纳米团聚生长的多重分形谱*

邵元智*钟伟荣任山 蔡志苏 龚 雷

(中山大学理工学院物理系,广州 510275) (2004年7月15日收到,2004年11月16日收到修改稿)

采用小角 x 射线散射(SAXS)方法,对两类具有代表性的纳米团聚的生长分形进行了表征.一类为用化学方法(水合肼溶液还原法)制备的纳米金属 Ni 粉;另一类通过物理方法(纳米晶化处理),由非晶基体相中生长纳米晶相、形成非晶/纳米晶双相结构的 Finemet(Fe_{73.5} Cu₁ Nb₃ Si_{13.5} B₉)合金.上述两类材料的纳米团聚在生长过程中都存在明显元素扩散迁移,形成在 1—100 nm 范围内的元素分布非均匀区域.这些元素分布的非均匀区域具有多重质量生长分形特征,其尺度大小和分布方式对最终的材料的物理性能至关重要.SAXS 方法是表征这类具有分形生长特征的纳米团聚微观结构信息的强有力手段.从方法论的角度详述了从 SAXS 测量到获得多重分形谱的处理过程,这一实验研究分析手段对于定量考察纳米微结构形貌的生长机理和性能的其他研究课题有一定的帮助作用.

关键词:纳米材料,分形生长,小角 x 射线散射,磁性材料 PACC:6146,0555,6110,7550

1.引 言

纳米材料在很多领域都展现出诱人的新奇特征 和性能,由于它在这些领域的良好应用前景而被一 致看好,并受到世界各国科学家的高度重视[12],超 细 Ni 粉是一种优良的磁性材料,当它与高分子基体 材料复合后,可以制备出电磁波屏蔽材料,其中基于 纳米 Ni 粉的导电涂料吸收和散射电磁射线的电子 矢量能力强、磁矢量的衰减幅度大 在电磁波屏蔽材 料中占有很大的比例^[34].非晶/纳米晶双相 Finemet 合金是一种具有优异性能的重要软磁材料 同时由 于它具有相当稳定的非晶/纳米晶双相组态而成为 纳米磁性材料的研究典范^[5-7]. 超细纳米 Ni 粉多采 用化学方法制备并以离散粉末颗粒态存在和使用; 非晶/纳米晶双相 Finemet 合金则采用急冷快淬 + 纳 米晶化处理这样的物理方法制备,它以致密的合金 薄带状使用,虽然它们在制备方式和使用状态上有 明显区别,但在纳米团聚区域生长形成过程中,元素 扩散、元素再分配以及这些纳米团聚区域的微结构 对材料性能的显著影响是相似的.揭示这类元素分 布非均匀区域的分布方式及其在生长过程中可能存 在分形这样的微观信息,不仅对于考察这些微结构

对这两类纳米材料的实用性能的影响有实际意义, 同时对纳米生长分形理论探讨也具有相当的理论价 值.小角 x 射线散射方法(SAXS)是分析表征这类处 于 1—100 nm 范围内非均匀团聚的尺寸分布及其团 聚微细结构信息的理想手段^{8—11}.

多数纳米材料在凝聚生长过程中都一定程度上 存在质量分形 分形分析已成为获得这些材料微观 生长信息的重要手段^{12-19]}.在这些分形测量和分析 中 多以简单分形维的测定及其平均近似分析处理 为主,以至于很多有价值的微观信息未能被揭示,多 重分形是定义在分形结构上的有无穷多个标度指数 所组成的一个集合,它通过一个谱函数来描述分形 结构上不同的局域条件、或在演化过程中不同层次 所导致的特殊的结构行为与特征,是从系统的局部 出发来研究其整体的特征,多重分形谱的测量和分 析处理虽然较简单分形维情形要复杂得多,但它着 眼于多重几何尺度下考察物理量的奇异和差别的概 率分布 弥补了简单分形维分析中的诸多缺陷 是进 一步深入研究分形物质性质的重要手段[17,19]。简单 分形维分析仅是平均化处理和均匀分布意义下的满 足标度不变几何体自相似表现 ,而多重分形谱则是 这类自相似几何体所"承载"的某种非均匀分布物理 量针对非均匀性或奇异性的自相似表述,所表达的

^{*} 广东省自然科学基金(批准号 1031554)和广州市纳米专项基金(批准号 2001-2-124-01)资助的课题.

