北京同步辐射 3B3 中能束线 X 射线 探测系统性能研究

易荣清 杨国洪 崔延莉 杜华冰 韦敏习 董建军

(中国工程物理研究院激光聚变研究中心,绵阳 621900)

赵屹东 崔明启 郑 雷

(中国科学院高能物理研究所,北京 100049) (2006年2月22日收到 2006年8月21日收到修改稿)

北京同步辐射装置(BSRF)的 3B3 中能束线的应用,在国内首次提供了一台能区在 2—6 keV 范围、性能优良的 单色 X 射线光源.对光源的性能进行了研究,并完成了 X 射线探测器(XRD)灵敏度、滤片厚度、多种晶体衍射效率 以及成像板能量响应等指标的标定.XRD 标定的相对不确定度好于 7% 滤片厚度的不确定度小于 3.6%.

关键词:中能X射线,同步辐射,标定 PACC:0762,0785,0620H

1.引 言

在惯性约束聚变(ICF)实验研究中,激光等离子 体产生的 X 射线是一个重要的物理量和研究对象, 定量测量 X 射线发射的时间、总量和能量范围可以 为 ICF 的研究提供重要的物理信息^[1-11].在实验中 使用了多种 X 射线探测系统:X 射线探测器(XRD) (Al ,Au ,Cr ,C),滤片、平面镜、多层镜、胶片、电荷耦 合器件(CCD),透射光栅、条纹相机、分幅相机、晶体 谱仪和单能成像系统等等.激光的吸收、X 射线转 换、辐射温度、辐射输运、X 射线烧蚀、不透明度、X 射线时间过程、超热电子等研究,都是通过 X 射线 的定量诊断来实现的.要获取更多更有用的实验数 据,需要性能技术指标清楚的诊断设备,所以,测试 系统的精密标定是 ICF 实验研究中的重要一环.

目前,同步辐射源被认为是最理想的光源,世界 上各大实验室都在同步辐射源上建立了自己的专用 标定束线.比如:利弗莫尔国家实验室(LLNL)在斯 坦福大学国家同步辐射装置上建立了三条专用标定 束线,分别是紫外光源、软 X 射线源和硬 X 射线源. 洛斯阿拉莫斯国家实验室(LANL)在布鲁克海文国 家实验室(BNL)的国家同步辐射光源(NSLS)上建立 了四条专用束线,我们曾经两次在其中的两条束线 (X8A 和 U3C)上进行过监测系统的比对和软 X 射线 条纹相机的静态性能实验研究.一些国家进行 ICF 研究的实验室在同步辐射源上建立了专用标定束线.

探测器过去是在 Henke 源和质子荧光源上标定 的 Henke 源的缺点是强度低、单色性差、能点少、光 源稳定性差 在研究工作中很快被淘汰,质子荧光 源的研制成功 在单色性和强度方面得到了提高 但 光源的强度仍然不能满足大多数软 X 射线探测系 统的标定,随着社会的发展和科学的进步,在北京 建立了正负电子对撞机(BEPC)利用高能电子加速 转弯产生的同步辐射光源建立了北京同步辐射装置 (BSRF),并建立了 3W1B 软 X 射线光束线和 3B3 中 能 X 射线光束线. 在软 X 射线光束线上,利用平面 变间距光栅分光 采用不同材料的滤光片滤掉高次 谐波 获得单色性较好、强度较高、能区较宽、能点连 续可调的软 X 射线标定源 . 在中能束线上 ,利用双 晶单色器分光获得了性能优良的中能 x 射线源, 在 这两个光源上 我们进行了光源的性能研究和 XRD 的标定实验 取得了较大的进展.

2. 光源的结构和性能研究

北京同步辐射 3B3 中能束线是由中国科学院高 能物理研究所和中国工程物理研究院激光聚变研究 中心共同投资,由中国科学院高能物理研究所同步 辐射实验室承建的一台大型实验装置(图1),该装 置包括光束线前端区、光束线 前置镜、聚焦镜、精密 狭缝、光束位置监测器、双晶单色器、真空差分系统 和控制系统等等). 3B3 是我国大陆建造的第一条 同步辐射中能 X 射线光束线,可用于 1.5—6.0 keV 能区范围相关探测器谱响应及灵敏度标定以及该能 区谱学方面的研究,在基础科学研究和国防科学研 究中具有重要的意义.

