# 高矫顽力型 FeCrCo 合金相变化的穆斯堡尔谱研究

## 李 腾† 李 卫 李岫梅

(钢铁研究总院功能材料研究所 北京 100081) (2004 年 12 月 24 日收到 2005 年 3 月 8 日收到修改稿)

通过穆斯堡尔谱、透射电镜、x 射线和磁测量等手段研究了将普通 FeCrCo 合金中 Cr, Co 元素含量提高、并加入 Mo Zr 元素后合金矫顽力的变化 发现其值 76kA/m 比普通值 40—52kA/m 高 50%以上.对该合金不同热处理阶段的 穆斯堡尔谱的测试表明 ,合金的微观结构与普通 FeCrCo 合金有显著的不同.固溶处理后合金单相性好,不产生对磁 性起破坏作用的 γ相,磁场热处理过程中,发生原子的重新排布, α2 相开始出现,两相结构基本确定;分级回火后, 调幅分解进行得更彻底,合金内部完全形成调幅结构,与低矫顽力合金相比,铁磁性的 α1 相更容易形成.

关键词:穆斯堡尔谱,调幅分解,磁超精细场,同质异能移 PACC:7600,7550V

## 1.引 言

FeCrCo 永磁合金是以良好的机械性能和耐腐 蚀性能而著称的<sup>[1-3]</sup>,在很多领域有着重要应用,冷 拉丝材应用于汽车电流表磁钢等领域,热轧棒材应 用于自动化仪表用磁钢等领域.FeCrCo 合金依靠往 FeCr合金的混溶间隙中加入 Co 元素来实现磁硬 化<sup>[4]</sup>,在磁硬化过程中合金的混溶区间内发生调幅 分解( $\alpha \rightarrow \alpha_1 + \alpha_2$ ),由原先的单一  $\alpha$  相转变为富 FeCo 的强磁性  $\alpha_1$  相和富 Cr 的弱磁性  $\alpha_2$  相,继而合金就 具有永磁性能.但是普通 FeCrCo 合金的矫顽力比较 低<sup>[3]</sup>,一般只有 40—52kA/m ,与高性能的稀土永磁 相比低一个数量级以上,很大程度上限制了它的广 泛应用.比如在 FeCrCo 合金的矫顽力过低使磁环的性 能受到影响.因此,提高合金的矫顽力具有重要意义.

在 FeCrCo 合金中,对矫顽力值起主要作用的是 Co 元素和其他一些微量元素 Mo, Ti 等.本工作是通 过提高 Cr, Co 在合金中的比重和加入有益微量元素 并辅以适当的热处理制度来获得高矫顽力的,合金 最终的矫顽力值比原先提高 50%以上.

本文的主要目的 ,是利用<sup>37</sup> Fe 的穆斯堡尔效应 观察高矫顽力型 FeCrCo 合金在不同热处理阶段穆 斯堡尔谱的变化情况 ,分析各阶段的相析出和相组 成 配合以电镜和 x 射线衍射等手段,研究合金两相 α<sub>1</sub> α<sub>2</sub> 的分离情况,并对比它与普通 FeCrCo 合金间 的的区别,找出矫顽力提高的原因.

## 2. 实验方法

高矫顽力型 FeCrCo 合金的设计成分为(wt%) Cr 30%—33%,Co 20%—23%,Mo 0—3%,Zr 0— 2%,Fe 余,采用真空感应法熔炼;样品尺寸为ø8mm ×8mm,固溶处理温度为1100—1200℃,保温 20min 后冰盐水淬火;在 400kA/m 的磁场下于 650℃进行 磁场热处理,保温 1h;回火制度是从 620℃分级缓冷 至 540℃,整个热处理制度如图 1 所示<sup>[5]</sup>.用 NIM-



图 1 FeCrCo 合金的热处理工艺示意图

2000 型磁滞回线仪测量样品的磁性能;用 x 射线衍 射法观察合金的相组成;用透射电镜观察合金两相 的形貌。

制备观察穆斯堡尔效应所需薄膜的方法为:先 从样品上切下 0.18mm 厚的薄片,然后精磨至 0.05mm.室温下用德国 Wissel 等加速驱动型穆斯堡 尔谱仪测定样品,放射源为<sup>57</sup> Co(Pd),用 25μm 厚的 α-Fe 箔进行速度定标,用最小二乘法进行拟合解谱.