[†]E-mail:stssyz@zsu.edu.cn

微结构信息无论从信息量、内容性质和精准程度都 不是简单分形维分析所能比拟.本文在我们以往简 单分形生长分析基础上,进一步对上述两类纳米材 料纳米生长过程中的非均匀性质量分形进行了更为 深入的多重分形谱分析.本文的目的不仅在于揭示 上述两类纳米团聚的分形特征,更要就采用 SAXS 测量来获得多重分形谱这一方法做出分析.我们尚 未见有关采用 SAXS 测量方法来获得多重分形谱及 其分析的直接工作报道.

2. SAXS 测量方法及分形处理过程

2.1. SAXS 方法

散射理论表明 SAXS 散射强度 *I* 与散射角度 2*θ* 的 *I*-2*θ* 关系曲线与超微粒体系的粒子形状、尺度大 小及其分布有密切关系^[10].对于常见球形多分散粒 子体系 相应的 *I*-2*θ* 曲线遵守如下关系式^[8-10]:

$$I(S) = \rho_{e}^{2} \frac{4\pi}{3} I_{e} \sum_{j=1}^{K} W(r_{j}) R_{ej}^{3} \exp\left(-\frac{1}{3} S^{2} R_{ej}^{2}\right) ,$$
(1a)

$$S = 2\pi \times 2\theta/\lambda ,$$

$$r_j = R_{ej}/0.7746 ,$$

$$W(r_j) = \frac{I_j}{r_j^3} / \sum_i \frac{I_j}{r_j^3} .$$
 (1b)

(1b)式给出了散射强度散射角度主关系式(1a) 中的其他相关物理量.这里散射矢量 *S* 为散射角度 的另一种表达方式, λ 为 x 射线波长, r_j 和 R_{ej} 分别 为*j* 粒子半径和相应的电子回转半径,而 *W*(r_j)为 尺度为 r_j 粒子所占的体积分数. I_j 为*j* 粒子贡献的 散射强度, I_e 是单电子散射强度, ρ_e 为粒子与介质 (空隙)的电子密度差.Jellinek 等人把散射强度曲线 lg $I-(2\theta)$ 曲线进行逐级切线分解,求出散射强度曲 线在各级的斜率及截距,由此求出各等级的粒子大 小及体积分数.这就是本文所采用的分析方法,具体 步骤见文献 8—10].

关于纳米 Ni 粉水合肼溶液还原法的化学制备 过程以及 Finemet 非晶/纳米晶双相合金的纳米晶化 处理过程可以参阅文献 20 21].为了保持文章内容 的一致性,我们采用了与文献 20 相同的试样编号. 纳米 Ni 粉 样品 1,样品 4,样品 6和样品 7;Finemet 合金 标号分别为 V13.1 和 V73.3,数字代表双相合 金中纳米晶的体积百分数.

2.2. 微粒体系的分形特征

小角度散射法是在倒空间中研究材料纳米级自 相似结构的有效方法,其基本思想是散射强度与被 测系统物质测度分布的 Fourier 变换有关,如果它是 分形系统,则其结构特征必定反映在它的散射强度 中,形成所谓的分形散射.分形生长形态是多数纳米 团聚体拥有的共同特征¹¹⁻²⁰¹,与生长相关的一般是 表面和质量分形.

表面分形维数 D、由下式决定^[13-16]:

$$A \propto R^{D_{\rm s}}$$
, (2)

A 为表面积 , R 为测度量. 对于致密且表面光滑的物体 $D_s = 2$;而粗糙表面 $D_s = 2$ —3.