图 1 北京同步辐射 3B3 中能 X 射线束线系统

3B3 中能束线利用前置镜进行能量截取、压弯 柱面镜实现双向聚焦、两队平面分光晶体覆盖全部 能量范围,并采用有效方法抑制高次谐波.利用 AXUV-100型硅光二极管,得到了光源的强度谱如图

图 2 束流在 100 mA 条件下光源的强度谱

2 所示. 利用物质的吸收特性,给出了光源的能量 分辨测量结果,如图 3 所示.光源的技术指标如下: 能量范围为1.5-6.0 keV,光谱强度为 $10^{10}-10^{11}$ s⁻¹,能量分辨率达1000-3000,高次谐波小于 1% (2.1-6.0 keV).

图 3 光源的能量分辨测量结果 (a)为 NaCl 吸收谱 (b)为 Na₂SO₃ 吸收谱 (c)为 V₂O₅ 吸收谱

3. 光源强度测量

光源的强度采用已经标定的 AXUV-100 型硅光 二极管作标准进行定量测量 ,AXUV-100 型硅光二极 管利用电离室标准探测器^[4]进行标定 ,实验结果如 图 4 所示. 电离室标准探测器是自行研制的 ,结构 如图 5 所示 ,其标准探测器的不确定度小于 5%.为 了提高标准探测器的标定精度 ,降低不确定度 ,在强 度测量中采用了以下五种措施.

1)在电离电流、探测器输出电流的测量中选用 6517A型弱电流计,而且采用同一台电流计同时对 上述电流进行测量.为了提高电流测量的可靠性,在 光路中设置 Ni 网探测器,随时监测光强的变化.电 流测量取 10 次平均,不确定度小于 1.5%.

2)为了降低气体压强梯度对实验结果的影响, 首先将电离室抽至 3 × 10⁻⁴ Pa 高真空,然后喷气清 洗三次,补气至所需压强,关闭进气、排气阀门,密封 5 min 后开始读取数据.

3)为了降低气体杂质的影响,选用的工作气体 纯度达到 99.99%.

4)为了降低温度的影响,作了专门的实验.实

图 4 AXUV-100 型硅光二极管标准探测器的能量响应

验表明,温度变化±1℃,在取对应能点的实验数据 期间对相对不确定度的贡献小于0.2%.

5)为了降低光源稳定性的影响,对光源的能量 分辨和高次谐波进行测量.实验结果表明,高次谐波 可以忽略,能点偏移全程小于1 eV,能量分辨率优于 1000.在光路中增加2 µm的碳滤片,有效地消除了 杂散光.通过上述措施,可以给出标准探测器的不 确定度小于5%.

图 5 电离室标准探测器结构示意图

4. 光源的应用

4.1.XRD 的标定

在 3B3 中能束线上 利用新的标定装置,光源的 强度由 AXUV-100 型硅光二极管标准探测器给出, 探测器的输出信号用 6517A 型电流计记录,通过比 较法可以给出 XRD 的灵敏度.

为了保证探测器测到的光强与标准探测器测得的光强一致,在光路中使用直径 5 mm 的光阑,由于 AXUV-100型硅光二极管标准探测器的灵敏面为 10 mm × 10 mm, XRD 的光阴 元 径为 10 mm,光斑的 直径为 5 mm ,整个光斑都在测量范围内 ,所以探测 器测到的光强与标准探测器测得的光强是一致的.

Au 阴极的 XRD 和 Al 阴极的 XRD 的标定结果 如图 6 所示,在 2.1—6 keV 能区,由于探测器信噪 比较高、光源的能量分辨率较高、高次谐波较小、暗 电流较低,实验结果较为理想.从图 ((a)可以看出, 实验结果与 LLNL 的实验结果一致,尤其 Au 阴极的 XRD 的标定,观察到了许多 Au 的吸收边,如图 ((b) 所示.对多个 Al 阴极的 XRD 的标定,发现它们的灵 敏度并不完全一致,说明每个 XRD 都有自身的特殊 性,为了获得准确的实验数据,每一个探测器都应该 进行标定.