3. 结果与讨论

#### 3.1.合金的磁性能

常见的 FeCrCo 合金的成分范围是(wt%):Cr 20%—27%,Co 12%—16%,Fe 余,以及 Si ,Mo,Ti 等 元素微量.因为 Cr,Co,Mo 是对矫顽力有益的元素, 所以将 Cr,Co 的含量分别大幅提高至 30%和 20% 以上,并且加入了 Mo 元素.为了抑制淬火过程中易 出现的非磁性相,还加入了少量 Zr 元素.

无论矫顽力的高低 ,FeCrCo 合金的热处理制度 都分为固溶处理、磁场热处理和分级回火处理三步. 按照设计成分 ,合金在最终热处理之后的性能为:  $B_r = 0.9T$ , $iH_c = 76$ kA/m (BH)<sub>max</sub> = 32kJ/m<sup>3</sup>,矫顽力 比普通 FeCrCo 合金高 50%以上 ,其余两项性能下降 不多 ,仍保持在较高水平.

3.2.不同热处理阶段合金的穆斯堡尔谱的变化

FeCrCo 合金在固溶处理后为单一的体心立方  $\alpha$ 相.图2所示的是此时高矫顽力合金的穆斯堡尔谱. 该谱是被展宽的铁磁性谱,也即磁超精细场的分布 较广,说明 Fe 原子磁矩在一定的范围内变动,经解 谱后发现,该谱可由五条谱线叠加而成 如图中的五 条细线所示)此五条谱线都是典型的六线谱,对应 的磁超精细场 H<sub>eff</sub>的大小分别为 19.52,22.00, 15.52,13.20,17.68MA/m,代表 Fe 原子的五种配位 环境<sup>[6]</sup>,平均磁超精细场大小为 18.08MA/m.这五种 晶位都代表磁性  $\alpha$  相 它们的同质异能移 I.S.分别 为 - 0.03, 0.04, - 0.06, - 0.1, - 0.04mm/s. 普通 FeCrCo合金固溶淬火后的超精细场大小约为 20.4MA/m<sup>[7]</sup>,且谱线中心位置常伴随有一个附加的 单峰 此峰是合金中残余的非磁性  $\gamma$  相产生的 高矫 顽力合金中因含有  $Z_r$  元素而抑制了  $\gamma$  相的出现 冰 盐水淬火也有助于保持相结构的单一性.



图 2 高矫顽力型 FeCrCo 合金固溶后的穆斯堡尔谱

高矫顽力合金在磁场热处理后初步形成调幅结 构 α, + α, ),此时的穆斯堡尔谱如图 3 所示.该谱可 由四条谱线叠加拟合而成(如图中的四条细线所 示)代表此状态下合金中 Fe 原子的四种不同的配 位环境 其中的三条谱线都是典型的六线谱 磁超精 细场值分别为 28.24,28.16,24.48MA/m,比较接近; 另外一条谱线(四条中相对较粗的)虽然也有六个 峰 但中间的两峰很突出并有趋于同一的倾向 两边 的四峰平缓并趋于消失,其磁超精细场大小为 10.80kA/m 比其他三个值明显偏小.因为富 Co 区域 的 Fe 原子的超精细场值大干富 Cr 区域的<sup>[8]</sup>.在穆 斯堡尔谱上就体现为六线谱的不同.图中特殊形状 的谱线表明,在本阶段热处理过程中 💩 相开始形 成 因为该相的成分正是富 Cr 的 和富 FeCo 的 α 相 有本质不同,而且它的峰宽为0.36mm/s,高于其他 三个峰宽 0.2 .0.3 .0.29mm/s ,一定程度上反映了此



图 3 高矫顽力型 FeCrCo 合金磁场热处理后的穆斯堡尔谱

超精细场的过渡性.此时四条谱线的同质异能移分 别为 0.01 0.49,-0.03,-0.04mm/s,其中 0.49 mm/ s 值偏大,说明合金晶格中某些 Fe 原子核处的电荷 密度变化大,这主要是磁场热处理过程中 Cr,Co 原 子移位引起的.在磁场热处理过程中,超精细场和同 质异能移的值保持不变,只有强度改变<sup>[s]</sup>.