质量分维 D_f 由下式决定^[13-16]:

$$M \propto (R/R_0)^{p_{\rm f}}$$
, (3)

M 为质量 , R_0 是原子半径. 质量分维 D_t 反映了粒 团如何填充所占空间的一种量度. 质量分形和表面 分形都发生在实际的三维空间,通常直接观察并不 能有效反映三维空间的无规行为. 用 x 射线或中子 进行小角度散射测量是确定分维的一种有效方法, 可以反映出三维立体的信息. 基本思想是微分散射 截面与被测系统的"荷"或物质分布的 Fourier 分量 有关. 如果该系统是分形结构,那么分维必定反映在 微分散射截面里. 在每一角域范围(粒径级别),只有 某种粒径的粒团产生相应的 dI(与微分散射截面相 关)对 *I* 起主要贡献. 以 *I*-Q 反映对 d*I* 起主要作用 的某种特征尺寸*L* 和*I* 的关系. *Q* 是 Fourier 频率 和 2 θ 相关.

$$Q = 2\pi/L , \qquad (4)$$

式中 L 是特征线度的大小,在所研究体系中为1— 100nm 数量级的粒径.分形团聚产生的 SAXS 散射曲 线遵从指数规律^{15]}

 $I \propto Q^{p_s-2p}$ 或 $I \propto Q^{-P}$, (5) 其中, - $P = D_s - 2D$, D 为实空间维, P 为 Porod 斜 率.用 SAXS 研究分形实质上就是分析 *I-Q* 曲线的 指数.当 P = 4 时, D = 3, $D_s = 2$, 这代表致密光滑的 团聚;当 P = 3—4 时, D = 3, $D_s = 2$ —3, 这代表致 密体, 但表面粗糙, 呈表面分形;若 P < 3 时, $D = D_f$ = D_s ,代表疏松体, 呈现质量分形. 有关本文测量结 果的分析讨论就是针对 P < 3 情形进行的. 如果 (5)式的幂函数关系不能够严格满足,则所考察的体 系为非均匀的复杂生长质量分形,简单的分形维分 析就缺乏准确性和说服力,引入多重分形谱分析是 十分必要的.但由于多重分形谱的获得及其分析相 对困难,通常都采用分阶段的简单分形维分析方法, 这在文献 20 22 23 和文献 12 ,24 叶所采用.本文 报道的多重分形谱分析较简单分形维分析更为 深入.

2.3. 非均匀体系的多重分形谱

就非均匀分布的质量生长的多重分形体而言, 在不同尺度 ε 子集下质量分布概率 *P_i*(ε)(概率测 度)满足如下幂函数关系:

$$P_i(\varepsilon) \propto \varepsilon^{\alpha}$$
, (6)

式中 α 是反映质量生长非均匀分布程度的一个奇 异指数 ,与所在的子集有关.子集内质量数 N(ε)和 尺度子集 ε 如果满足

 $M(\varepsilon) \propto \varepsilon^{-f(\alpha)} (\varepsilon \rightarrow 0),$ (7) 则 $f(\alpha) - \alpha$ 构成多重分形谱函数,利用该谱函数可 以对分形体不同层次和阶段的生长特征进行定量 描述.

为了求得多重分形谱,我们采用常规的配分函数法.通过对质量分布概率 $P_i(\varepsilon)$ 计算 q 次方的加权和而得到配分函数 $\chi_q(\varepsilon)$.即

 $\chi_q(\epsilon) = \sum P(\epsilon)^y = \epsilon^{\tau(q)},$ (8) 式中 $\tau(q)$ 为质量指数.由 $\tau(q)$ 定义广义分形 维 D_q ,

$$D_q = \frac{\tau(q)}{q-1} = \frac{\ln \chi_q(\varepsilon)}{(q-1)\ln\varepsilon} \quad (\varepsilon \to 0). \quad (9)$$

q = 0和 q = 1时 D_q 分别对应简单分形维 D_0 和 信息维 D_1 .如果体系属于多重分形时,由(8)(9)式 可推导出 α , q, τ (q)和 $f(\alpha$)之间满足的关系 为^[17,19]