由于标准探测器的不确定度小于 5%,探测器

6290

图 6 XRD 灵敏度标定曲线 (a)为 Al 阴极 (b)为 Au 阴极

的输出信号由 6517A 型弱电流计给出,其测量不确 定度小于 1%. 探测器的暗电流约为 5×10^{-15} A,信 号电流为 5×10^{-12} — 5×10^{-11} A,探测器的信噪比大 于 100,所以,信号测量的不确定度小于 1%. 光源 的能量分辨率优于 1000,光子能量的不确定度小于 0.1%. 高次谐波小于 1%,所以,由于高次谐波引 起的测量不确定度小于 1%. 根据不确定度合成规 则,XRD 标定的相对不确定度优于 7%.

4.2. 滤片的厚度标定

滤光片在软 X 射线能谱仪中是关键的元件之 —^[1],它对于 X 射线和 X 射线谱的测量是非常重要 的.以往确定滤光片的厚度有两种方法:一是根据 称重的方法来确定滤片的厚度,二是通过测量 X 射 线的透过率来确定滤片的厚度.第一种方法误差较 大,第二种方法对光源的要求较高,要求光源具有较 高的能量分辨率和强度、较小的高次谐波、测量探测 器具有较大的线性动态范围.中能束线的建立,为 标定滤片的厚度提供了重要的条件. 滤片厚度的标定采用测量滤片对单能光子的透 过率来进行.在 3B3 中能束线上,利用新的标定装 置,光源的强度由标准探测器给出,探测器的输出信 号用 6517A 型弱电流计记录.

实验中标定了多种滤片,其典型结果如图 7 所 示,由于光源具有较高的能量分辨率和强度、较小的 高次谐波,所以滤片标定结果极为理想.从实验结 果看,理论计算与标定结果一致性较好.通过不同 的能点来定义滤片的厚度,不同能点透过率的偏差 列于表 1.从不同能点透过率的偏差看,测量结果是 可信的.通过计算,透过率的偏差小于 1%,滤片厚 度的不确定度小于 3.6%.

图 7 Ni 滤片的透过率测量结果与理论结果的比较

表1 不同能点透过率的偏差

光子能量/eV	理论计算值	实验值	偏差
2100	0.64	0.65	0.01
2200	0.67	0.68	0.01
2300	0.70	0.71	0.01
2400	0.73	0.74	0.01
2500	0.75	0.75	0.00
2600	0.77	0.77	0.00
2700	0.79	0.79	0.00
2800	0.81	0.81	0.00
2900	0.82	0.82	0.00
3000	0.84	0.83	0.01
3100	0.85	0.84	0.01
平均偏差			0.005

4.3. 平面晶体积分衍射效率的标定

平面晶体谱仪是激光等离子体实验的重要诊断

工具,而晶体是谱仪的关键色散元件,确定晶体的 衍射效率对于实验中确定等离子体的参数是非常重 要的,也是数据处理和理论分析的基础.利用 3B3 中能束线,成功地研究了晶体的衍射效率.

采用固定入射光子的能量、大致设置晶体的角度 利用探测器扫描寻找衍射峰,通过几何关系确定 晶体的入射角度. 然后用 AXUV-100 型硅光二极管 标准探测器测量光源的强度,探测器的输出信号用 6517A 型电流计记录,并且在光路中设置 Ni 网探测 器 时时监测光源强度的变化.通过归一化处理,可 以给出任何时刻光源的强度.

图 8 为晶体的扭摆曲线.在 2—6 keV 的间隔 里,PET 晶体的半高宽变化较小,基本在 0.003 rad 附近,峰值的衍射效率也在 10% 附近;积分反射效 率在 3 keV 左右有一个最小值,往短波、长波端均上 升(表 2),这些与文献中的结果符合很好.

图 8 在光子能量为 4104 eV 处晶体的扭摆曲线

表 2	PET 晶体峰值的衍射效率和积分衍射效率

光子能量/eV	半高宽/rad	峰值衍射效率/10-2	积分衍射效率/10-4
2190	0.0033	10.34	4.9
3446	0.0026	10.55	5.0
4034	0.0028	11.69	5.4
4875	0.0027	14.25	6.3
5580	0.0023	15.75	6.6

4.4.BAS5000-RS 型成像板标定

成像板是一种新型类胶片可重复使用的二维辐 射探测器,主要由特殊设计的沉积在柔韧聚合物基 底上的磷光体(BaFXEu²⁺,其中的X表示卤族元素) 组成.这种磷光体可以有效地俘获并贮存 X 射线信 号,可以通过激光束对这种信号扫描以光致发光的 形式读取出来,从而完成对 X 射线等辐射信息的存 取.在实际使用中需要知道该种成像板的响应曲 线,即光致发光的数量与曝光量的关系,并且该曲线 也可反映出成像板的动态范围,所以对其标定是十 分必要的.

