CrH"(n=0,+1,+2)分子及离子的势能函数

黄 萍^{1)†} 朱正和²⁾

2)四川师范大学化学与材料科学学院,成都 610066)
 2)四川大学原子分子物理研究所,成都 610065)
 (2006年3月13日收到,2006年7月12日收到修改稿)

用原子分子反应静力学原理推导出 CrH"(n = 0, +1, +2 "的电子状态及其离解极限. 对 H 原子采用6-311 ++ G^{**} 基 组 对 Cr 原子采用 SVR(split valence polarization)全电子基组 ,用 B3PW91 方法计算了它们的平衡几何、电子状态 ,在 此基础上分别计算 CrH , CrH⁺ 的 Murrell-Sorbie 解析势能函数和 CrH²⁺ 的解析势能函数及其对应的力常数、光谱参 数 ,理论计算值与实验值和文献计算值符合较好. 从离解极限和通道解释了不同的势能函数形状. 计算表明 : CrH⁺ 的势能曲线均具有对应于稳定平衡结构的极小点 ,说明 CrH⁺ 可稳定存在. 而 CrH²⁺离子的势能曲线对应于不稳定的排斥态 ,说明 CrH²⁺ 是不稳定的.

关键词:CrHⁿ(n=0,+1,+2),势能函数,光谱参数,稳定性 PACC:3110,3120,3130

1.引 言

镁基储氢材料是当前能源研究项目中的热点, 目前主要通过实验方法来研究其制备工艺.在 Mg,Ni 系合金中加入不同的过渡金属元素以改善储 氢材料的性能,其中比较重要的就是加入 Cr元 素1-3] 要搞清楚储氢材料的机理,有必要对各材 料中各元素的氢化行为进行系统研究. Xiao 等^[4]较 早对铬氢化物的紫外光谱进行了研究;Armentrom 等^[5]用实验方法研究了 CrH⁺ 的结构; Galbraith 等^[6] 用价键理论研究了 CrH⁺,得到了其结构的相关信 息 ;Wang 等^[7]用从头计算方法研究了 Cr 与 H, 的微 观反应、得到了 CrH 的基态电子状态、平衡几何和 振动频率 :Bauschlicher 等^[8]对 CrH 分子基态和激发 态进行了计算 获得了有关该分子的基态电子状态、 平衡几何和光谱数据. Wilson 等^[9]用多组态的自洽 场 SCF)和 IC-MRCI 方法对 CrHⁿ⁺(n=0,1,2)进行 了从头计算,得到了 CrHⁿ⁺(n=0,1,2) 各基态电子 状态、平衡几何和振动频率. 但对于 CrH^n (n = 0, +1,+2 分子及离子体系势能函数和稳定性的研究 作者尚未见报道,因此,研究关于 CrHⁿ(n=0,+1, +2 体系的势能函数和稳定性的相关信息是必要 的.用从头计算研究分子体系的势能函数,进而计 算光谱数据的方法已经在不少研究者前期的工作中 得到应用^[10-12].本工作通过从头计算,得到 CrH 分 子及其离子平衡结构和体系的势能曲线,用解析势 能函数进行拟合,并计算其光谱数据.然后与其他实 验值和计算值进行比较,以确定计算方法的可靠性 和正确性.

2. 计算方法

对过渡元素金属氢化物的从头计算研究一直是 令人关注的. Harrison^[13]比较了不同的计算结果与 实验值的偏差,其中密度泛函理论方法是较好的一 种,其对分子离子的计算中产生较小的正偏差. 对 CrH 分子的从头计算,文献 7]曾报道采用有效原子 实势 SDD 基组,本工作采用 Gaussian98 程序,对 H 原子采用6-311++G^{**}基组,对 Cr 原子采用全电子 的 SVP(split valence polarization)基组,用 B3PW91 方 法对 CrH^{**}(n = 0,+1,+2)分子离子体系进行研究, 以得到该分子离子体系势能函数和稳定性的相关信 息. SVP 基函是相关协调(corretation consistent)基 函,它主要用于对开壳层的准平衡势能函数的计算,

[†] E-mail: huangping56@126.com

对 Cr 原子而言其包含了 4s 3p 及 3d 的极化函数.

3. CrHⁿ(n=0,+1,+2)分子及离子的 离解极限

用B3PW91/6-311 + + G^{**}/SVP方法从头计算结果 表明:优化得到 CrH 分子及 CrH²⁺ 的二重态、四重态 和六重态;得到 CrH⁺ 的一重态、三重态和五重态. 优化结果列于表 1. 由表 1 可知, CrH 分子的基态为 $X^6 \Sigma^+$, $m^2 \Sigma^+ \pi^4 \Sigma^+$ 为激发态; CrH⁺ 的基态为 $^5 \Sigma^+$, 其¹ Σ^+ 和³ Σ^+ 和⁴ Σ^+ 为激发态; m CrH²⁺ 的基态为 $^6 \Sigma^+$,激 发态为 $^2 \Sigma^+$ 和⁴ Σ^+ . 上述结论与文献 4—9]的结论 一致,其基态的平衡核间距与文献基本符合. 在此 基础上计算了各多重态的势能曲线,见图 1、图 2.表 1 及图 1、图 2 中的能量 *E* 以哈特里能量 *E*_H 为 单位.

