基于幂律尾指数研究中国降水 的时空演变特征*

支 蓉¹²) 龚志强¹³) 王德英⁴) 封国林²³

1)(扬州大学物理科学与技术学院,扬州 225009)
 2)(中国科学院大气物理研究所东亚区域气候-环境重点实验室,北京 100029)
 3)(国家气候中心,中国气象局气候研究开放实验室,北京 100081)
 4)(中国气象科学研究院,北京 100081)
 (2006年2月17日收到 2006年4月26日收到修改稿)

基于中国气象局国家气候中心 740 站点 1960—2000a 的日降水观测资料,对中国各地区日降水量分等级进行 统计分析,揭示了各地区日降水存在的一个共同特征——幂律尾分布,且不同等级的降水量对应不同的幂律尾指 数,在一定程度上反映了不同雨型具有不同的气候背景和物理机理.中国华北、华南等七个气候特征区,其幂律尾 指数总体自东南向西北呈递增趋势,这与中国降水东多西少,南多北少的空间分布特征相符合.研究各气候特征区 日降水的幂律尾指数随时间的演变特征发现:东北、华北和西北地区的幂律尾指数发生突变的年份对应着 20 世纪 70 年代末开始的中国北方干旱化进程,导致的可能原因是微量降水,尤其是 0—7mm 日降水的减少.

关键词:幂律尾指数,突变,北方干旱化 PACC:9260X

1.引 言

近百年来,全球气候正经历着一次以变暖为主 要特征的显著变化,中国年平均气温也相应升高了 0.4—0.5℃,特别是 20 世纪 80 年代以来,增温最为 迅速,达到了统计学上的突变程度^[12].许多研究表 明,中国各地温度变化情况并不相同,增暖的区域性 和季节差异较大,以冬季和东北、华北、西北地区最 为明显^[3].由于中国是季风气候,气候变化在降水上 的表现也相当明显,因此全球变暖对中国降水的影 响日益成为广大气候工作者关注的重要课题之一. 降水的物理机理、物理过程及其预测是一个科学难 题,虽然已取得了一定的进展^[4—14],但由于传统研究 方法大都基于线性、平稳的思想,又受到观测资料有 限、观测站点分布不均匀等因素的限制,对降水机理 及内在联系的整体共性的认识还处在起步阶段,对 一些极端降水事件也只能进行个例分析而无法进一 步阐明统一的整体认识^[15—19].有学者曾指出,与降 水紧密相联的中国北方干旱化进程可能是对全球变 暖的一种响应^[4],但二者之间的实质联系目前尚未 定论.本文立足于对中国降水情况分等级进行统计 分析,尝试结合复杂性科学的理论,从一个全新的角 度对中国各地区降水的内在规律作初步探讨,旨在 揭示全球变暖与中国降水的内在联系.

本文使用中国气象局国家气候中心 740 站点 1960—2000a 的日降水观测资料,对中国华北、华南 等七个气候特征区的降水量分等级进行统计分析, 揭示其内在规律.第二部分给出了相关资料和统计 方法;第三部分对中国总体情况和七个气候特征区 分别进行研究,发现日降水存在一共同特征——幂 律尾分布,且幂律尾指数在降水量 7mm 和 15mm 附 近存在两个转折点,这一现象可能在一定程度上反 应了降水的复杂性.进一步定量分析表明,各气候特 征区的幂律尾指数总体自东南向西北呈递增趋势, 这与中国降水东多西少,南多北少的空间分布特征

^{*} 国家重点基础研究发展规划项目(批准号:2004CB418300),国家自然科学基金(批准号:90411008和40325015),2005年扬州大学大学生 科技创新基金(批准号:24)和中国气象局气候变化专项(批准号:CSCF2006-5)资助的课题.

相符合,在幂律尾指数随时间的演变方面,1—7mm 降水段 东北、华北和西北地区的幂律尾指数在上世 纪 70 年代末和 80 年代末均发生突变,突变时间及 其演变趋势与 20 世纪 70 年代开始的中国北方干旱 化进程相对应,最后给出本文的结论,

2. 资料及统计方法

本文所用资料为中国气象局国家气候中心 740 站点 1960-2000a(共 41a)的日降水观测资料.为了 真实地反映降水的时空分布规律,对 740 站点资料 进行了检测 缺测较多或不满 41a 连续观测的站点, 本文没有考虑.经检测有 435 个站点满足上述要求, 对个别缺测通过插值方法补足.

