## 直接积分法研究电子光学成像系统的时间像差理论\*

周立伟<sup>1</sup>) 李 元<sup>1</sup>) 张智诠<sup>2</sup>) M. A. Monastyrski<sup>3</sup>) M. Y. Schelev<sup>3</sup>)

1(北京理工大学信息科学技术学院,北京 100081)

3(俄罗斯科学院普罗霍洛夫普通物理研究所,莫斯科 119991)

(2004年10月22日收到;2005年3月17日收到修改稿)

提出了计算动态电子光学成像系统时间像差系数的新方法——直接积分法.以阴极面逸出的轴向电子初能为 ε<sub>s</sub>(0 < ε<sub>s</sub> < ε<sub>0max</sub>)的近轴电子轨迹为比较基准 给出了时间像差的定义,详细叙述了直接积分法并给出求解动态电 子光学成像系统时间像差系数的积分表达式. <sup>-</sup> 变分法求得的二级几何时间像差系数必须求解微分方程,而直接 积分法求得的二级几何时间像差系数全部以积分形式表示,仅需进行积分运算,更适用于成像系统的实际计算与 设计.

关键词:电子光学成像系统,阴极透镜,动态电子光学,时间像差理论 PACC:4180,4180D

#### 1.引 言

在宽束动态电子光学成像系统的计算与设计 中,时间像差理论占有重要的位置.1957年, Savoisky和Fanchenko<sup>[1]</sup>首先提出了时间渡越弥散即 一级时间像差的表达式.1971年,Csorba<sup>[2]</sup>对其进行 了证明.1980年,Monastyrski和Schelev<sup>[3]</sup>用<sub>7</sub>变分法 提出了一种较为完整的时间像差理论,给出了计算 动态电子光学成像系统一级和二级时间像差系数的 表达式.

文献 4 ]中已经证明,电子光学成像系统的空间 弥散特性主要由一级横向像差(即一级横向色差)决 定,它可由 Recknagel-Artimovich 公式表示,

$$\Delta r_1^* = \frac{2M}{E_c} \sqrt{\varepsilon_r} (\sqrt{\varepsilon_z} - \sqrt{\varepsilon_{z1}}). \quad (1)$$

而成像系统的时间弥散特性主要由一级时间像差  $\Delta T_1$  以 Savoisky-Fanchenko 公式<sup>[1]</sup>表示,

$$\Delta T_1 = \sqrt{\frac{2m_0}{e}} \frac{1}{E_c} \sqrt{\varepsilon_z} . \qquad (2)$$

这里 , $\epsilon_{z}$  , $\epsilon_{r}$  分别为电子从光阴极发射时的轴向初能量和径向初能量 , $\epsilon_{z1}$ 为与理想成像位置相对应的电子轴向初能量 ,M 为系统放大率 , $E_{c}$  为阴极面上的

场强(取负值), e/m<sub>0</sub> 为电子的荷质比.

不难看出 (1)(2)式之间存在某种不协调性和 不对称性 (1)(2)式表明,系统的横向像差和时间 像差在一级近似下与电极结构和电位分布无关,而 与电子的轴向逸出初能  $\epsilon_x$ 、阴极面上的场强  $E_c$  有 关.这两个公式的差异在于 (1)式中含有放大率参 量 M 以及与理想成像位置相对应的电子轴向初能 量  $\epsilon_{z1}$ 的参量,但(2)式中既不包含放大率的参量,也 不包含相应的  $\epsilon_{z1}$ 的参量.同样,在  $\tau$  变分法的时间 像差理论中,也并没有与  $\epsilon_z$ 相比较作为基准的  $\epsilon_{z1}$ 的 参量.

关于电子光学成像系统的空间像差或时间像 差,实际上这是同一事物(即由阴极面逸出的光电子 的发射初能量分散)在某一成像面上所显现的空间 弥散特性或是在空间某一位置(包括成像面位置)处 所显现的时间弥散特性.我们可以理解(2)式没有引 入放大率的参量,因为时间像差乃是两条不同的电 子轨迹(实际轨迹与近轴轨迹)在任一位置 <sub>2</sub>(包括 成像面位置)处的时间离散,而空间像差必须在 ε<sub>1</sub> 所对应的成像位置处衡量.但是在(2)式中没有引入 ε<sub>1</sub>的参量显然是不协调的.这种不协调性唯一可以 统一起来的解释是:目前普遍采用的评价时间渡越

<sup>&</sup>lt;sup>2</sup>(装甲兵工程学院,北京 100072)

<sup>\*</sup>国家自然科学基金(批准号 50171026 60471051)和国家自然科学基金国际合作项目(批准号 50311120072)资助的课题.

