CH, NH和OH自由基基态与低激发态 分子结构与势能函数

李 权^{1)†} 朱正和²⁾

2) 四川师范大学化学与材料科学学院,成都 610066)
 2) 四川大学原子分子物理研究所,成都 610065)
 (2004年10月22日收到2005年5月16日收到修改稿)

用电子相关耦合簇方法 CCSI(T)和 aug-cc-pVTZ 基函数计算研究了 CH, NH 和 OH 自由基分子基态与低激发态 的结构与势能函数 ,导出了分子的光谱数据.结果表明 ,CH, NH 和 OH 自由基分子基态分别为 $X^2 \Pi$, $X^3 \Sigma \pi$ $X^2 \Pi$ 基 态与低激发态的势能函数均可用 Murrell-Sorbie function 来表达. CH 自由基分子低激发态 $a^4 \Sigma^- \pi^6 \Sigma^-$ 的绝热激发能 分别为 0.705 和 7.669eV ,NH 自由基分子低激发态 $a^1 \Delta \pi^5 \Sigma^-$ 的绝热激发能分别为 1.895 和 3.492eV ,OH 自由基分 子低激发态 $a^4 \Sigma^- \pi^6 \Sigma^-$ 的绝热激发能分别为 4.535 和 14.041eV.

关键词:电子相关耦合方法,势能函数,结构,自由基 PACC:3110,3120,3130

1.引 言

分子势能函数是研究原子分子碰撞和分子反应 动力学的基础 也是研究分子稳定性的依据 激发态 分子的势能函数研究十分重要 它在辐射化学、激光 化学等方面有广泛应用[1-3].碳氢自由基 CH ,氮氢 自由基 NH 和羟基自由基 OH 是重要的自由基分子, 在许多化学过程 如燃烧过程中起着重要作用^[4-6]. 近年来,因 CH 存在于金属催化的表面反应中而增 加了对其基态与激发态的研究兴趣78〕在连续加氢 合成 NH, 分子的反应中, NH 是重要的中间物,在燃 烧化学、星际化学等研究中 CH 和 NH 占有重要地 位因此,通过光谱学方法,CH和NH被广泛研 究^[9-14].羟基自由基 OH 是一种非选择性氧化剂 氣 化能力强 反应速度快 氧化效率高 很容易氧化各 种有机物和无机物 还能参与生命活动中氧化代谢 过程,也是很好的有机链反应引发剂,在环境化学、 燃烧化学和大气化学等中有重要的用途,涉及 OH 自由基分子的化学反应以及实验研究较多[15-18].尽 管 CH NH 和 OH 自由基分子基态已经很好的表征, 但对低激发态,仍然缺乏精确的结构与光谱等数据, 尤其是 NH 和 OH 分子.

本文使用电子相关耦合簇方法 CCSI(T)和 augcc-pVTZ 基函数计算研究 CH, NH 和 OH 自由基分 子基态与低激发态的结构与势能函数,导出分子的 光谱数据.

2. 电子状态与离解极限

分子势能函数对应一定的电子状态,为了准确 表达体系的势能函数,必须确定正确的离解极限和 可能的电子状态.根据原子分子反应静力学中的分 离原子法^[19,20]确定可能的电子状态.C,N,O和H 原子的基电子状态分别是³Pg,⁴Su,³Pg, $n^2S_g^{[21-23]}$, 属于 *SU*(*n*)群,CH,NH和 OH 属于 C_{xx} 群.当 Q(³Pg),N(⁴Su),Q(³Pg)分别和H(²Sg)形成CH,NH 和 OH 分子时对称性降低,*SU*(*n*)群的不可约表示 可分解为 C_{xx} 群的不可约表示的直和,通过直积和 约化可得 C_{xx} 群的不可约表示,即所形成分子的可 能电子状态.Q(³Pg)和 H(²Sg)分别分解为 C_{xx} 群的 不可约表示的直和为

 ${}^{3}P_{g} = {}^{3}\Sigma^{-} \oplus {}^{3}\Pi$, ${}^{2}S_{g} = {}^{2}\Sigma^{+}$, 两者直积并约化为 ${}^{3}P_{g} \otimes {}^{2}S_{g} = ({}^{3}\Sigma^{-} \oplus {}^{3}\Pi) \otimes {}^{2}\Sigma^{+} = {}^{2}{}^{4}\Sigma^{-} \oplus {}^{2}{}^{4}\Pi \oplus$ ….类似地 ,NH 的可能电子状态为 ${}^{3}{}^{5}\Sigma^{-} \oplus \dots$,OH 的 可能电子状态为 ${}^{2}{}^{4}\Sigma^{-} \oplus {}^{2}{}^{4}\Pi \oplus \dots$.

