"强光一号"钨丝阵 Z 箍缩等离子 体辐射特性研究*

邱爱慈¹²) 蒯 斌¹²) 曾正中²) 王文生²) 邱孟通²) 王亮平²) 丛培天²) 吕 敏²)

1) 西安交通大学电气工程学院,西安 710049)
 2) 西北核技术研究所,西安 69 信箱 10 分箱 710024)
 (2005 年 9 月 21 日收到 2005 年 11 月 26 日收到修改稿)

在"强光一号"装置驱动电流峰值 1.4—2.1MA、上升时间 80—100ns 条件下,研究了不同丝阵直径、丝数及丝直径的钨丝阵负载 Z 箍缩等离子体的辐射特性.用自行研制的测试系统对等离子体辐射参数进行了诊断.实验获得的最大 X 射线总能量为 34kJ,最大峰值功率为 1.28TW.得到了一些关于钨丝阵 Z 箍缩等离子体辐射特性的规律性认识.

关键词:钨丝阵,Z箍缩,等离子体辐射 PACC:5255E,5270L

1.引 言

Z 箍缩技术的基本原理是利用脉冲高电压大电 流放电产生等离子体 ,等离子体在大电流自磁场的 作用下轴向箍缩 形成高温高密度等离子体 产生脉 $h \times y$ 射线,但是由于受到等离子体不稳定性问题的 限制,以及脉冲功率技术水平的制约,在上世纪80 年代以前研究工作进展不大;直到1980年以后,随 着人们对内聚爆等离子体磁流体动力学不稳定性深 入的研究 以及高功率脉冲加速器的发展 才在高功 率Z箍缩技术研究方面取得重大突破.例如 在美国 圣地亚国家实验室的 7.装置上进行的钨丝阵箍缩实 验^[1],在驱动电流为 20MA 的条件下,得到的 X 射线 峰值功率达到 290TW X 射线能量达到 2MJ. 由高功 率 Z 箍缩产生的强脉冲 X 射线,可以应用于研究材 料的软 X 射线的热力学效应和系统电磁脉冲效应, 研究与惯性约束聚变相关的辐射对称化技术 ;还可 以用于研究材料的不透明度、极端温度和压强下材 料的状态方程以及其他高能密度物理的基础问题 等^{2]}.由于应用前景广阔 近年来受到高度重视.

本文在"强光一号"加速器驱动电流峰值 1.4— 2.1MA、上升时间 80—100ns 条件下,实验研究了不 同丝阵直径、丝数及丝直径的钨丝阵负载 Z 箍缩等 离子体的辐射特性,用自行研制的测试系统对不同 初始参数的钨丝阵Z箍缩等离子体负载的辐射性能 进行了诊断,得到了一些关于钨丝阵Z箍缩等离子 体辐射特性的规律性认识.但是由于受到实验条件 与诊断设备性能的制约,我们所开展的研究及取得 的结果只是初步的,还有大量的研究工作有待进一 步深入开展.

2. 物理过程和负载设计原则

产生强脉冲软 X 射线辐射的高功率 Z 箍缩技 术可以用以下几个物理过程描述:首先,由高功率 脉冲装置产生的电流脉冲加到处于真空腔中心处的 圆柱状负载上(金属丝阵列或喷气负载),使之迅速 加热电离成等离子体,然后,在驱动电流产生的磁场 作用下,引起等离子体向内聚爆,电能转换为粒子动 能,最后,当等离子体在内爆轴附近停滞时,动能和 电能转换成热能,并产生 X 射线辐射.

利用高功率 Z 箍缩技术产生高温高密度等离子体时,等离子体温度的典型值在 0.01—10keV,因此 需要将等离子体圆柱壳层加速至 10⁷ cm/s 量级以 上.根据 0 维近似下圆柱壳层的运动方程

$$m\ddot{r} = -\frac{\mu_0 I^2(t)}{4\pi r}$$
; $r|_{t=0} = r_0$, $\dot{r}|_{t=0} = 0$ (1)

^{*} 国家自然科学基金重点项目(批准号:10035020)资助的课题.