弥散或时间像差理论是以某一轴向初能量  $\epsilon_{z1} = 0$ 的电子作为比较基准,来探讨轴向初能量  $\epsilon_{z}$ 不等于零的电子所构成的时间离散或形成的时间像差.

本文的目的是探讨一种更为简便的、能直接求 解电子光学成像系统时间像差系数的新途径,它不 同于现有的  $\tau$  变分法.文中以阴极面逸出的轴向电 子初能  $\epsilon_{z1}$  在( $0 \le \epsilon_{z1} \le \epsilon_{0 max}$ )的近轴电子轨迹为基 准,研究时间像差的定义 给出了计算动态电子光学 成像系统的时间像差系数的新方法——直接积 分法.

2. 时间像差的定义

按照我们对静电聚焦和电磁聚焦电子光学成像 系统的像差理论研究<sup>[5,6]</sup>以及对静电聚焦同心球系 统的电子光学成像理论的研究<sup>7]</sup>,轴对称成像电子 光学系统的时间像差可定义为

$$\Delta t = \Delta t(z) = t_{\text{real}}(z \,\varepsilon_r^{1/2} \,\varepsilon_z^{1/2} \,\mathbf{r}_0) - t_{\text{real}}(z \,\varepsilon_z^{1/2} \,\varepsilon_z^{1/2} \,\mathbf{r}_0).$$
(3)

这里, $t_{real}$ , $t_{parax}$ 分别表示由光阴极发射的实际电子 轨迹和近轴电子轨迹到达同一位置所经历的时间;  $\epsilon_z$ , $\epsilon_r$ ,分别为电子从光阴极发射时的轴向初能量和 径向初能量, $\epsilon_{z1}$ 为作为比较基准的近轴电子轨迹的 轴向初能量,取圆柱坐标系(z,r),轴向坐标z自阴 极面 $z_0 = 0$ 算起, $r_0$  为电子出射的径向初始矢量.

将  $t_{real}$ ,  $t_{parax}$ 分别以 t,  $t^*$ 代之,下面将证明,近轴 电子轨迹所经历的时间  $t^*$ 与电子的径向初能  $\varepsilon_{r1}^{1/2}$ 、电 子逸出高度  $r_0$  值无关.于是(3) 式便可表示为

 $\Delta t = t (z \, \epsilon_r^{1/2} \, \epsilon_z^{1/2} \, r_0) - t^* (z \, \epsilon_z^{1/2}). \quad (4)$ 我们将(4)式表示成以下的形式:

$$\Delta t = \Delta T (z \, \varepsilon_z^{1/2} \, \varepsilon_z^{1/2}) + \Delta \tau (z \, \varepsilon_r^{1/2} \, \varepsilon_z^{1/2} \, r_0)$$
$$= \Delta T + \Delta \tau , \qquad (5)$$

这里 △*T* 称为近轴时间像差或时间色差 ,它表示轴 向初能不同的两条近轴电子轨迹的时间差异 ,由下 式表示:

$$\Delta T = t^{*}(z \, \epsilon_{z}^{1/2}) - t^{*}(z \, \epsilon_{z1}^{1/2}).$$
 (6)  
 $\Delta \tau$ 称为几何时间像差,它表示轴向初能相同的实际  
电子轨迹与近轴电子轨迹的时间差异,由下式表示:

$$\Delta \tau = t (z \, \varepsilon_r^{1/2} \, \varepsilon_z^{1/2} \, r_0) - t^* (z \, \varepsilon_z^{1/2}). \quad (7)$$

由光电子初速度分布引起的时间像差归结于研 究函数  $\Delta t$  在某一轴向位置 z 处与小参量  $\epsilon_r^{1/2}$  , $\epsilon_z^{1/2}$  ,  $\epsilon_{z1}^{1/2}$  , $r_0$  之间的关系式,时间像差可以表示为

$$\Delta T = a_2 (\varepsilon_z^{1/2} - \varepsilon_{z1}^{1/2}) + A_{22} (\varepsilon_z - \varepsilon_{z1}), \quad (8)$$
  
$$\Delta \tau = a_1 \varepsilon_r^{1/2} + a_3 r_0 + A_{11} \varepsilon_r + 2A_{12} \varepsilon_r^{1/2} \varepsilon_z^{1/2}$$
  
$$+ 2A_{13} \varepsilon_r^{1/2} r_0 + 2A_{23} \varepsilon_z^{1/2} r_0 + A_{33} r_0^2. \quad (9)$$