表1 CrHⁿ(n=0,+1,+2)分子及离子的从头计算结果

CrH $^{2}\Sigma^{+}$ 0.16361 - 1044.7056	
CrH ${}^{4}\Sigma^{+}$ 0.16336 - 1044.7866	
CrH ⁶ ∑ ⁺ 0.16731 − 1044.8446	
CrH^+ $^{1}\Sigma^+$ 0.15842 - 1044.4112	
CrH^+ ${}^3\Sigma^+$ 0.16309 - 1044.4451	
CrH^+ ${}^5\Sigma^+$ 0.16200 - 1044.5612	
CrH^{2+} $^{2}\Sigma^{+}$ 0.2170 - 1043.8230	
CrH^{2+} ${}^{4}\Sigma^{+}$ 0.2186 - 1043.9113	
CrH^{2+} $^{6}\Sigma^{+}$ 0.24005 - 1043.9307	

图 1 CrH 和 CrH⁺ 的势能曲线

图 2 CrH²⁺的势能曲线

分子的电子状态及其离解后各原子的电子状态,即 离解极限,否则不可能得到正确的解析势能函数,因 为不同的电子状态或同一电子状态的不同离解方式 其势能函数是不相同的.本工作采用从头计算确定 出分子的电子状态,再根据原子分子静力学原理¹⁴³ 确定各分子离子离解极限.下面确定其基态的离解 极限.

对于 CrH⁺,其可能的离解通道如下:

$$CrH^+ \longrightarrow Cr + H^+$$
, (1)

$$CrH^+ \longrightarrow Cr^+ + H.$$
 (2)

Cr 原子与 H 原子的一次电离势分别为 6.766 和 13.598 eV 根据它们的一次电离势值可知 ,通道 (2)是能量最优的 ,比通道(1)低 6.832 eV. Cr⁺ 的基 电子状态为⁴ F_{u} ,当其与 H 原子按通道(2)形成 CrH⁺ ,其离子为 $C_{x_{v}}$ 群. 按分离原子法的要求将原 子群分解为 $C_{x_{v}}$ 群的表示 基态 H(${}^{2}S_{u}$)分解为 $C_{x_{v}}$ 群表示的直和为

$$^{2}S_{\alpha} \longrightarrow ^{2}\Sigma_{\alpha}^{+}$$
.

基态 $Cr^+({}^4F_u$)分解为 C_{∞} ,群表示的直和为

 ${}^{4}F_{u} \rightarrow {}^{4}\Sigma_{u}^{+} \oplus {}^{4}\Pi_{u} \oplus {}^{4}\Delta_{u} \oplus {}^{4}\Phi_{u}.$

若基态 H(${}^{2}S_{g}$)与基态 Cr⁺(${}^{4}F_{u}$)按通道(2)组合 $;S_{g}$ + ${}^{4}F_{u}$ 的直积为

 ${}^{2}\Sigma_{g}^{*} \oplus ({}^{4}\Sigma_{u}^{*} \oplus {}^{4}\Pi_{u} \oplus {}^{4}\Delta_{u} \oplus {}^{4}\Phi_{u})$

 $= {}^{3}{}^{5}\Sigma_{u}^{+} \oplus {}^{3}{}^{5}\Pi_{u} \oplus {}^{3}{}^{5}\Delta_{u} \oplus {}^{3}{}^{5}\Phi_{u}.$

所以,基态 CrH^+ 可能的电子状态有³⁵ Σ_u^+ ,³⁵ Π_u , ³⁵ Δ_u ,³⁵ Φ_u ,而从头计算给出 CrH^+ 的 α 电子和 β 电 子占据的分子轨道分别为

和

为了表达分子及其离子的势能函数,必须确定

这时最外层分子轨道是 σ ,由电子组态法得到电子 状态为⁵ Σ_{n}^{+} .可得基态 CrH⁺ 的离解极限为

$$\operatorname{Cr} H^{+}({}^{5}\Sigma_{u}^{+}) = \operatorname{Cr}^{+}({}^{4}F_{u}) + H({}^{2}S_{g}).$$

对于 CrH²⁺,可能的离解通道也有两个,即

$$CrH^{2+} \longrightarrow Cr^{+} + H^{+} , \qquad (3)$$
$$CrH^{2+} \longrightarrow Cr^{2+} + H. \qquad (4)$$

Cr 原子的二次电离势为 16.502 eV 根据它们的 一次电离势值可知,通道(4)是能量最优的,比通道 (3)低 3.862 eV. Cr²⁺的基电子状态为⁵ D_{g} ,当其与 H 原子按通道(4)形成 CrH²⁺,其群的表示为 $C_{\infty r}$.按

分离原子法将原子群分解为 C_{∞_n} 群的表示,基态 $\mathbf{H}(^2S_n)$ 分解为 C_{∞_n} 群表示的直和为

$$^{2}S_{\sigma} \rightarrow ^{2}\Sigma_{\sigma}^{+}$$
.