1969a,1961—1970a,...,1991—2000a),统计每个滑 动窗口中降水量分别在 0—1mm,1.1—2mm,..., 28.1-29mm, 29.1mm 及以上共 30 个降水段内的天 数 $dp(h_i)$ 实际计算过程中,缺测或降水记录为 0 的天数不统计 视为无降水 因为原序列足够长 由 此而产生的偏差对统计结果影响较小),计算降水概 率 p(h_i) 即

其中 h: 为各降水段的中点值乘以 10(仅为作图需 要)即 h_i = 5,15,...,285,295,1为窗口的总长度, 本文 1 取 3652(或 3653)天.

3 结果及分析

3.1. 幂律尾指数转折

图 1 为中国 435 站点 10a(1960—1969a)的日降 水量分等级统计的结果(1961—1970a,1962—1971a 等其他时段的统计情况类似),由于 29.1mm 及以上 降水段统计跨度较大,另一方面本文集中研究微量 降水到大雨阶段,大雨到暴雨阶段另文发表,因此本 文分析时没有给出该段的统计情况,由图 1(a)可以 看出统计结果近似呈幂律尾分布 即

$$p(h_i) \sim h_i^{-\gamma} , \qquad (2)$$

其中 γ 为幂律尾指数.进一步分析可知,幂律尾指 数大小不唯一,大约在 0—7mm, 7.1—15mm, 15.1—29mm 三个降水段存在不同的幂律尾指数 即 0-29mm的日降水存在三个幂律尾指数,且相互之 间差别比较明显.

幂律尾指数的第一个转折点(以下简称转折点 ↑)在降水量 7mm 附近 图 1(b)为转折点 ↑ 之前的 部分(点1--7,γ=0.87378).幂律尾指数的第二个

图 1 中国 435 站点 1960—1969a 的统计情况 (a)点 1—29(对应 0—29mm)(b)点 1—7(对应 0—7mm);(c)点 8— 15(对应7.1—15mm)(d)点16—29(对应15.1—29mm)(横坐标 lnh;;纵坐标 lnp(h;))

转折点(以下简称转折点 II)在降水量 15mm 附近, 图 I(c)和 I(d)分别为转折点 II之前(点 8—15,γ = 1.25203)和之后(点 16—29,γ = 1.79636)的部分.对 华东、华南、华北、华中、东北、西北和西南七个气候 特征区的详细分析表明,无论是中国 435 站点的统 计结果还是七个气候特征区各自的统计结果,均存 在位于降水量 7mm 和 15mm 附近的两个明显的幂律 尾指数转折点——转折点 I 和 II,并且这一情况不 随时空变化而变化.

图 2 为西北地区 80 站点 1960—1969a 日降水量 分等级统计的结果(其他年份、地区情况与之类似), 由图 χ a)可以看出 统计结果仍然近似呈幂律尾分 布.幂律尾指数转折与中国 435 站点的统计情况类 似,分别在降水量 7mm 和 15mm 附近存在两个幂律 尾指数转折点 I 和 II 对应着三个不同的幂律值 γ , 即 0.91109 ,1.61069 和 2.91032 ,分别对应图 2(b), (c)和(d).

表1给出中国435站点和西北分区三个幂律尾 指数在不同时段的统计值,其他分区情况与表1类 (以(表略).对幂律尾指数的变化进行详细的定量分 析表明,三个降水段对应的幂律尾指数是逐渐增大 的,且相互之间差别比较明显,进一步证实了幂律转 折现象的存在. 日降水的幂律尾分布特征表明降水量少的降水 事件发生比较频繁,降水量多的降水事件发生概率 相对较小.幂律尾指数转折现象在中国区域是普遍 存在且比较稳定的,转折点的位置没有因时空变化 而变化.根据气象上对各种雨型的降水量分段标准, 转折点 [对应于小雨向中雨转变,转折点]]对应于 中雨向大雨转变.众所周知,小雨,中雨和大雨受各 尺度天气系统的影响各不相同,因此本文得到的三 个不同幂律尾指数可能对应于不同的气候背景.幂 律尾指数目前是非线性科学研究的热点,揭示了自 然科学的本质属性,但幂律尾指数所隐藏的真正物 理机理是什么,还有待于进一步深入的研究.