$$\tau(q) = \alpha q - f(\alpha).$$
 (10)
将(10)式对 q 求导有

$$\alpha = d\tau (q)/dq. \qquad (11)$$

上述关系式转换即为 Legendre 变换. 当已知 $\alpha(q)$ 和q,可由(10)和(11)式求得多重分形谱f(α)- α .而 $\alpha(q)$ 和q可从 SAXS 的 *I*-*Q* 曲线来获取. 将 Fourier 频率 *Q* 在上下截止频率间作不同测度 ϵ 划分,并求得相应的散射强度 *I* 的概率分布 *P*₁(ϵ), 由关系式(8)求得配分函数 $\chi_{q}(\epsilon)$.特别需要指出的 是在构造 *P*₁(ϵ)-*Q*(ϵ)时,应按上述由 SAXS 数据求 得的团聚尺度分布函数对 *P*₁(ϵ)取权重,然后代入 关系式(8)去求配分函数 $\chi_{q}(\epsilon)$.求取各种 q 值下配 分函数 χ_q (ε) 再由关系式(8)(9)分别求得质量指数 $\tau(q)$ 和广义分形维 D_q 根据关系式(10)(11)最终求得多重分形谱 $f(\alpha)$ -α.

2.4. SAXS 测试试样的制备

我们按照国标 GB/T 13221-91 标准制备了用于 SAXS 测量的 Ni 粉试样. 取无小角散射效应的火胶 棉和分析纯丙酮配制成浓度约为 5%—10% 的火棉 胶溶液.参照粉末和火棉胶的比重以及它们对 x 射 线的吸收系数 称取一定量的待测粉末 ,量取一定体 积的火棉胶丙酮溶液 ,倒入小烧杯中.将盛有上述混 浊液的烧杯置入超声波粉碎器中 ,通过超声振荡进 行分散. 超声波分散的时间和条件以团聚的颗粒分 散为宜. 将烧杯放入烘箱内的平板上 ,在温度为 20—50℃ 相对湿度小于 50% 的条件下 ,使粉末混浊 液缓慢干燥成片. 经光学显微镜观察选取颗粒分布 均匀的区域 ,切片后用于 SAXS 观测.

Finemet 双相合金试样本身为宽 20mm、厚为 30μm 的薄带,因此可直接用于 SAXS 测量.由于非 晶薄带在甩带过程中,与辊接触面与自由面在光洁 度方面有很大差别.我们统一选取光洁度高的自由 面作为 SAXS 光束入射面.

3. 多重分形谱结果

共对 8 个 Ni 粉样品(编号样品 1—样品 8)和 4 个 Finemet 双相合金式样进行了 SAXS 测试,限于篇 幅 本文只给出 4 个 Ni 粉和 2 个 Finemet 典型样品 的测试分析结果.测量是在日本理学 D/Max-1200X 射线仪上进行的,x 射线照射源为 Cu-Kα,扫描角度 范围为 0.05°—1.0°(Ni 粉)和 0.03°—0.5° (Finemet),扫描数据采集步长都为 0.01°,扫描每步 时间为 2s,其他参数相同.有关的简单生长分形维 分析可参阅文献 20].本文仅给出部分具有代表性 的多重分形谱的相关结果.

图 1 为 Ni 粉的样品 1 和样品 6 两个试样的配 分函数 $\chi_q(\epsilon)$ 与 ϵ 在双对数坐标下的关系曲线 ($-30 \le q \le 30$)图 2 为相应的广义分形维 D_q 随 q的变化关系曲线.图 1 显示出配分函数 $\chi_q(\epsilon)$ 与 ϵ 在双对数坐标下具有很好的线性关系 ,表明生长质 量在不同阶段都具有分形生长的特征 ,这与图 2 中 所显示的广义分形维 D_q 随 q 的变化规律是一致的. 为了最终获得多重分形谱 ,同时也为了更好地分析 多重分形谱 给出配分函数 $\chi_q(\varepsilon) = \varepsilon$ 关系曲线和 广义分形维的 $D_{q}-q$ 曲线这些重要的中间结果是必 要的. Finemet 试样的相应结果与图 1、图 2 显示的纳 米 Ni 粉的结果在变化趋势上相似,在此省略.