这里 a<sub>i</sub> = a<sub>i</sub>( z ) i = 1 2 3 ),A<sub>ij</sub> = A<sub>ij</sub>( z ) i,j = 1 2, 3 )分别称为电子光学成像系统的一级、二级时间像 差系数.

### 直接积分法求解电子光学成像系统 的时间像差系数

3.1. 几何时间像差系数 A<sub>11</sub> ,A<sub>13</sub>和 A<sub>33</sub>的确定

图 1 为电子自阴极面发射的初始状态,初始位 置矢量为  $r_0$ ,方向角为  $\theta_0$ ,初始电子的逸出角为  $\alpha_0$ , 方位角为  $\beta_0$ ,电子逸出的初速度为  $v_0$ ,





轴对称静电场下电子运动方程为

$$\ddot{z} = \frac{e}{m_0} \frac{\partial \varphi}{\partial z}.$$
 (10)

利用空间电位分布  $\varphi = \varphi(z, \mathbf{r})$ 的谢尔赤级数展开 式,

$$\varphi(z, \mathbf{r}) = \phi(z) - \frac{\mathbf{r}^2}{4} \phi''(z) + \frac{\mathbf{r}^4}{64} \phi^{(4)}(z) - \dots$$
(11)

这里, \$\epsilon(z)表示轴上电位分布, \$\epsilon(z), \$\epsilon(z),

$$\mathbf{f}(z^2) = \frac{2e}{m_0} \Big[ \phi'(z) - \frac{r^2}{4} \phi'''(z) \Big] dz. \quad (12)$$

对(12) 武进行积分,于是有

$$[\phi(z) + \varepsilon_z]\mathbf{r}'' + \frac{1}{2}\phi'(z)\mathbf{r}' + \frac{1}{4}\phi''(z)\mathbf{r} = 0.$$
(14)

其解可表示为

$$r(z) = r_0 u(z) + \sqrt{\frac{m_0}{2e}} \dot{r}_0 u(z).$$
 (15)

这里特解 v = u(z),w = u(z)满足如下初始条件:

$$v(z_{0} = 0) = 0,$$

$$v'(z_{0} = 0) = \frac{1}{\sqrt{\varepsilon_{z}}};$$

$$u(z_{0} = 0) = 1,$$

$$w'(z_{0} = 0) = 0.$$
(16)

于是,

$$r^{2}(z) = r_{0}^{2} w^{2}(z) + 2u(z)u(z)$$

$$\times r_{0} \sqrt{\varepsilon_{r}} \cos(\theta_{0} - \beta_{0}) + \varepsilon_{r} v^{2}(z).(17)$$

$$\Re(17) \operatorname{cc}(\Lambda)(13) \operatorname{cc}(\pi) \operatorname{cc}(\pi) \operatorname{cc}(\pi) \operatorname{cc}(\pi)$$

$$\int \frac{r^{2}}{4} \phi'''(z) dz$$

$$= \int \frac{1}{4} r_{0}^{2} w^{2}(z) \phi'''(z) dz$$

$$+ \int \frac{1}{2} r_{0} \sqrt{\varepsilon_{r}} \cos(\theta_{0} - \beta_{0})u(z)u(z) \psi'''(z) dz$$

$$+ \int \frac{1}{4} \varepsilon_{r} v^{2}(z) \phi'''(z) dz. \qquad (18)$$

先求(18)式等号右端的第二项 $\int \frac{1}{2} [r_0 \sqrt{\varepsilon_r} \cos(\theta_0 - \beta_0) u(z) n(z) \phi''(z)] dz$ .

$$\frac{d}{dz} \left[ v'w'\phi_* + \frac{1}{4}\phi''vw \right] \\ = \phi'v'w' + \phi_*v''w' + \phi_*v'w'' \\ + \frac{1}{4}\phi'''vw + \frac{1}{4}\phi''v'w + \frac{1}{4}\phi''vw'.$$