3.2. 幂律尾指数的时空演变特征

取每次滑动后窗口中的末尾年份为横坐标 (1969,1970,...,2000),相应的幂律尾指数为纵坐标,揭示幂律尾指数随时间的演变特征.由图3可以 看出,对应三个不同降水段,各气候特征区的幂律尾 指数大小排列有一个相对稳定的关系,转折点1之 后的部分相对稳定,由小到大依次为华南、华东、华 中、西南、东北、华北和西北,总体呈现自东南向西北 递增的趋势,这与中国降水南多北少,东多西少的空 间分布特征是一致的,这种相对稳定的排列关系可

图 2 西北地区 80 站点 1960—1969a 的统计情况 (a)点 1—29(对应 0—29mm)(b)点 1—7(对应 0—7mm)(c)点 8—15(对应 7.1—15mm)(d)点 16—29(对应 15.1—29mm)(横坐标 ln*h_i*;纵坐标 ln*p*(*h_i*))

表 1 中国 435 站点及西北分区的三个幂律尾指数

	中国 435 站点			西北分区		
年份	0—7mm	7.1—15mm	15.1—29mm	0—7mm	7.1—15mm	15.1—29mm
	点 1—7	点 8—15	点 16—29	点 1—7	点 8—15	点 16—29
1960—1969	0.87378	1.25203	1.79636	0.91109	1.61069	2.91032
1961—1970	0.87371	1.25659	1.7813	0.9078	1.59949	2.84833
1962—1971	0.87565	1.26742	1.79238	0.91412	1.62102	2.86022
1963—1972	0.87777	1.26183	1.80004	0.90847	1.61773	2.83645
1964—1973	0.8761	1.25748	1.78752	0.90452	1.64876	2.76499
1965—1974	0.87363	1.25776	1.79867	0.9081	1.65569	2.84197
1966—1975	0.87145	1.25464	1.79369	0.90233	1.66389	2.71004
1967—1976	0.86794	1.25752	1.79943	0.89647	1.72231	2.73884
1968—1977	0.86696	1.26118	1.79865	0.90273	1.73733	2.86733
1969—1978	0.86952	1.24564	1.7908	0.90458	1.70987	2.8884
1970—1979	0.8685	1.25276	1.7843	0.90584	1.68717	2.85709
1971—1980	0.87674	1.25419	1.77584	0.9271	1.76162	2.93081
1972—1981	0.88451	1.25797	1.76641	0.94489	1.79478	2.89958
1973—1982	0.88946	1.26612	1.76218	0.9653	1.82643	2.92933
1974—1983	0.89352	1.26888	1.76434	0.98204	1.81404	2.81237
1975—1984	0.90167	1.28862	1.76407	0.9977	1.86017	2.76483
1976—1985	0.90706	1.30877	1.76127	1.00665	1.83785	2.7683
1977—1986	0.9148	1.30869	1.75571	1.02201	1.81877	2.83243
1978—1987	0.91909	1.31453	1.76845	1.02639	1.83299	2.7872
1979—1988	0.92404	1.33425	1.76894	1.03478	1.87285	2.81808
1980—1989	0.92918	1.33909	1.78592	1.04681	1.90289	2.81735
1981—1990	0.92474	1.33824	1.80352	1.04764	1.86714	2.86564
1982—1991	0.92449	1.33565	1.81062	1.05203	1.87747	2.88459
1983—1992	0.92227	1.32049	1.83303	1.0495	1.83846	2.9105
1984—1993	0.92097	1.33223	1.85324	1.04911	1.87431	3.10482
1985—1994	0.91866	1.32168	1.81603	1.0522	1.82873	2.98027
1986—1995	0.91953	1.31465	1.80401	1.05997	1.8537	3.02059
1987—1996	0.91677	1.31269	1.81121	1.05269	1.88716	3.03124
1988—1997	0.91579	1.31588	1.80058	1.06122	1.90948	3.08635
1989—1998	0.90986	1.28877	1.79352	1.05613	1.88076	2.9714
1990—1999	0.90652	1.26937	1.78196	1.0484	1.89408	2.90061
1991—2000	0.90934	1.283	1.7794	1.05026	1.8884	2.86112

能在一定程度上反映了中国各气候特征区降水的气候背景(图3(b)(c)).

由图 3(a)可以看出,对应转折点 [之前(0— 7mm)的降水段,华北、东北和西北地区的幂律尾指 数随时间演变在 1979 年(以下简称突变点 [)和 1989 年(以下简称突变点Ⅱ)前后发生突变.突变点 □之前 幂律尾指数大小变化较平稳,突变点 □之 后 幂律尾指数急剧增大,到突变点Ⅱ,幂律尾指数 又逐渐变化缓慢.值得注意的是突变点Ⅱ之后的幂 律尾指数和突变点 □之前相比相差很大,显示降水 进入另一个稳态变化的时段.另外,对于突变点 II, 虽然西南地区没有华北和东北地区变化明显,但幂 律尾指数的变化趋势与华北、东北地区是一致的,因 此,中国北方地区(东北、华北和西北)降水幂律尾指 数的突变可能对应着 20 世纪 70 年代末开始的中国 北方干旱化进程,引起的可能原因是 0—7mm 日降 水的减少.