用 CCSD(T)方法和 aug-cc-pVTZ 基函数优化计 算得到 CH, NH和 OH 自由基分子基态与低激发态 的电子状态,平衡能量,偶极矩 μ 和激发态的绝热 激发能 E_a 见表 1,扫描计算得到的势能曲线分别见 图 1 至图 3.

表 1 CH, NH和 OH 自由基分子基态与低激发态的平衡能量 E,偶 极矩 μ 和激发态的绝热激发能 E_a

电子态	E/Hartree	μ /Debye	$E_{\rm a}/{\rm eV}$
$X^2\Pi$ (CH)	- 38.4128166	1.5798	
$a^4\Sigma^-$ (CH)	- 38.3868903	0.5637	0.705
⁶ Σ⁻(CH)	- 38.1309893	0.0002	7.669
$X^3\Sigma^-$ (NH)	- 55.1451246	1.6337	
$a^1\Delta$ (NH)	- 55.0754970	1.6339	1.895
⁵ Σ⁻(NH)	- 55.0168060	0.0020	3.492
$X^2\Pi$ (OH)	- 75.6455862	1.7638	
$a^4\Sigma^-$ (OH)	- 75.4789097	0.0309	4.535
⁶ Σ⁻(OH)	- 75.1295802	0.7758	14.041

由图 1 知 ,CH 分子基态 $X^2 \Pi$ 和低激发态 $a^4 \Sigma^-$ 具有相同的离解极限 ,计算得到 C ,H 原子基电子状 态³ P_g ,² S_g 的能量分别为 – 37.7818255 , – 0.4998212 , 两者之和是 – 38.2816467 与势能曲线渐近线能量值

图 1 CH 分子基态 $X^2 \Pi$ 和低激发态 $a^4 \Sigma^-$ 的势能曲线

-38.2816 一致,故 CH 分子基态 X^2 П 和低激发态 $a^4 \Sigma^-$ 的离解极限为

CH(
$$X^2\Pi$$
) \rightarrow ((${}^{3}P_{g}$) + H(${}^{2}S_{g}$),
CH($a^{4}\Sigma^{-}$) \rightarrow ((${}^{3}P_{g}$) + H(${}^{2}S_{g}$).

同理,见图 2,NH 分子基态 $X^{3}\Sigma^{-}$ 与低激发态 $a^{1}\Delta$ 具有不同的离解极限,和激发态 $^{5}\Sigma^{-}$ 的离解极 限相同,分别是

NH(
$$X^3 \Sigma^-$$
) → N(4S_u) + H(2S_g),
NH($a^1\Delta$) → N(2D) + H(2S_g),
NH(${}^5\Sigma^-$) → N(4S_u) + H(2S_g).

见图 3,OH 分子基态 $X^2\Pi$ 和低激发态 $a^4\Sigma^-$ 具有相同的离解极限 ,分别是

OH(
$$X^2\Pi$$
) \rightarrow O(${}^{3}P_{g}$) + H(${}^{2}S_{g}$),
OH($a^{4}\Sigma^{-}$) \rightarrow O(${}^{3}P$) + H(${}^{2}S$)

图 2 NH 分子基态 $X^3\Sigma^-$ 和低激发态 $a^1\Delta \Pi^5\Sigma^-$ 的势能曲线

3. 势能函数与光谱性质

图 1 至图 3 分别为 CH, NH 和 OH 自由基分子 的势能曲线,其中实线为拟合函数曲线,拟合函数为 Murrell-Sorbie (M-S)势能函数^[20]

图 3 OH 分子基态 $X^2 \Pi$ 和低激发态 $a^4 \Sigma^-$ 的势能曲线

$$V = -De \left(1 + a_1 \rho + a_2 \rho^2 + a_3 \rho^3 \right) \exp \left(- a_1 \rho \right),$$
(1)

式中 $\rho = R - R_e$, R 为核间距, R_e 为平衡值.

图 1 至图 3 中的势能曲线均具有对应分子稳定 平衡结构的极小点,说明 CH, NH 和 OH 自由基分 子基态与低激发态能稳定存在.优化计算得到的各 电子状态的几何性质与用正规方程组拟合 M-S 势 能函数得到的各参数值见表 2 ,由表 2 数据根据文 献[20]中的公式计算的力学性质与光谱数据见 表 3.