这里 ϕ <sub>\*</sub> = ϕ( z )+ ε<sub>z</sub> ,并利用

$$\begin{split} \phi_* \, v'' &= - \, \frac{1}{2} \, \phi' v' \, - \frac{1}{4} \, \phi'' v \ , \\ \phi_* \, w'' &= - \, \frac{1}{2} \, \phi' w' \, - \, \frac{1}{4} \, \phi'' w \ , \end{split}$$

 $\frac{\mathrm{d}}{\mathrm{d}z} \Big[ v'w'\phi_* + \frac{1}{4}\phi''vw \Big] = \frac{1}{4}\phi'''vw \,. \tag{19}$ 

于是 ,最后可得

 $\int \frac{1}{4} u(z) v(z) \phi'''(z) dz = \left( v'w' \phi_* + \frac{1}{4} \phi'' vw \right) + C_1.$ 由初条件(16)式 常数  $C_1 = 0$  故有

$$\frac{\mathrm{d}}{\mathrm{d}z} \left[ w'^2 \phi_* + \frac{1}{4} \phi'' w^2 \right] = \frac{1}{4} \phi''' w^2. \quad (21)$$

对(21)式等号两端积分后得

$$\int \frac{1}{4} w^{2} (z) \phi''' (z) dz = \left( w'^{2} \phi_{*} + \frac{1}{4} \phi'' w^{2} \right) + C_{2}.$$

由初条件(16)式 常数  $C_2 = -\frac{1}{4}\phi''_0$  故有

$$\int \frac{1}{4} r_0^2 w^2 (z) \phi'''(z) dz$$
  
=  $r_0^2 \left( w'^2 \phi_* + \frac{1}{4} \phi'' w^2 - \frac{1}{4} \phi''_0 \right).$  (22)

同样,对于(18)式等号右端的第三项,可得

$$\int \frac{1}{4} v^{2} (z) \phi''' (z) dz = \left( v'^{2} \phi_{*} + \frac{1}{4} \phi'' v^{2} \right) + C_{3}.$$
(23)

由初条件(16)式 常数  $C_3 = -1$  故有  $\int \frac{1}{4} \epsilon_r v^2 (z) \phi''' (z) dz = \epsilon_r \left( v'^2 \phi_* + \frac{1}{4} \phi'' v^2 - 1 \right).$ (24)

将(20)(22)(24) 武代入(13) 武 便有  

$$\dot{z}^{2} = \frac{2e}{m_{0}} [\phi(z) + \epsilon_{z}] - \frac{2e}{m_{0}} [\epsilon_{r} (v'^{2}\phi_{*} + \frac{1}{4}\phi''v^{2} - 1) + r_{0}^{2} (w'^{2}\phi_{*} + \frac{1}{4}\phi''w^{2} - \frac{1}{4}\phi''_{0}) + 2r_{0}\sqrt{\epsilon_{r}}\cos(\theta_{0} - \beta_{0}) (v'w'\phi_{*} + \frac{1}{4}\phi''vw)].$$
(25)

这样,由 dt =  $\frac{dz}{z}$ ,便得到电子到达系统内某点的时间表达式,

$$t(z \ \varepsilon_r^{1/2} \ \varepsilon_z^{1/2} \ r_0)$$

$$= \int_0^z \frac{\mathrm{d}z}{\left(\frac{2e}{m_0}\right)^{1/2}} \left[ \phi(z) + \varepsilon_z \right]^{1/2} \left\{ 1 + \frac{1}{2} \frac{1}{\left[ \phi(z) + \varepsilon_z \right]} \right]$$

可得

$$\times \left[ \epsilon_{r} \left( v'^{2} \phi_{*} + \frac{1}{4} \phi'' v^{2} - 1 \right) + r_{0}^{2} \left( w'^{2} \phi_{*} + \frac{1}{4} \phi'' w^{2} - \frac{1}{4} \phi''_{0} \right) + 2r_{0} \sqrt{\epsilon_{r}} \cos\left( \theta_{0} - \beta_{0} \right) \left( v' w' \phi_{*} + \frac{1}{4} \phi'' v w \right) \right] \right].$$
(26)

对于近轴电子 在(13)式中略去 r<sup>2</sup> 项 则有

$$\dot{z}^{2} = \frac{2e}{m_{0}} \int \phi'(z) dz + \frac{2e}{m_{0}} \varepsilon_{z}. \qquad (27)$$

