima K 2003 28th European Conference on Optical Communication Mo 3.7.5

Dynamic PMD compensation in 4×10 Gb/s optical time-division multiplexed transmission system *

Wang Mu-Guang¹) Li Tang-Jun¹) Lou Cai-Yun²) Jian Shui-Sheng¹) Huo Li²)

Yao He-Jun²) Zeng Li²) Cui Jie¹) Diao Cao¹)

¹(Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China)

² (Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)

(Received 17 May 2004; revised manuscript received 15 October 2004)

Abstract

Using the degree of polarization as feedback signal to detect the polarization mode dispersion (PMD) variation in the fiber links, an experiment of dynamic adaptive PMD compensation in 4×10 Gb/s optical time-division multiplexed (OTDM) transmission system is reported. The PMD compensator consists of a polarization controller and a variable delay line with four degrees of freedom. Based on the variable step-size peek search algorithm, the performance of the PMD compensator is assessed in the eye pattern of a received signal. It is shown that the maximum compensated differential group delay is 25 ps, i.e. one bit period, and the compensation time can be less than 50 ms.

Keywords : polarization mode dispersion , OTDM transmission system , degree of polarization , adaptive compensation PACC : 4281 , 4281F , 4281D , 4280W

^{*} Project supported by the National High Technology Research and Development Program of China (Grant No. 2001AA122042), and the National Natural Science Foundation of China (Grant Nos. 60377015 and 60177027).