合金在分级回火处理过程中两相  $\alpha_1$ , $\alpha_2$  成分差 进一步扩大,形成较完善的调幅结构,此时的穆斯堡 尔谱如图 4 所示.该谱也可由四条谱线叠加拟合而 成(如图中的四条细线所示),其中的三条是典型的 六线谱,磁超精细场值分别为 28.72,27.04, 16.08MA/m;另外一条是单线谱(四条中相对较粗 的).结合图 3,可以清楚地看出单线谱的形成正是 上图中特殊的六线谱所代表的弱磁性的  $\alpha_2$  相的不 断发展完善的结果<sup>91</sup>,该谱的面积占总体的 13.3%; 三条六线谱中,有两条峰位很接近,分别对应的磁超 精细场值为 28.72、27.04MA/m,代表了  $\alpha_1$  相的大量 存在;另一条谱线的磁超精细场值只有 16.08MA/m, 代表调幅分解不完全的残留相,它只占总体的 13%.此四条谱线的同质异能移分别为 0.05,0.05, 0.11,-0.1mm/s,其中 0.11 mm/s 值稍大的原因与前





图 4 高矫顽力型 FeCrCo 合金回火后的穆斯堡尔谱

高矫顽力型 FeCrCo 合金在磁场热处理和分级 回火后调幅分解的发生情况也可从图 5 透射电镜照 片上清楚的看出.磁场热处理后合金的两相结构还 处于萌芽状态,仅有轻微的 α<sub>1</sub> 和 α<sub>2</sub> 析出,回火后两 相得以充分发挥,在形貌上表现为黑白相间的完善 的调幅结构.



图 5 高矫顽力型 FeCrCo 合金的透射电镜照片 (a)磁场热处理后(b)分级回火后

高矫顽力合金在固溶处理、磁场热处理和回火 处理后的 x 射线衍射图分别如图 6 所示.在整个相 变过程中衍射峰的位置几乎不变,但是相对峰强和 半高宽发生了较大的变化.(110)和(200)峰逐渐变 弱(211)峰逐渐变强,三个峰的半高宽都逐渐变大. 峰位的一致性是 bcc 结构决定的,虽然  $\alpha$  相中的原 子通过扩散形成不同的  $\alpha_1$ 和  $\alpha_2$ 两相,但其铁素体  $\alpha$ 结构没有改变.峰强和半高宽的变化是由调幅分解 ( $\alpha \rightarrow \alpha_1 + \alpha_2$ )引起的,随着分解的进行,两相  $\alpha_1, \alpha_2$ 不 断产生.由于两相晶格常数不同,因此衍射峰位不能 完全重合,降低了衍射峰强度,并且相应的增加了半



图 6 合金在不同热处理阶段后的 x 射线衍射峰的变化

### 高宽[10].这与穆谱的观测结果一致.

成分为(wt%):Cr 25.5%—27%, Co 14.5%— 16%, Mo 3%-3.5%, Ti 0.5%-0.8%, Fe 余的普 通 FeCrCo 合金在最终分级回火后的穆斯堡尔谱如 图 7 所示,该谱是由六条谱线叠加拟合而成 如图中 的细线所示) 其中的五条都是典型的六线谱,另外 一条是单线谱(六条中相对较粗的)。同质异能移分 别为 0.04 0.03 0.04 0, -0.04, -0.12mm/s. 单线谱 的面积占总体的 32.7%, 与高矫顽力合金中的 13.3%相比高出许多,说明 α,相的形成更加容易 (其中包含约 8% 淬火后就存在的  $\gamma$  相), 六线谱峰 与上图相比,强度很低,磁超精细场值分别为 29.60.26.72.28.56.24.64.22.48MA/m.分布范围较 广 且总共所占的比重也较小 其中所占百分比最大 的磁超精细场 26.72MA/m 对应的峰宽为 0.36mm/s, 也是所有峰宽中最大的 这些都说明 α,相的形成不 完善[10,11] 总的来说,该合金的调幅分解进行得不彻 底 α, 和 α, 两相的成分差不够大.正因为如此,合金 的磁性能为 (BH)<sub>max</sub> = 32—40kJ/m<sup>3</sup>(320—400MGA/ m), $B_r = 1.2T$ , $iH_e = 52kA/m$ ,矫顽力明显偏低.