于是

$$t^{*}(z, \varepsilon_{z}^{1/2}) = \int_{0}^{z} \frac{\mathrm{d}z}{\left(\frac{2e}{m_{0}}\right)^{1/2} \left[ \not(z) + \varepsilon_{z} \right]^{1/2}}.$$
 (28)

(28)式亦可由(26)式略去  $\epsilon_r^{1/2}$  和  $r_0$  的二次项求得. 这表明,对于近轴电子轨迹,无论是从轴上点逸出 的,或是从高度为  $r_0$  的轴外点逸出的,只要其轴向 初能量  $\epsilon_r$  相同,它所经历的时间是相同的.(28)式 表明: $t^* = \epsilon_r^{1/2}$ , $r_0$  值无关.

由(7)式的定义,并由(26)(28)式,对照(9)式, 便有 *a*<sub>1</sub> = *a*<sub>3</sub> = 0,*A*<sub>12</sub> = *A*<sub>23</sub> = 0.因此

$$\Delta \tau = A_{11} \varepsilon_r + 2A_{13} \varepsilon_r^{1/2} r_0 + A_{33} r_0^2 , \quad (29)$$

$$A_{11} = \int_{0}^{z} \frac{1}{2\left(\frac{2e}{m_{0}}\right)^{1/2}} \oint(z) + \varepsilon_{z} f'^{2} \\ \times \left(v'^{2}\phi_{*} + \frac{1}{4}\phi''v^{2} - 1\right) dz , \qquad (30)$$

$$A_{13} = \int_{0}^{z} \frac{1}{2\left(\frac{2e}{m_{0}}\right)^{1/2}} \left[\phi(z) + \varepsilon_{z}\right]^{1/2}$$
$$\times \cos\left(\theta_{0} - \beta_{0}\right)\left(v'w'\phi_{*} + \frac{1}{4}\phi''vw\right) dz \quad (31)$$

$$A_{33} = \int_{0}^{z} \frac{1}{2\left(\frac{2e}{m_{0}}\right)^{1/2} \left[ \phi(z) + \varepsilon_{z} \right]^{1/2}}$$

$$\times \left( w'^{2} \phi_{*} + \frac{1}{4} \phi'' w^{2} - \frac{1}{4} \phi''_{0} \right) dz. \qquad (32)$$

这里 ,A<sub>11</sub>为二阶时间球差系数 ,A<sub>13</sub>为二阶时间场曲 系数 ,A<sub>33</sub>为二阶时间畸变系数 .

3.2. 时间色差系数 a<sub>2</sub> 和 A<sub>22</sub>的确定

由(6)式的定义,并由(28)式,可得  

$$\Delta T = a_2(\varepsilon_z^{1/2} - \varepsilon_{z1}^{1/2}) + A_{22}(\varepsilon_z - \varepsilon_{z1})$$

$$= \int_{0}^{z} \frac{\mathrm{d}z}{\left(\frac{2e}{m_{0}}\right)^{1/2}} \left[ \not(z) + \varepsilon_{z} \right]^{1/2}} - \int_{0}^{z} \frac{\mathrm{d}z}{\left(\frac{2e}{m_{0}}\right)^{1/2}} \left[ \not(z) + \varepsilon_{z1} \right]^{1/2}}.$$
 (33)

这里, $a_2$ 为一级近轴时间像差系数或简称一级时间 色差系数, $A_{22}$ 为二级近轴时间像差系数或简称二级 时间色差系数,它们分别是(33)式按 $\sqrt{\epsilon_2}$ 展开后与  $\sqrt{\epsilon_2}$ 和 $\epsilon_2$ 项幂次相对应的系数.

(33)式仅给出了确定时间色差系数  $a_2$ 和  $A_{22}$ 的途径,但并未给出具体的表达式.下面我们用两种方法求时间色差系数  $a_2$ 和  $A_{22}$ .