可近似得到下面的关系式:

$$\frac{I_{\rm m}^2 \tau^2}{m r_0^2} = A , \qquad (2)$$

式中 *I*_m 和 *τ* 分别是脉冲功率源注入负载的电流幅 值和脉冲上升时间 ,*m* 和 *r*₀ 分别是圆柱形负载的线 质量和初始半径 ,单位分别为 g/cm 和 cm ,*A* 是常 数 ,取值与脉冲驱动源输出电流波形相关 ,通常称之 为负载的初始参数定标常数 ;该关系式对于设计 Z 箍缩负载的初始参数起着重要的作用.

通常,在采用脉冲形成线技术对等离子体负载 馈电时存在下列关系式:

$$2U - IZ = IR_{\rm pl} + \frac{d(II)}{dt} + L_0 \frac{dI}{dt}, \quad (3)$$

式中 U 是形成线输出电压波 ,Z 是形成线阻抗 ,R_{pl} 是等离子体电阻 ,L 是与等离子体运动有关的时变 电感 ,L₀ 是输出部件的固有电感 .输入等离子体的 能量可通过变换上式得

$$\int_{0}^{t} (2U - IZ) I dt - \frac{(L + L_0)I^2}{2}$$
$$= \int_{0}^{t} I^2 \left(R_{\rm pl} + \frac{dL}{dt} \right) dt = E_{\rm pl}(t).$$
(4)

由此可得,要得到电磁能转换为等离子体动能 乃至辐射能的最大转换效率,必需在电流最大值附 近实现聚爆压缩,因此,等离子体能量可以这样估 算,即

$$E_{\rm pl} \approx \left(\frac{\Delta L}{2} + \bar{R}_{\rm pl}\Delta t\right)\bar{I}^2$$
, (5)

式中 Δt 是等离子体在最终压缩状态的"生存"时间, \bar{R}_{μ} 是按照"生存"时间取平均的等离子体电阻, $\bar{I}^2 \approx I_m^2$ 是按照"生存"时间取平均的电流平方, ΔL 可由下式计算出:

$$\Delta I(nH) = 2I(cm)\ln\left(\frac{r_0}{r_1}\right), \qquad (6)$$

式中 *1* 是等离子体负载长度 ,r_r 是等离子体负载的 最终压缩半径.

3. 实验装置

"强光一号"加速器在开展 Z 箍缩实验研究时, 整个装置由脉冲功率源和 Z 箍缩二极管两部分组 成.其中,脉冲功率源主要由直线型脉冲变压器, 1.4Ω水介质脉冲形成线,水介质单通道自击穿开 关 0.75Ω水介质脉冲压缩线,9 通道水介质自击穿 开关,水介质脉冲传输线等部件组成 Z 箍缩二极管 由磁绝缘真空同轴线和丝阵负载两部分组成.整个 系统的构成框图参见图 1.

图 1 整个装置系统构成框图

2.05m,2.06m,闪烁体加 GD-40 离源的距离为 1.35m.使用自行研制的镍薄膜量热计测量 X 射线 总能量,探测器离源的距离为 3.0m,总能量测量的 相对标准不确定度小于 20%^[3].将电流和 X 射线波 形进行时间关联,可以得到内爆时间,其定义为电流 起始至 X 射线峰值的时间.

4. 钨丝阵 Z 箍缩等离子体辐射特性实 验结果

在驱动电流上升时间~100ns、峰值1.4— 2.1MA条件下,进行了不同丝直径(5μm和8μm),丝 数(10,12,24,32,48,54,64,78根),丝阵直径(φ18, φ12,φ10),钨丝阵Z箍缩等离子体辐射特性的实验研究.主要目的是研究辐射特性与负载、驱动电流参

实验中脉冲功率源的主要参数:直线型脉冲变 压器初级储能电容器充电电压 40—45kV,次级输出 电流峰值 165—195kA,1.4Ω水介质脉冲形成线的充 电电压 2.4—2.7MV 0.75Ω水介质脉冲压缩线的充 电电压 2.4—2.7MV,传输到二极管上的能量为 80— 110kJ,短路电流峰值 3MA,实际驱动 Z 箍缩负载电 流 1.4—2.1MA、上升时间 80—100ns.