图 7 低矫顽力型 FeCrCo 合金回火后的穆斯堡尔谱

将最终状态下高、低两种矫顽力的 FeCrCo 合金 的 x 射线衍射图( 如图 8 所示 )作对比 ,发现两种合 金的衍射峰的位置是一样的 ,说明都是 bec 结构 ,但 是下方的衍射峰强度低、半高宽大<sup>[12]</sup>.如前所述 ,调 幅分解过程中相结构是不发生变化的 ,只是相的成 分和晶格常数不同.晶格常数的差别越大 ,衍射峰的 重叠部分就 越少 ,衍射强度也越低 ,半高宽越 大<sup>[13,14]</sup>.因此可推断出高矫顽力合金中的晶格常数 差大 ,也即两相成分差大.这也印证了穆谱的观测 结果。



图 8 两种 FeCrCo 合金的 X 射线衍射峰的区别

Co 是对矫顽力的提高起主要作用的元素<sup>151</sup>,另 有对穆斯堡尔谱的研究结果表明<sup>[9]</sup>,Co 含量的增加 对相分解的控制作用更有效,使合金更易形成调幅 结构.α<sub>1</sub>和 α<sub>2</sub> 两相饱和磁化强度差增大使畴壁运动 受到的阻碍作用也增大<sup>[16,17]</sup>,畴壁钉扎作用更加明 显,这对矫顽力的提高有益<sup>[18,19]</sup>.

磁矩转动机理也依赖于两相的饱和磁化强度 差 此时矫顽力可表示为

$$H_{c} = P(1 - P) (N_{a} - N_{b}) (M_{1} - M_{2})'/M_{s}^{[10]},$$
(1)

这里  $P \ge \alpha_1$  相所占的体积分数 , $N_a$  , $N_b$  分别是调 幅分解中产生的条形单畴粒子的径向和轴向的退磁 因子 , $M_1$  , $M_2$  分别是强磁性和弱磁性两相的磁化强 度 , $M_s$  是合金的饱和磁化强度 . 在 P , $N_a$  , $N_b$  等参 量基本确定的情况下 , $M_s$  的变化量也很小 ,所以  $H_c$ 主要依赖( $M_1 - M_2$ ) 项 . 只有调幅分解进行得足够 彻底 ,才能够形成完善的调幅结构 ,使( $M_1 - M_2$ ) 值达到最大 ,相应的获得高矫顽力<sup>[20,21]</sup>.

因此含 Co 量不同的 FeCrCo 合金矫顽力差别 明显.

## 4.结 论

从以上的分析得知,由于成分的改变,高矫顽力 型 FeCrCo 合金微观结构表现出特殊性,与普通 FeCrCo 明显不同.固溶后合金单相性较好,不产生 对磁性起破坏作用的γ相,为最终获得优良磁性能 奠定了基础,磁场热处理过程中,发生原子的重新排 布 <sub>α2</sub> 相开始出现,两相结构基本确定;分级回火 后,合金内部完全形成调幅结构,与低矫顽力合金相