3.2.1. 用泰勒级数法求时间色差系数 a<sub>2</sub> 和 A<sub>22</sub>

由(33)式可知,时间色差系数 *a*<sub>2</sub>和 *A*<sub>22</sub>仅与轴 上电位分布 ¢(*z*)有关.现我们将 ¢(*z*)以泰勒级数 展开式表示为

$$\oint (z) = \sum_{1}^{m} \frac{E_{m}}{m!} z^{m}.$$
 (34)

这里 , $E_m$  是与场有关的系数.当 m = 1 时 , $E_1 = -E_c$ . 把  $\phi(z)$ 代入(32) 武并积分之 便得到

$$t^{*}(z \ \varepsilon_{z}^{1/2}) = \sqrt{\frac{2m_{0}}{e}} \frac{1}{E_{1}}(\sqrt{E_{1}z + \varepsilon_{z}} - \sqrt{\varepsilon_{z}}).$$

(35)

按常数项和  $\varepsilon_z^{1/2}$  的幂次对(35) 式展开后可得

$$t^{*}(z, \varepsilon_{z}^{1/2}) = \sqrt{\frac{2m_{0}}{e}} \frac{1}{E_{1}} \left(\sqrt{E_{1}z} - \sqrt{\varepsilon_{z}} + \frac{1}{2\sqrt{E_{1}z}} \varepsilon_{z} + O(\varepsilon_{z})^{3/2}\right). \quad (36)$$

由(33)式,系数 a2, A22可以表示为

$$a_2 = -\sqrt{\frac{2m_0}{e}} \frac{1}{E_1} = \sqrt{\frac{2m_0}{e}} \frac{1}{E_c} , (37)$$

$$A_{22} \mid_{m=1} = \sqrt{\frac{2m_0}{e}} \frac{1}{2E_1 \sqrt{E_1 z}}.$$
 (38)

下面我们将证明 (37) 式是处处成立的.

若(34)式的泰勒级数中,取m = 2,用同样的方法可求得 $a_2$ , $A_{22}$ 值, $a_2$  值仍以(37)式表示, $A_{22}$ 的精确解析式为

$$A_{22} \mid_{m=2} = \sqrt{\frac{2m_0}{e}} \frac{E_1 + E_2 z}{E_1^2 \sqrt{2z} (2E_1 + E_2 z)}.$$
 (39)  
同样可以求得 *m* = 3 *A* 时的 *A*<sub>22</sub>的近似表达式 ,

$$A_{22} \mid_{m=3} \approx \sqrt{\frac{2m_0}{e}} \left\{ \frac{1}{E_1^2 \sqrt{2z(2E_1 + E_2 z)}} \times \left[ E_1 + zE_2 + \frac{z^2 E_1 E_3}{6(2E_1 + zE_2)} \right] \right\}, \quad (40)$$

$$A_{22} \mid_{m=4} \approx \sqrt{\frac{e}{e}} \left\{ \frac{1}{E_1^2 \sqrt{2z(2E_1 + E_2 z)}} \times \left[ E_1 + zE_2 + \frac{z^2 E_1 E_3}{6(2E_1 + zE_2)} \right] + \frac{E_4}{24\sqrt{2}E_2^{5/2}} \times \left[ 3\ln \frac{E_1 + E_2 z + \sqrt{E_2} \sqrt{2E_1 z + E_2 z^2}}{E_1} + \frac{4z^2 \sqrt{E_2}(3E_1 + 2E_2 z)}{E_1} \right] \right]$$

$$-\frac{4z^2 \sqrt{E_2(3E_1+2E_2z)}}{(2E_1z+E_2z^2)^{3/2}} \bigg] \bigg\}.$$
 (41)

文献 3 应用  $\tau$  变分法求得时间色差系数  $a_2$  和  $A_{22}$ 的表达式,

$$a_2 = \sqrt{\frac{2m_0}{e}} \frac{1}{E_c} , \qquad (42)$$

$$A_{22} = \sqrt{\frac{2m_0}{e}} \left\{ \frac{1}{2\sqrt{\phi}} \frac{1}{\phi'} + \frac{1}{2} \int_0^z \frac{\phi''}{\sqrt{\phi}{\phi'}^2} dz \right\}.$$
 (43)

当将 m = 1,2 的  $\phi(z)$ 的表达式(34)代入(43)式,得 到的结果与(38)(39)式完全一致,从而证明泰勒级 数法在轴上电位分布  $\phi(z)$ 取级数展开的近似情况 下与  $\tau$  变分法是等效的.