实验研究中,采用电阻分压器、电容分压器和两 个罗可夫斯基线圈(分别位于阳极直径 450mm 和 100mm)分别测量二极管的电压和流过负载的电流 波形,测量误差约 10%.利用 5 个过滤型 X 射线二 极管(XRD)和自行研制的闪烁体加 GD-40 光电管平 能谱响应的功率测量系统测量 X 射线时间谱,探测 器的时间响应小于 2ns.5 个 XRD 的测量范围 50— 1100eV,离源的距离分别为 1.28m,0.93m,1.37m, 数的关系,并在强光一号上获得最大的 X 射线总能 量和功率输出.

1)进行了固定丝阵直径(∮12mm),驱动电流
 (1.6MA)和上升时间(~100ns),改变丝数和线质量

的 Z 箍缩实验,每种状态共进行了 5 次有效的实验, 典型的实验结果见表 1 与 图 2.从实验结果可知,在 丝数为 48 根(丝间距 0.785mm)时,辐射总能量和功 率均较大.

表1	在基本相同电流参数(1.6MA ,-	~ 100ns	和丝阵直径时	不同丝数的 Z 箍缩辐射特性
----	------------	----------	---------	--------	----------------

海口	丝数(丝间距	线质量	内爆时间	辐射总能量	平均辐射功率	总的能量转
池与	/mm)	(μg/cm)	/ns	/kJ	/TW	换效率/%
04071	24(1.57)	90.9	107	33.7	0.83	12.6
04068	48(0.785)	181.8	141	31.6	1.28	11.8
04066	48(0.785)	181.8	139	33.5		12.5
04075	54(0.698)	204.6	151(1.54MA)	25.6	0.75	9.6
04079	54(0.698)	204.6	145	22.2	0.60	8.3

图 2 不同丝数时 X 射线功率波形图 (曲线 1 为 04071 炮 (\$ 12 24 根) :曲线 2 为 04068 炮(\$ 12 A8 根) ;曲线 3 为 04075 炮 (\$ 12 54 根))

2)进行了两组基本固定丝阵负载线质量,改变 丝数的 Z 箍缩实验,每种状态共进行了 5 次有效的 实验,典型的实验结果见表 2 与图 3.

图 3 X射线波形 线质量约为 190µg/cm)(曲线 1为 04212炮; 曲线 2为 04068炮)

3)进行了基本固定 mr₀、驱动电流(1.6MA)上 升时间(~100ns)改变丝阵直径和丝数的 Z 箍缩实 验,每种状态共进行了 5 次有效的实验,典型的结果 见表 3 与图 4.图 4(b)表明在该状态下有时会出现 二次箍缩的情形.

构早	负载电流	上升时间	线质量	丝阵直径	丝直径	丝数(丝间	内爆时间	辐射总	平均辐射
池与	/MA	/ns	(μg/cm)	/mm	$/\mu m$	距离/mm)	/ns	能量/kJ	功率/TW
04068	1.61	97	181.8	12	5	48(0.785)	141	31.6	1.28
04212	1.82	99	193.8	12	8	16(2.356)	133	22.1	0.42
04223	1.63	102	116.3	10	8	12(2.618)	124	25.4	0.37
04228	1.55	94	121.2	10	5	32(0.982)	121	23.4	0.81

表 2 负载线质量基本不变 改变丝数的 Z 箍缩辐射特性

表 3 电流参数和 mr₀² 基本保持一致时 不同丝阵直径和丝数的 Z 箍缩辐射特性

炮号	丝阵直径	丝数(丝间距	线质量	内爆时间	辐射总能量	辐射平均功率
	/mm	/mm)	/(μg/cm)	/ns	/kJ	/TW
04076	18	24(2.365)	90.9	137	27.4	0.65
04075	12	54(0.698)	204.6	151	25.6	0.75
04085	10	78(0.403)	295.4	134(1.67MA)	24.8	1.12

图 4 (a)X 射线波形 (曲线 1为 04075 炮;曲线 2为 04076 炮;曲线 3为 04085 炮)(b)X 射线功率波形图(03256 炮)(丝阵参数: φ18,24 根, 8μm 钨丝,1.7MA)

4 测量了不同参数钨丝阵负载时 X 射线与电流的时间关联波形,见图 5,进而计算了 Z 箍缩内爆

时间与驱动电流之间的关系 结果见图 6.表 4 列出了 丝阵直径为 \$18mm 时内爆时间随丝阵质量的变化.