1.10 2.0 (b) (a) 1.05 1.8 1.001.6 0.95 1.4 0.90 1.2 0.85 0.80 1.0 1975 1980 1990 2000 2005 1970 1975 1985 1990 1995 2005 1985 1995 1980 2000 7 Τ (c)3.0 2 7 2.4 $2.^{-1}$ 1.8 1.5 1.21970 1975 1980 1985 1990 1005 2000 2005 7

20世纪70年代开始,中国北方地区气温不断

图 3 中国 435 站点及七个气候特征区幂律尾指数随时间演变图 (a)点 1—7(对应 0—7mm)(b)点 8—15(对应 7.1—15mm)(c)点 16—29(对应 15.1—29mm)[B.中国 435 站点 ;C.华南 ;D.华中 ;E.华北 ;F.东北 ;G.华东 ;H.西 南 ;J.西北.横坐标 滑动窗口末尾年份 T;纵坐标 幂律尾指数 γ)

升高,干旱化形势日趋严重,很多学者对此做了大量 研究 有学者提出这种干旱化进程可能是对全球变 暖的一种响应^[4].黄荣辉等^[5]指出,除了 Ymamoto 等 指出的 50 年代北半球气温发生的一次气候跃变之 外 从中国降水的变化情况来看 似乎在 60 年代中 期和 70 年代末又发生了两次跃变 这两次跃变在中 国华北地区的降水变化上表现尤其明显,中国华北 地区降水 80 年代明显比 70 年代少,70 年代末干旱 加剧 这种趋势一直延续到 80 年代末和 90 年代初, 杨修群等^[6]也指出由华北降水年积累距平指数和年 代际变化指数可以看出,华北降水在20世纪60年 代中期和 70 年代末期有两次异常跃变,1980 年及以 后主要为旱年,重旱年,第二次由湿润期进入干旱期 发生在 70 年代末期,持续时间很长,从 1978 年至 今.且有继续持续下去的趋势,这两个论断中所提出 的跃变时间——70年代末,对应着我们检测到的突 变点 ↓ 并且干旱化趋势的延续与我们检测到的幂 律尾指数一直没有恢复到突变点↓之前的水平相符

合.对东北^[4]和西北^[12]地区的大量研究也表明,这 两个地区的降水在 70 年代末和 80 年代初均出现转 折,降水量明显减少,尤其是 0—7mm 日降水的减 少.由以上对比分析可以看出,北方地区(东北、华北 和西北)日降水幂律尾指数的突变可能对应着从 20 世纪 70 年代开始的中国北方干旱化进程.

值得注意的是,日降水幂律尾指数的突变只在 中国北方地区(东北、华北和西北)有所反映,中部和 东部地区没有明显变化,对应着中国在全球变暖大 背景下温度变化的区域性特征^[3](以东北、华北和西 北地区最为明显).

4.结 论

 1. 本文对中国 435 站点和七个气候特征区各 自的日降水观测资料分等级进行统计分析 ,发现均 存在幂律尾分布特征 ,揭示了在降水量 7mm 和 15mm 附近幂律尾指数存在两个明显的转折点 1 和 并且这一情况不随时空变化而变化,是降水具有的本质属性.幂律尾指数总体上自东南向西北呈递 增趋势,与中国降水南多北少,东多西少的空间分布 相符合.