通过在北京同步辐射源中能束线上的标定,获 得了 BAS500-RS 型成像板在 4.6 keV 能点的响应曲 线 实验结果如图 9 所示.由于是首次对成像板标 定,对标定的方法尤其是改变曝光量方面没有选用 一种更为合理有效的方法,所以只在一个能点获得 了完整的数据,在其他能点大都饱和.进一步的标 定可考虑用光栅多层镜等光学元件来减弱源强,并 可参照标定软 X 射线胶片的方法处理数据,这样就 可以与胶片比对.

图 9 BAS5000-RS 型成像板对 4.6 keV 光子的响应曲线

5.结 论

北京同步辐射中能光束线的建成为 ICF 实验中 所用 X 射线探测系统的性能研究提供了一个重要 的条件.利用该束线已经完成了 XRD(Al ,Au)的灵 敏度、滤片厚度、多种晶体衍射效率以及成像板能量 响应等的标定,取得了较大的进展.利用该束线我 们还可以进行透射光栅衍射效率、X 射线 CCD 和条 纹相机能量响应等等的定量标定.

感谢 3B3 中能 X 射线束线的全体工作人员为本文工作 做出的贡献.

- [1] Sun K X, Yang J G 1990 High Laser and Particle Beams 2 16 (in Chinese)[孙可煦、杨建国 1990 强激光与粒子束 2 16]
- [2] Yi R Q, Sun K X 1996 *High Laser and Particle Beam* 4 202 (in Chinese)[易荣清、孙可煦 1996 强激光与粒子束 4 202]
- [3] Sun K X, Yi R Q 1997 Acta Phys. Sin 46 191 (in Chinese)[孙可 煦、易荣清 1997 物理学报 46 191]
- [4] Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 1509
- [5] Henke B L , Smith J A 1977 J. Appl. Phys. 48 1852
- [6] Sun K X, Yi R Q, Yang G H et al 2004 Acta Phys. Sin. 53 127 (in Chinese)[孙可煦、易荣清、杨国洪等 2004 物理学报 53 127]
- [7] Yang J M , Ding Y N , Zheng Z J et al 2003 Acta Phys. Sin. 52

1427 (in Chinese)[杨家敏、丁耀南、郑志坚等 2003 物理学报 52 1427]

- [8] Yang J M, Ding Y N, Yi R Q et al 2001 Acta Phys. Sin. 50 87 (in Chinese)[杨家敏、丁耀南、易荣清等 2001 物理学报 50 87]
- [9] Sun K X, Jiang S E, Yi R Q et al 2006 Acta Phys. Sin. 55 68(in Chinese)[孙可煦、江少恩、易荣清 2006 物理学报 55 68]
- [10] Sun K X, Yi R Q, Cheng J X et al 1994 Acta Phys. Sin. 43 60 (in Chinese)[孙可煦、易荣清、成金秀等 1994 物理学报 43 60]
- [11] Jiang S E Zheng Z J, Sun K X et al 2001 Acta Phys. Sin. 50 154 (in Chinese)[江少恩、郑志坚、孙可煦等 2001 物理学报 50 154]

Study of X-ray detector system characteristics on the 3B3 medium energy beamline in BSRF

Yi Rong-Qing Yang Guo-Hong Cui Yan-Li Du Hua-Bing Wei Min-Xi Dong Jian-Jun

(Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China)

Zhao Yi-Dong Cui Ming-Qi Zheng Lei

(Institute of High Energy Physics , Chinese Academy of Sciences , Beijing 100049 , China)

(Received 22 February 2006 ; revised manuscript received 21 August 2006)

Abstract

On the 3B3 medium energy X-ray beamline, a new monochromatic X-ray source tunable in the 2—6 keV energy range bas been constructed and implemented. The characteristic parameters of the X-ray source having been determined, with the help of the light source, we have calibrated the sensitivity of X-ray detector, thickness of filter, diffraction efficiency of crystals and energy response of the BAS5000-RS, which showed the high performance of the monochromator and detecter system.

Keywords : medium energy X-ray , synchrotron radiation , calibrated PACC : 0762 , 0785 , 0620H