表4 丝	阵直径为	¢18mm	时内爆时	间随丝阵履	质量的变化
------	------	-------	------	-------	-------

	负载电流		丝阵线质量	内爆时间	X射线峰值与电流峰值
炮号	/MA	丝数目	(μg/cm)	/ns	的时间差/ns
03007	2.1	10	193.8	120	24
02204	1.6	13	251.9	164	47
03009	2.1	40	303.2	173	75
03008	2.1	20	387.6	188	89
03264	1.6	24	465.1	228	159
(a))	
2->			2->	<u>.</u>	
			.1 F		Ŧl.l

图 5 (a)02194 炮负载电流与 X 射线时间关联波形 1.5MA 96.9µg/cm , \$\phi18—10(8µm 钨丝)(波形 1 为 X 射线, 波形 2 为电流波形)(b)04085 X 射线和电流波形关联图(1.7MA 295.4µg/cm , \$\phi10—78(5µm 钨丝)(图中上图为电流波形、下图为 X 射线波形)

5.结 论

5920

 1. 从实验结果(表 3 与图 4)可以看出,当负载 的初始参数定标常数 A 基本一致时,Z 箍缩的辐射 总能量很接近,但 X 射线波形随着丝数(丝间距离) 不同而不同,总的趋势随着丝数增多,间距减小,X 射线脉冲波形前沿变陡、脉宽变窄.X射线辐射功率 在线质量基本固定时,随丝间距的减小而增大.内爆 时间随着负载质量的增加而增加,随着驱动电流的 增大而减小.X射线波形有时出现双峰,尤其在丝数 较少时更为明显,说明有两次箍缩现象存在.

图 6 内爆时间和驱动电流之间的关系

2. 在"强光一号"装置的驱动电流参数下,得到 了最佳的辐射总能量和功率输出.辐射总能量最大 为 34kJ 峰值功率最大为 1.28TW,总的能量转换效 率约为 12.6%. X 射线总能量 E_x 基本符合 E_x - I_m^2 定标曲线.见图 7 和表 5.

图 7 "强光一号"Z 箍缩实验结果与国外比较

3. 辐射总能量 E_x 大于内爆动能 E_k ,根据文献 [13] 拾出的公式 $E_k = 0.9I_m^2 \ln(r_0/r_f)$ 可计算出 , E_x/E_k 约为 3 ,参见表 6.说明辐射总能量不仅取决于内 爆动能 ,还与其他因素(如内爆滞止后电流对负载的 继续加热情况)有关.

表 5 "强光一号 '装置 Z 箍缩等离子体辐射实验结果与国外装置结果比较

壮军夕称	合共社判	负载长度	负载长度 驱动电流		压缩比 * X射线总	
衣且石仦	贝和纳科	l/cm	$I_{\rm m}/{ m MA}$	$r_0/r_{\rm f}$	/kJ	kJ/cm
强光一号[4]	氪气	4.0	1.4	14	62	15.5
强光一号	钨丝	2.0	1.6	10	32	16.0
GIT-4 ^[5]	钨丝	4.0	1.5	6	30	7.5
DE ^[6]	Ar 气	4.0	3.5	15	140	35.0
Blackjack5 ^[7]	Ar 气	3.0	3.5	20	200	66.7
Saturn	钨丝[8]	2.0	6.6	20	450	225
	铝丝[9]	2.0	8.0	20	1060	530
	钨丝[10]	2.0	8.0	25	750	375
Z ^[11]	钨丝	2.0	18	25	1800	900

*压缩比是利用图像诊断系统得到的实验结果[12].