表 2 CH, NH和 OH 自由基分子的 M-S 势能函数参数

电子态	$R_{\rm e}/{ m nm}$	$D_{\rm e}/{\rm eV}$	a_1/nm^{-1}	a_2/nm^{-2}	a_3/nm^{-3}
$X^2\Pi$ (CH)	0.1122	3.569	42.572	510.346	3374.302
a ⁴ Σ⁻(CH)	0.1091	2.876	57.333	1050.487	7847.104
X ³ Σ⁻(NH)	0.1039	3.525	50.791	733.948	4949.525
$a^1\Delta$ (NH)	0.1037	4.301	41.627	428.898	3001.360
⁵ Σ-(NH)	0.3959	0.00163	22.240	47.807	360.115
<i>X</i> ² ∏(OH)	0.0973	4.556	52.515	852.733	6946.523
a ⁴ Σ⁻(OH)	0.3319	0.00369	18.653	45.039	241.721

表 3 CH, NH和 OH 自由基分子的光谱数据与力学常数

电子态	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e} X_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$\alpha_{\rm e}/{\rm cm}^{-1}$	$f_2/\mathrm{fJ}\cdot\mathrm{nm}^{-2}$	$f_3/\mathrm{fJ}\cdot\mathrm{nm}^{-3}$	$f_4/\mathrm{fJ}\cdot\mathrm{nm}^{-4}$
$X^2 \Pi$ (CH)	2882.5	54.7	14.4	0.470	0.455	- 25.416	1266.469
<i>Х</i> ² П(СН) ^{а)}	2860.7	64.4	14.7	0.536			
$a^4\Sigma^-$ (CH)	3158.5	71.4	15.2	0.406	0.546	- 28.863	818.408
<i>a</i> ⁴ Σ [−] (CH) ²⁴]	3090.9	102.17	15.2	0.723			
<i>X</i> ³ Σ [−] (NH)	3366.7	73.9	16.6	0.550	0.628	- 38.452	1851.182
$a^1\Delta$ (NH)	3299.2	69.3	16.7	0.596	0.603	- 38.006	2128.131
⁵ ∑⁻(NH)	43.4	38.1	1.1	0.882	0.000105	- 0.00466	0.168
$X^2 \Pi$ (OH)	3708.2	60.5	18.8	0.531	0.768	- 45.730	2446.731
a ⁴ Σ⁻(0H)	52.3	24.7	1.6	0.905	0.000153	- 0.00556	0.0168

a)实验值^[24].

4. 讨论与结论

CH 自由基分子基态 X²Ⅱ,我们计算得到的平

衡间距和离解能分别为 0.1122nm 和 3.569eV,与实 验值^[24] 0.1119786 和 3.640 很接近.激发态 $a^4 \Sigma^-$, 计算得到的平衡间距 0.1091,离解能 2.876 也与文 献值^[24]0.10892 和 2.863 接近.由表 3 看出,光谱数 据也与实验值符合较好.计算得到 NH 和 OH 自由基 分子基态离解能分别为 3.525 和 4.556eV,与文献实 验值^[25] 3.424 和 4.395eV 很接近.说明该方法与基 函数研究这些自由基分子是合适的,所报道的力常 数是可信的.

尽管 CH, NH 和 OH 自由基分子基态与低激发 态的势能曲线均具有对应分子稳定平衡结构的极小 点,但因离解能的不同,其稳定性不同.对于自由基 基态分子,离解能较大,稳定性高.激发态分子,与 CH 基态 *X*²Π具有相同离解极限的低激发态 *a*⁴Σ⁻ 离解能较大,稳定性较高,与 NH 分子基态 $X^{3}\Sigma^{-}$ 具 有不同离解极限的低激发态 $a^{1}\Delta$ 离解能高,较稳 定 和基态具有相同离解极限的 NH 分子激发态 $^{5}\Sigma^{-}$ 和 OH 分子低激发态 $a^{4}\Sigma^{-}$ 因离解能极低,稳定性 极差.

由图 1 至图 3 明显看出,计算值与拟合函数符 合甚好,所以,CH,NH和 OH 自由基分子的基态与 低激发态势能函数均可用 Murrell-Sorbie 势函数来 描述.