图 $\mathfrak{X}(a)$ 和(b)分别是 Ni 粉和 Finemet 合金试样 的最终多重分形谱 $f(\alpha)$ - α 曲线.两种试样的 $f(\alpha)$ - α 曲线都具有典型多重分形谱的钟罩状.经不同纳 米晶化处理后 Finemet 合金的多重分形谱差别非常 小 ;但 Ni 粉试样的差别非常大 ,表明由不同化学工 艺条件下制备的纳米 Ni 颗粒内团聚的均匀性存在 明显的差异.表1给出是图 3 显示的多重分形谱的 有关参数 , α_{min} , α_{max} , $\Delta\alpha$ (= $\alpha_{max} - \alpha_{min}$), f(α_{min}), f(α_{max})和 Δ f(= f(α_{min}) - f(α_{max})).

表1的数据显示纳米Ni粉试样中,样品6的

图 1 部分典型纳米 Ni 粉试样的配分函数 $\chi_q(\epsilon)$ 与 ϵ 在双对数坐标下的关系曲线

图 2 部分典型纳米 Ni 粉试样的广义分形维 D_q 随 q 的变化关系曲线

图 3 纳米 Ni 粉(a)和双相 Finemet 合金(b)的多重分形谱

表 1 纳米 Ni 粉和双相 Finemet 合金的多重分形谱参数						
样品	1	4	6	7	V13.1	V73.3
α_{\min}	0.3593	0.5296	0.6531	0.5791	0.4913	0.5023
$\alpha_{\rm max}$	2.7159	1.6377	1.4196	2.2884	1.6824	1.6379
$\Delta \alpha$	2.3566	1.1081	0.7655	1.7093	1.1911	1.1356
<i>f</i> (α _{min})	0	0.00678	0.11504	0.21073	0.00898	0
$f(\alpha_{\max})$	0.00397	0.04467	0.0865	0	0.03811	0.04882
Δf	- 0.00397	- 0.03789	0.02854	0.21073	- 0.02913	- 0.04822

表 1 幼米 Ni 粉和双相 Finamat 合全的多重分形谱参数

 $\Delta \alpha$ 最小 表明它的团聚的生长分形的质量分布均 匀性最好 ,而样品 1 的均匀性最差 .除样品 7 之外 , 其余试样的 Δf 都很小 ,说明这些试样中 ,相应于质 量分布的最大概率子集的分形维与最小概率子集分 形维的差别也很小 .但对于样品 7 , $\Delta f > 0$ 意味着最 大概率子集占据主导地位 . 而对于双相 Finemet 合 金 ,随着晶化过程的进行 , $\Delta \alpha$ 略有减小 ,说明均匀 性只有微小改善 ,整体上 $\Delta \alpha \Delta f$ 受晶化过程的影响 是很微弱的 .

4. 分析讨论

上述的多重分形谱揭示出纳米 Ni 粉内团聚的 均匀性方面存在明显的差别,这种均匀的差别可以 是团聚生长过程中元素再分布的不均所致,也可能 是不同尺度的微空穴造成.从 SAXS 分形分析角度 来看 这些 Ni 粉粒子内都呈现出满足某种自相似的 疏松,我们在用水合肼溶液还原法制备纳米 Ni 粉 时 通过控制反应条件和选择不同的添加剂(活化 剂)能够对粒子型貌进行筛选和控制,粒子的各种 外在型貌特征可以通过电镜观察进行识别,但粒子 内部团聚的非均匀性在三维空间中分布和延伸这样 的重要微观信息还是需要通过 SAXS 测量分析来揭 露,简单分形维分析可以给出一些平均意义下的粗 略结果,我们先前的简单分形维分析^{20]}表明样品6 具有接近单一阶段的生长分形特征 均匀性最好 洏 样品 1 则为三阶段生长分形 均匀性最差 样品 4 为 两阶段生长分形 均匀性介于样品1和样品6之间, 这与本文的多重分形谱精确结果的分析是相洽的. 通过多重分形谱的测定和分析,可以清楚揭示内团 聚质量的空间分布方式和均匀性 这不仅有助于深 入了解这类纳米团聚的生长机理 同时也方便对这 类纳米 Ni 微粉的电磁波散射能力的分析 ,辅助指导 寻求更加符合电磁波散射的质量分布方式的材料制 备工艺条件,例如本文中样品6的制备处理工艺.