表 6 "强光一号"上 Z 箍缩产生的 X 射线辐射总能量与动能的比较

合裁な料	负载长度	驱动电流	压缩比	X射线总能量	内爆动能	E / E
J1 年1 171 111	<i>l/</i> cm	/MA	$r_0/r_{\rm f}$	$E_{\rm x}/{ m kJ}$	$E_{\rm k}/{ m kJ}$	L_x/L_k
钨丝	2.0	1.6	10	30.2	10.5	2.9
钨丝	2.0	1.5	10	28.6	9.3	3.1

4. 理论分析与实验研究结果显示^[14],对一定的 驱动装置来说,存在一个较佳的丝阵参数范围,其辐 射功率和总能量均较大;在"强光一号"装置现有的 参数与国内金属细丝生产能力(国内最细的钨丝直 径是 5μm)条件下,采用丝间距小于 0.8mm、丝数为 48 根(线质量 180μg/cm)的钨丝阵负载,获得了最高 的辐射功率和总能量,如果能够进一步减小单丝直 径,使得负载线质量更小,估计会得到更好的结果.

 [1] Spielman R B , Deeney C , Chandler G A et al 1998 Phys. Plasmas 5 2105

Sanford T W L , Mock R C , Nash T J et al 1999 Phys. Plasmas 6

[2]

1270

- [3] Kuai B , Cong P T , Zeng Z Z et al 2002 Plas . Sci . Tech . 4 1329
- [4] Wang W S , He D H , Qiu A C et al 2003 High Power and Laser and

Particle Beams 15 184(in Chinese)[王文生、何多慧、邱爱慈等 2003 强激光与粒子束 15 184]

- [5] Baksht R B , Bugaev S P , Dasto I M et al 1993 Laser and Particle Beams 11 587
- [6] Riordan J C , Coleman P L , Failor B H et al 1998 Bull. Am. Phys. Soc. 43 1905
- [7] Clark W, Richardson R, Brannon J et al 1982 J. Appl. Phys. 53 5552
- [8] Deeney C, Nash T J, Spielman R B et al 1997 Phys. Rev. E 56 5945
- [9] Douglas M R , Deeney C , Spielman R B et al in IEEE Conference

Record-Abstracts , 1999 IEEE International Conference on Plasma Science , June 20-24 , 1999 , Monterey , CA , p230

- [10] Deeney C , Coverdale C A , Douglas M R et al 1999 Phys. Plasmas 6 3576
- [11] Deeney C , Douglas M R , Spielman R B et al 1998 Phys. Rev. Lett. 81 4883
- [12] Qiu M T, Lv M, Wang K L et al 2003 High Power and Laser and Particle Beams 15(1)102(in Chinese] 邱孟通、吕 敏、王奎录 等 2003 强激光与粒子束 15(1)102]
- [13] Zeng Z Z , Qiu A C 2004 Chin . Phys. 13 201
- [14] Duan Y Y, Guo Y H, Wang W S et al 2005 Chin. Phys. 14 1856

Study on W wire array Z pinch plasma radiation at qiangguang- I facility *

Qiu Ai-Ci¹⁽²⁾ Kuai Bin¹⁽²⁾ Zeng Zheng-Zhong² Wang Wen-Sheng²

Qiu Meng-Tong²) Wang Liang-Ping²) Cong Pei-Tian²) Lü Min²)

1 X School of Electrical Engineering , Xi 'an Jiaotong University ,Xi 'an 710049 , China)

2 Northwest Institute of Nuclear Technology, Xi 'an 710024, China)

(Received 21 September 2005; revised manuscript received 26 November 2005)

Abstract

Experimental study on plasma radiation characteristics of W wire array Z pinch with different initial parameters performed on Qiangguang-I pulsed power generator of 1.4-2.1 MA current with 80-100 ns rise time is reported. The generator configuration and the diagnostic system for the experiments are briefly described. The total X-ray energy and peak power have been measured , and the maximum of X-ray energy and peak power are 34kJ and 1.28TW , respectively. In additional , the main results and conclusions are discussed also.

Keywords : W wire array , Z-pinch , plasma radiation PACC : 5255E , 5270L

^{*} Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 10035020).