2. 对应转折点 [之前的部分(0—7mm 降水量 段),中国北方地区(东北、华北和西北)日降水幂律 尾指数随时间演变存在突变 ,突变点 [(1979 年)之

- [1] Shi N 2005 Chin. Phys. 14 844
- [2] Dai X G , Fu C B , Wang P 2005 Chin . Phys. 14 850
- [3] Qing D H 2003 Natural Science Foundation of China 1 1 (in Chinese)[秦大河 2003 中国科学基金 1 1]
- [4] Sun Y G, Bai R H, Xie A 2004 Acta Scientiarum Naturalium Universitatis Pekinensis 5 806(in Chinese)[孙永罡、白人海、谢 安 2004 北京大学学报(自然科学版) 5 806]
- [5] Huang R H, Xu Y H, Zhou L T 1999 Plateau Meteorology 18 465
 (in Chinese)[黄荣辉、徐予红、周连童 1999 高原气象 18 465]
- [6] Yang X Q, Xie Q, Zhu Y M et al 2005 Chinese Journal of Geophysics 48 789 (in Chinese)[杨修群、谢 倩、朱益民等 2005 地球物理学报 48 789]
- [7] Xu G Y, Yang X Q, Sun X G 2005 Chinese Journal of Geophysics
 48 511 (in Chinese)[徐桂玉、杨修群、孙旭光 2005 地球物理 学报 48 511]
- [8] Shi N , Chen L W , Xia D D 2002 Advances in Atmospheric Sciences 6 993
- [9] Zhu J H , Wang S W 2001 Advances in Atmospheric Sciences 5 1043
- [10] Song L C , Zhang C J 2003 J. Glaci. Geocr 2 143 (in Chinese)

前 幂律尾指数变化较平稳,其后幂律尾指数急剧增 大 到突变点 II(1989年)之后,幂律尾指数逐渐变 化缓慢,但与突变点 I之前相比有较大差异,维持在 另一个稳态的变化.这一现象可能对应着 20世纪 70年代末开始的中国北方干旱化进程,导致的原因 可能是 0—7mm 日降水的减少.

[宋连春、张存杰 2003 冰川冻土 2 143]

- [11] Li X D , Zhu Y F , Qian W H 2002 Advances in Atmospheric Sciences 6 1055
- [12] Zhao Q Y, Li D L, Li Y H 1999 Journal of Lanzhou University (Natural Science) 4 124 (in Chinese) [赵庆云、李栋梁、李耀辉 1999 兰州大学学报(自然科学版) 4 124]
- [13] Zhang F, Su B K 2002 Plateau Meteorology 5 479(in Chinese)[章 芳、苏炳凯 2002 高原气象 5 479]
- [14] Sun Y, Wang Q Q, Qian Y P et al 2002 Journal of Nanjing Institute of Meteorology 4 503 (in Chinese) [孙 燕、王谦谦、钱永 甫等 2002 南京气象学院学报 4 503]
- [15] Dai X G , Wang P , Chou J F 2003 Chin . Sci. Bull . 23 2483
- [16] Feng G L, Gong Z Q, Dong W J et al 2005 Acta Phys. Sin. 54 5494 (in Chinese)[封国林、龚志强、董文杰等 2005 物理学报 54 5494]
- [17] Shi N 2000 J. Trop. Meteor. 16 131 (in Chinese] 施 能 2000 热带气象学报 16 131]
- [18] Feng G L , Chou J M , Dong W J 2004 Chin . Phys. 13 1582
- [19] Feng G L , Dong W J 2003 Chin . Phys. 13 413

Analysis of the spatio-temporal characteristics of precipitation of China based on the power-law exponent *

Zhi Rong^{1,2,)} Gong Zhi-Qiang^{1,3,)} Wang De-Ying^{4,)} Feng Guo-Lin^{2,3,†}

1) (Department of Physics , Yangzhou University , Yangzhou 225009 , China)

2) (Key Laboratory of Regional Climate-Environment Research for Temperature East Asia,

Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China)

3)(Key Laboratory of National Meteorological Bureau Climate Research Center, Beijing 100081, China)

4) (Chinese Academy of Meteorological Sciences, Beijing 100081, China)

(Received 17 February 2006; revised manuscript received 26 April 2006)

Abstract

The daily precipitation observational data of 740 stations from 1960a to 2000a Which provided by National Climate Center of Chinese Meteorologial Administration, are divided in sections and statistically analyzed. A common feature is revealed——the power-law distribution, and different precipitation corresponds to different power-law exponent; this to a certain extent reflects that different precipitation have different climate backgrounds and control systems. The power-law exponents of the seven climate regions of China show the trend of increase from southeast to northwest, this corresponds to the spatial characteristic of precipitation of China——more in east and less in west, more in south and less in north. The analysis on the characteristic of the temporal evolvement of the power-law exponent shows that the abruption points of the power-law exponent of northeast, east, and northwest of China correspond to the drying trend of northern China starting from 1970s.

Keywords : power-law exponent , abruption , drying trend of northern China PACC : 9260X

^{*} Project supported by the National Key Program Development for Basic Research (Grant No. 2004CB418300), the National Natural Science Foundation of China (Grant Nos. 90411008 and 40325015), the Science and Technology Innovation Foundation for Academician of Yangzhou University of 2005 (Grant No. 24) and the Climate Change Special Foundation of China Meteorological Administration (Grant No. CSCF2006-5).

[†] E-mail : feng_gl@sina.com