双相 Finemet 合金试样 V13.1 和 V73.3 在金相 组织结构上差别很大 后者比前者接受了更为充分 的纳米晶化退火处理,纳米 α -Fe晶相比例达到 73.3%.即使如此,它们的多重分形谱差别是很细微 的, Finemet 合金能成为软磁性能优异的纳米软磁材 料 其中一个关键因素就是它具有非常良好的热稳 定性.Cu和Nb元素都能控制非晶基底相中生长出 的纳米 α-Fe 晶粒稳定地保持在纳米尺度内 而且晶 粒尺度分布也很均匀^[5].现在 SAXS 测量结果表明 Finemet 合金晶粒内部元素团聚分布同样也是非常 稳定的 几乎不受晶化过程的影响 我们测定的其他 两个试样 V24.1 和 V54.7 的结果也介于 V13.1 和 V73.3之间,这也间接表明在晶化过程中元素扩散 后形成的非均匀团聚区域非常稳定,虽然以往的一 些工作认为在 Finemet 晶化过程的早期存在一定的 扩散行为并对磁性产生影响^[25], SAXS 得到的这一 结果很有趣 对于深入研究 Finemet 的纳米晶化过程 有益,我们将采用其他微观成分分析手段做进一步 的跟进研究。

5.结 论

1. 采用 SAXS 方法,成功地对两类具有代表性 的纳米团聚的生长质量分形进行了多重分形谱的测 量表征. 一类为用化学方法(水合肼溶液还原法) 制备的纳米金属 Ni 粉;另一类通过物理方法(纳米 晶化处理)由非晶基体相中制备的非晶/纳米晶双相 Finemet(Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉)合金.无论从方法论的 角度还是最终的测量结果分析来看,本文采用的 SAXS 方法获取纳米团聚的生长质量多重分形谱是 可行和成功的.

 2. 不同工艺条件下制备的纳米 Ni 粉内团聚的 生长质量的多重分形谱具有明显的差别. 它表明纳 米 Ni 粉合成生长期间,由于反应制备条件不同而导 致元素扩散聚集能力出现差异,最终形成具有多重

质量分形生长特征、均匀性各异的内团聚.

3. Finemet 合金的多重分形谱结果表明,在纳米 晶化处理过程中虽然纳米晶相组织有明显变化,但 晶粒内部元素团聚分布区域是非常稳定的,几乎不 受晶化过程的影响.这种良好的稳定性在晶化处理 的中后期表现得很突出.

- [1] Zhang L D and Mu J M. 2001 Nanostructured Materials and Nanostructure (Beijing: Science Press) pl(in Chinese)[张立德、 牟季美 2001 纳米材料和纳米结构(北京:科学出版社)第1 页]
- [2] Suryanarayana C. 1995 Inter. Mater. Rev. 40 41
- [3] Karmhag P et al 2001 J. Phys. D 34 400
- [4] Wu X et al 2001 Functional Materials 32 240 (in Chinese)[吴 行等 2001 功能材料 32 240]
- [5] Yoshizawa Y , Oguma S and Yamauchi K. 1988 J. Appl. Phys. 64 6044
- [6] Hsiao A C et al. 2001 IEEE. Trans. Mag. 37 2236
- [7] Hu X D, Lin D M and Lin G M. 2000 Acta. Phys. Sin. **49** 102 (in Chinese)[胡西多、林德明、林光明 2000 物理学报 **49** 102]
- [8] Gerold V and Kostorz G 1978 J. Appl. Cryst. 11 376
- [9] Porod G. 1982 Small Angle X-Ray Scattering (London : Academic Press) p17
- [10] Pei G W, Zhong W L and Yue S B 1989 X-Ray Diffraction of Monocrystal, Polycrystal and Noncrystal Matter (Jinan Shangdong University Press) p386 (in Chinese)[裴光文、钟维烈、岳书彬 1989 单晶、多晶和非晶物质的 x 射线衍射(济南:山东大学出 版社)第 386页]
- [11] Li Z H et al 2000 Acta. Phys. Sin. 49 1312(in Chinese]李志 宏、孙继红、吴 东等 2000 物理学报 49 775]
- [12] Xu Y et al 2003 Acta. Phys. Sin. 52 442 (in Chinese] 徐 耀 等 2003 物理学报 52 442]
- [13] Meakin P 1998 Fractal, scaling and growth far from equilibrium (Cambridge : Cambridge University Press) p4
- [14] Li H Q and Wang F Q 1991 Fractal theory and its application in