- [1] Luo D L, Sun Y, Liu X Y, Jiang G, Meng D Q, Zhu Z H 2001
 Acta Phys. Sin. 50 1896 (in Chinese) [罗德礼、孙 颖、刘晓 亚、蒋 刚、蒙大桥、朱正和 2001 物理学报 50 1896]
- [2] Luo D L, Meng D Q, Zhu Z H 2003 Acta Phys. Sin. 52 2438 (in Chinese) [罗德礼、蒙大桥、朱正和 2003 物理学报 52 2438]
- [3] Mao H P, Wang H Y, Tang Y J, Zhu Z H, Zheng S T 2004 Acta Phys. Sin. 53 37 (in Chinese)[毛华平、王红艳、唐永键、朱正 和、郑少涛 2004 物理学报 53 37]
- [4] Williams S, Green D S, Sethuramen S, Zare R N 1992 J. Am. Chem. Soc. 114 9122
- [5] Hou Z , Bayes K D 1992 J. Phys. Chem. 96 5685
- [6] Flores-Mijangos J, Brown J M, Matsushima F, Odashima H, Takagi K, Zink L R, Evenson K M 2004 J. Mol. Spectrosc. 225 189
- [7] Wu M C, Goodman D W 1994 J. Am. Chem. Soc. 116 1364
- [8] Takaoka T , Sekitani T , Arruga T , Nishijima M 1994 Surf. Sci. 306 179
- [9] Brown J M , Evenson K M 1989 J. Mol. Spectrosc. 136 68
- [10] Danielsson M, Erman P, Hishikawa A, Larson M, Rachlew-Källne E, Sundström G 1993 J. Phys. Chem. 98 9405
- [11] Morino I , Matsumura K , Kawaguchi K 1995 J. Mol. Spectrosc. 174 123
- [12] Bernath P F , Amano T 1982 J. Mol. Spectrosc. 95 359
- [13] Brazier C R , Ram R S , Bernath P F 1986 J. Mol. Spectrosc. 120 381

- [14] Ram R S, Bernath P F, Hinkle K H 1999 J. Chem. Phys. 110 5557
- [15] Vakhtin A B , Lee S , Heard D E , Smith I W M , Leone S R 2001 J. Phys. Chem. A 105 7889
- [16] Su M C , Kumaran S S , Lim K P , Michael J V , Wagner A F , Harding L B , Fang D C 2002 J. Phys. Chem. A 106 8261
- [17] Vakhtin A B, Murphy J E, Leone S R 2003 J. Phys. Chem. A 107 10055
- [18] Krasnoperov L N , Michael J V 2004 J. Phys. Chem. A 108 5643
- [19] Zhu Z H 1996 Atomic and molecular Reaction Statics (Beijing: Science Press)(in Chinese)[朱正和 1996 原子与分子反应静 力学(北京:科学出版社)]
- [20] Zhu Z H, Yu H G 1997 Molecular Structure and Molecular Potential Energy Function (Beijing: Science Press) (in Chinese)[朱正和、 俞华根 1997 分子结构与势能函数(北京:科学出版社)]
- [21] Li Q, Liu XY, Zhu ZH, Gao T, Fu YB, Wang XL 2000 Acta Phys.-Chem. Sin. 16 987 (in Chinese)[李 权、刘晓亚、朱正 和、高 涛、傅依备、汪小琳 2000 物理化学学报 16 987]
- [22] Koga T , Watanabe S 1995 Int . J. Quant . Chem . 54 261
- [23] Martin W C, Hagan L, Reader J 1974 J. Phys. Chem. Ref. Data 3 771
- [24] Kalemos A, Mavridis A, Metropoulos A 1999 J. Chem. Phys. 111 9536
- [25] Martin J M L 1997 Chem. Phys. Lett. 273 98

Structure and potential energy function of CH , NH and OH free radical ground and low-lying states

Li Quan¹) Zhu Zheng-He²)

1 X College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066, China)
2 X Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)
(Received 22 October 2004; revised manuscript received 16 May 2004)

Abstract

Structure and properties of the ground states and low-lying excited electronic states of CH , NH and OH radicals are reported in this paper using CCSD(T) method and aug-cc-pVTZ basis set. Their analytic potential energy functions are in good agreement with the Murrell-Sorbie function , and the ground states are $X^2\Pi$ for CH , $X^3\Sigma^-$ for NH and $X^2\Pi$ for OH radicals , and the adiabatic excitation energies of $a^4\Sigma^-$ and $^6\Sigma^-$ for CH , $a^1\Delta$ and $^5\Sigma^-$ for NH , $a^4\Sigma^-$ and $^6\Sigma^-$ for OH are 0.705 , 7.669 , 1.895 , 3.492 , 4.535 and 14.041eV , respectively.

Keywords : CCSD(T) , potential energy function , electronic state structure , free radicals PACC : 3110 , 3120 , 3130