3.2.2. 用积分表达式求时间色差系数 a<sub>2</sub>和 A<sub>22</sub>

对(32) 式 若按 ε<sup>1/2</sup> 的级数展开 我们可以得到

$$\frac{1}{2}\sqrt{\frac{2m_0}{e}} \int_0^z \frac{\mathrm{d}z}{\left[ \phi(z) + \varepsilon_z \right]^{1/2}}$$
  
=  $C + a_2 \varepsilon_z^{1/2} + A_{22} \varepsilon_z + O(\varepsilon_z^{3/2}).$  (44)

由于

$$\left[\sqrt{\phi(z) + \epsilon_z}\right]' = \frac{\phi'(z)}{2\sqrt{\phi(z) + \epsilon_z}},$$

所以有

$$\int_{0}^{z} \frac{\mathrm{d}z}{\left[\phi(z) + \varepsilon_{z}\right]^{\prime 2}}$$

$$= \int_{0}^{z} \frac{\mathcal{I}\sqrt{\phi(z) + \varepsilon_{z}}}{\phi'(z)} \, \mathrm{d}z$$

$$= 2 \frac{\sqrt{\phi(z) + \varepsilon_{z}}}{\phi'(z)} \Big|_{0}^{z} + 2 \int_{0}^{z} \frac{\phi''(z)\sqrt{\phi(z) + \varepsilon_{z}}}{\left[\phi'(z)\right]^{2}} \, \mathrm{d}z$$

$$= 2 \frac{\sqrt{\phi(z)}}{\phi'(z)} + 2 \int_{0}^{z} \frac{\phi''(z)\sqrt{\phi(z)}}{\left[\phi'(z)\right]^{2}} \, \mathrm{d}z - 2 \frac{\sqrt{\varepsilon_{z}}}{\phi'(0)}$$

$$+ \left\{\frac{1}{\phi'(z)\sqrt{\phi(z)}} + \int_{0}^{z} \frac{\phi''(z)}{\left[\phi'(z)\right]^{2}} \sqrt{\phi(z)} \, \mathrm{d}z\right\} \varepsilon_{z}.$$

将此式与(44) 武进行比较,我们可以得到常数项 C

和系数 a2 ,A22 ,

$$C = \sqrt{\frac{2m_0}{e}} \left\{ \frac{\sqrt{\phi(z)}}{\phi'(z)} + \int_0^z \frac{\phi''(z)\sqrt{\phi(z)}}{[\phi'(z)]^2} dz \right\},$$

$$a_2 = -\sqrt{\frac{2m_0}{e}} \frac{1}{\phi'(0)} = \sqrt{\frac{2m_0}{e}} \frac{1}{E_c}, \quad (45)$$

$$A_{22} = \frac{1}{2} \sqrt{\frac{2m_0}{e}} \left\{ \frac{1}{\sqrt{\phi(z)}} \frac{1}{\phi'(z)} + \int_0^z \frac{\phi''(z)}{\sqrt{\phi(z)}} \phi'(z) \right\}^2 dz \right\}.$$
 (46)

时间色差系数  $a_2$  与  $A_{22}$ 的表达式(45),(46) 与  $\tau$  变 分法中的结果(42),(43) 武是完全一致的<sup>3,6]</sup>.

对(46) 式作进一步简化,

$$A_{22} = \frac{1}{2} \sqrt{\frac{2m_0}{e}} \left\{ \frac{1}{\sqrt{\phi(z)}} \frac{1}{\phi'(z)} + \int_0^z \frac{\phi''(z)}{\sqrt{\phi(z)}} \frac{\phi''(z)}{\phi'(z)} \frac{1}{\phi'(z)} \frac{1}{\varphi'(z)} \right\}$$
  
$$= \frac{1}{2} \sqrt{\frac{2m_0}{e}} \left\{ \frac{1}{\phi'(z)} \sqrt{\phi(z)} - \frac{1}{\sqrt{\phi(z)}} \frac{1}{\phi'(z)} \right\|_0^z$$
  
$$+ \int_0^z \frac{1}{\phi'(z)} d\left[ \frac{1}{\sqrt{\phi(z)}} \right] \right\}$$
  
$$= -\frac{1}{2} \sqrt{\frac{2m_0}{e}} \left[ \frac{1}{\phi'(0)} \sqrt{\phi(0)} + \frac{1}{2} \int_0^z \frac{1}{\phi(z)^{1/2}} dz \right].$$
  
(47)

当 z = 0 时 (47)式等号右端中的  $\frac{1}{\phi'(0)\sqrt{\phi(0)}}$  与 1  $\int_{z}^{z} 1$  人 会出现工会主要 再把把迷后(42)式