molecule science (Beijing: Science Press) p28 (in Chinese) [李后强、汪富泉 1991 分形理论及其在分子科学中的应用(北京:科学出版社)第 28 页]

- [15] Li H D 1990 Mater. Sci. Progs. 4 121 (in Chinese)[李恒德 1990 材料科学进展 4 121]
- [16] Wang Z D and Gong C D 1990 Progs. Phys. 101 (in Chinese) [汪子丹、龚昌德 1990 物理学进展 101]
- [17] Zhang J Z 1995 Fractals (Beijing: Tsinghua University Press) p116 355(in Chinese)[张济忠 1995 分形(北京 清华大学出版社)第116 355页]
- [18] Mandelbrot B 1998 The fractal geometry of nature (Shanghai: Shanghai Far-east Press)p22(in Chinese)[Chen S. J(陈守吉) Ling F. H(凌复华)译 1998 自然的分形几何(上海:上海远 东出版社)第 22页]
- [19] Sun X et al 2003 Fractal principle and its application (Hefei: China Sci. Tech. Uni. Press) p53 (in Chinese) [孙 霞等 2003 分形 原理及其应用(合肥:中国科技大学出版社)第 53 页]
- [20] Shao Y Z et al 2004 Chin. J. Nonferrous Met. 14 574(in Chinese) [邵元智等 2004 中国有色金属学报 14 574]
- [21] Shao Y Z et al 2004 arXiv. org at cond-mat/0403659 (http://lanl. arxiv.org/)
- [22] Shao Y Z et al 1996 Chin. J. Nonferrous Met. 6 119(in Chinese) [邵元智等 1996 中国有色金属学报 6 119]
- [23] Shek C H , Shao Y Z and Joseph K L 1997 Scripta Metal 37 529
- [24] Wang L, Li J and Yang Y J 2004 Acta. Phys. Sin. 53 160(in Chinese J 王 理、黎 坚、杨亚江 2004 物理学报 53 160]
- [25] Hernando A, Navarro I and Gorria P 1995 Phys. Rev. B 51 3281

Shao Yuan-Zhi[†] Zhong Wei-Rong Ren Shan Cai Zhi-Su Gong Lei

(Department of Physics , Sun Yat-sen University , Guangzhou 510275 , China)
 (Received 15 July 2004 ; revised manuscript received 16 November 2004)

Abstract

Small angle x-ray scattering (SAXS) method was adopted to investigate the characteristics of growth fractal of two sorts of typical nanoscaled clusters , i.e. growing in both ultrafine Ni powders synthesized by chemical reaction and Finemet ($Fe_{73.5}$ Cu₁Nb₃Si_{13.5} B₉) amorphous ribbon by physical crystallization annealing. The SAXS measurement discloses definitely the existence of distinct mass multifractal patterns within ultrafine Ni granules and crystallizing Finemet ribbon. The multifractal spectra of the clusters mentioned above suggest the occurrence of inhomogeneous distribution of constituent elements and growth fractal during the formation of those nanoscale clusters. The multifractal spectra of ultrafine Ni powders prepared using a variety of procedures take on an obvious difference in shape , indicating the substantial influence of preparation processes , however , affect the multifractal spectra of Finemet alloy slightly.

Keywords : nanometer material , fractal growth , small angle x-ray scattering , magnetic material PACC : 6146 , 0555 , 6110 , 7550

^{*} Project supported by the Natural Fund of Guangdong Province, China (Grant No 031554) and Guangzhou municipal scientific fund earmarked for nano science and technology (2001-2-124-01).

[†]E-mail:stssyz@zsu.edu.cn