### 比,调幅分解进行得更彻底,矫顽力也有大幅提高.

- [1] Kaneko H , Homma M and Nakamura K 1971 AIP Conf. Proc. 5 1088
- [2] Jin S and Chin G 1987 IEEE Tran. Magn. 23 3187
- [3] Zhu Y J, Zhao H X and Jiang S Y 1983 Instrument Meterials 14 76 (in Chinese)[朱幼君、赵惠兴、姜书英 1983 仪表材料 14 76]
- [4] Homma M , Okada M and Minowa T 1981 IEEE Tran. Magn. 17 3473
- [5] Li T, Chen M Q, Li W et al 2003 Chinese Journal of Rare Earth 27 558 (in Chinese)[李 腾、陈敏勤、李 卫等 2003 稀有金属 27 558]
- [6] Eibschütz M, Chin G and Jin S 1978 Appl. Phys. Lett. 33 362
- [7] Tahara R, Nakamura Y, Inagaki M et al 1975 Proc. of the International Conf. on Mössbauer Spectroscopy, Cracow I 107 (unpublished)
- [8] Olszewski J, Szymura S and WOJCIK J 1994 J. Magn. Magn. Mate 132 62
- [9] Chen M , Wang H , Yan Y et al 1982 J. Appl. Phys. 53 2377
- [10] Jin S , Brasen D and Mahjan S 1982 J. Appl. Phys. 53 4300
- [11] Ma R Z and Xu Y T 1998 Mössbauer spectroscopy (Beijing: Science Press) p371 (in Chinese) [马如璋、徐英庭 1998 穆斯堡尔谱学

(北京 科学出版社)第 371 页]

- [12] Li A H, Dong S Z and Li W 2002 Acta Phys. Sin. 51 2320 (in Chinese)[李安华、董生智、李 卫 2002 物理学报 51 2320]
- [13] Sugimoto S Satoh H ,Okada M et al 1991 IEEE Tran. Magn. 27 3412
- [14] Ali A ,Rao K ,Haq A et al 1998 Proceedings of the Asian Conference on Heat Treatment of Materials , Beijing China 364
- [15] Chen R J ,Rong C B ,Zhang H W et al 2004 Acta Phys. Sin. 53 4341 (in Chinese) [陈仁杰、荣传兵、张宏伟等 2004 物理学报 53 4341]
- [16] Zhang H W , Zhang S Y and Shen B G 2001 Chin . Phys. 10 1169
- [17] Rong C B Zhang J ,Du X B et al 2004 Chin. Phys. 13 1969
- [18] Stolyarov V Gunderov D Popov A et al 2001 The Physics of Metals and Metallography 91 S273
- [19] Gasanov B 1999 Russian Metalurgy (Metally) 2 123
- [20] Vintainkin B , Golikov V and Dudarev V 2000 Russian Metallurgy (Metally) 2 141
- [21] Vintainkin B , Vintaikin E and Mikke K 2002 The Physics of Metals and Metallography 94 177

# Mössbauer spectra study on phase variation in a high-coercivity FeCrCo alloy

Li Teng Li Wei Li Xiu-Mei

( Division of Functional Materials , Central Iron & Steel Research Institute , Beijing 100081 , China )
 ( Received 24 December 2004 ; revised manuscript received 8 March 2005 )

#### Abstract

Variation of the coercivity induced by increasing Cr and Co contents and adding inpurities of Mo and Zr in FeCrCo alloys was investigated using Mössbauer spectra, fransmission electron microscopy, x-ray diffraction, and magnetic measurement. A coercivity as high as 76kA/m is obtained, which is one and half times higher than that (40—52kA/m) of the common alloy. Mössbauer spectra shows that the microstructure of the high-coercivity alloy is apparently different from that of the traditional FeCrCo alloy. The alloy is single-phase after solution treatment, the non-magnetic  $\gamma$  phase, which weakens the magnetic properties, does not appear. During the thermomagnetic treatment, the atomic distribution is rearranged, and leads to the formation of the  $\alpha_2$  phase, the spinodal structure with the two-phase ( $\alpha_1 + \alpha_2$ ) in the alloy fully forms after step-tempering. It might be beneficial for forming the high coercivity in alloy. Comparied with the low-coercivity case, more of the  $\alpha_1$  phase exist in the spinodal structure.

Keywords: Mössbauer spectra, spinodal decomposition, magnetic hyperfine field, isomer shift PACC: 7600, 7550V