 $\frac{1}{2}\int_{0}^{z} \frac{1}{\phi(z)^{2}} dz$ 会出现无穷大量,两相抵消后(47)式可以写成如下形式:

$$A_{22} = -\frac{1}{4}\sqrt{\frac{2m_0}{e}} \int \frac{1}{\phi(z)^{3/2}} dz.$$
 (48)

当将 *m* = 1,2 的 ¢(*z*)的表达式(34)代入(48)式,得 到的结果依然与(38)(39)式完全一致,从而证明此 积分表达式(48)与 *τ* 变分法的(46)式是等效的.我 们另文用静电聚焦同心球系统的模型证明(48)式与 (46)武是等效的.

#### 4.结 论

本文提出了一种计算电子光学成像系统时间像 差系数的新途径——直接积分法.给出了自阴极面 逸出的轴向电子初能  $\epsilon_{z1}$ 在  $0 \leq \epsilon_{z1} \leq \epsilon_{0max}$ 的近轴电子 轨迹作为比较基准的时间像差的定义.导出了时间 像差系数表达式,其一级时间色差系数  $a_2$ 、二级时 间色差系数 A<sub>22</sub>分别以(37) (48)式表示;二级时间 球差系数 A<sub>11</sub>、二级时间场曲系数 A<sub>13</sub>、二级时间畸 变系数 A<sub>33</sub>分别以(30) (31) (32)式表示.本文给出 的二级时间像差系数表达式以积分形式表示,便于 计算,可以在实际设计中应用.

- [1] Savoisky Y K, Fanchenko S D 1956 Rep. Acad. Sci. USSR 108 218
- [2] Csorba I P 1971 RCA Rev. 32 650
- [3] Monastyrski M A , Schelev M Y 1980 Theory of Temporal Aberrations of Cathode Lenses( Moscow : Lebedeev Institute of Physics ) p1( in Russian )
- [4] Chou L W 1979 Adv. Electron. Elect. Phys. 52 119

- [5] Zhou L W, Ai K C, Pan S C 1983 Acta Phys. Sin. 32 376 (in Chinese)[周立伟、艾克聪、潘顺臣 1983 物理学报 32 376]
- [6] Ximen JY, Zhou LW, Ai K C 1983 Acta Phys. Sin. **32** 1536 (in Chinese)[西门纪业、周立伟、艾克聪 1983 物理学报 **32** 1536]
- [7] Zhou L W 1993 Electron Optics with Wide Beam Focusing(Beijing: Beijing Institute of Technology Press) p271 (in Chinese [周立伟 1993 宽束电子光学(北京 北京理工大学出版社)第 271页]

# Theory of temporal aberrations for electron optical imaging systems by direct integral method \*

Zhou Li-Wei<sup>1)</sup> Li Yuan<sup>1)</sup> Zhang Zhi-Quan<sup>2)</sup> M. A. Monastyrski<sup>3)</sup> M. Y. Schelev<sup>3)</sup>

<sup>1</sup> (School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China)

 $^{2}\$  ( Academy of Armoured Force Engineering , Beijing ~100072 ,China )

<sup>3</sup> (Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia)

( Received 22 October 2004 ; revised manuscript received 17 March 2005 )

#### Abstract

A new approach to calculate the temporal aberration coefficients of dynamic electron optical imaging systems is put forward in this paper. A new definition of temporal aberration is given in which a certain initial energy of electron emission along the axial direction  $\varepsilon_{z1}$  ( $0 \le \varepsilon_{z1} \le \varepsilon_{0 \text{ max}}$ ) as a criterion is considered. The new method for calculating the temporal aberration coefficients of dynamic electron optical imaging systems named "direct integral method" is presented which gives new expressions of the temporary aberration coefficients expressed in integral form. The difference between "direct integral method" and " $\tau$ -variation method" is that the " $\tau$ -variation method" needs to solve the differential equations for the three of temporal geometrical aberration coefficients of second order, while the "direct integral method" needs only to carry out the integral calculation of them, which is more convenient and suitable for computation in the practical design.

Keywords : electron optical imaging system ,cathode lenses ,dynamic electron optics , theory of temporal aberrations PACC : 4180 , 4180D

3596

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant Nos. 60171026 60471051) and the International Cooperation Program of the National Natural Science Foundation of China (Grant No. 60311120072).