基态 $Cr^{2+}(^{5}D_{g})$ 分解为 C_{∞} 群表示的直和为

$${}^{5}D_{g} \rightarrow {}^{5}\Sigma_{g}^{+} \oplus {}^{5}\Pi_{g} \oplus {}^{5}\Delta_{g}.$$

若基态 H(${}^{2}S_{g}$)与基态 Cr²⁺(${}^{5}D_{g}$)按通道(4)组 合 ${}^{2}S_{g} + {}^{5}D_{g}$ 的直积为

 ${}^{2}\Sigma_{g}^{+}\otimes({}^{5}\Sigma_{g}^{+}\oplus{}^{5}\Pi_{g}\oplus{}^{5}\Delta_{g})$ $={}^{2Ab}\Sigma_{g}^{+}\oplus{}^{2Ab}\Pi_{g}\oplus{}^{2Ab}\Delta_{g}.$

从头计算给出 CrH^{2+} 的 α 电子和 β 电子占据的分子 轨道分别为

σσσππδδππππδδσ

和

σσσππσσππ.

这时最外层分子轨道是 σ ,由电子组态法得到电子 状态为⁶ Σ_{a}^{+} .所以 基态 CrH^{2+} 离解极限是

 $CrH^{2+}({}^{6}\Sigma_{g}^{+}) \rightarrow Cr^{2+}({}^{5}D_{g}) + H({}^{2}S_{g}).$ 同理可证明 CrH 离解极限为

 $\operatorname{Cr} H(^{6} \Sigma_{u}^{+}) \rightarrow \operatorname{Cr}(^{7} S_{u}) + H(^{2} S_{g}).$

4. CrH^{*}(*n* = 0,+1,+2)分子及离子的 势能函数与光谱数据

由从头计算得到 CrH^{*}(*n* = 0,+1,+2)分子及 离子各电子状态的一系列单点势能值后,分析它们 各自势能曲线(见图1、图2)的形状可知,CrH,CrH⁺ 分子及离子的势能曲线具有吸引支和排斥支,并有 一个极小点,对应其分子的稳定结构.对于这种势 能曲线,可用下列 Murrell-Sorbie(M-S)势能函数^[15]进 行拟合:

$$W = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})\exp(-a_{1}\rho),$$
(5)

式中,D。为离解能,

$$\rho = R - R_{\rm e}$$

其中 ,*R* 为核间距 ,*R*。为平衡值. 拟合曲线见图 3 ,其 中实线为计算数据所得势能曲线 ,拟合所得参数见表 2. 由表 2 可知 ,计算的离解能与文献值较为符合.

图 3 CrH($X^{6}\Sigma^{+}$)和 CrH⁺($^{5}\Sigma^{+}$)离子的基态势能曲线 (a)CrH($X^{6}\Sigma^{+}$),(b)CrH⁺($^{5}\Sigma^{+}$)

表 2 CrH ,CrH⁺的 M-S 势能函数参量

CrH ,CrH⁺	电子态	$D_{\rm e}/{\rm eV}$	$a_1/{\rm nm}^{-1}$	a_2/nm^{-2}	$a_3/{\rm nm}^{-3}$
CrH	$^{2}\Sigma^{+}$	2.25912	28.0175	159.9503	0.1271
CrH	$^{4}\Sigma^{+}$	2.28009	32.5193	349.6569	2879.30167
CrH	$^{6}\Sigma^{+}$	2.181	1.8925	- 0.5746	-2.4392×10^{-3}
CrH ⁺	$^{1}\Sigma^{+}$	1.21462	22.73858	- 130.80125	419.11433
CrH^+	$^{3}\Sigma^{+}$	1.38373	16.13858	- 230.70442	719.0477
CrH^+	$^5\Sigma^+$	1.299	1.79315	- 2.29513	0.62337

根据拟合得到的各参数可计算 CrH, CrH⁺ 的二 阶、三阶和四阶力常数^[15],进而计算其对应的光谱 数据.由此可知,计算的势能函数、光谱数据与实验 值和文献计算值比较一致. 对于双荷电的双原子分子离子,其离子除了存 在化学键力和核排斥力外,还可能存在正电荷对的 库仑排斥力.如果库仑排斥力与核排斥力起主要作 用,则其势能曲线将是完全排斥的,无能量极小点. 若化学键力和核排斥力可达平衡,将出现能量极小 点,当化学键力和库仑排斥力达到平衡时将出现势 能极大值,即火山态,对于这种势能曲线,M-S势能 函数形式就不适用了.为了描述此类新特点,文献 [16]提出了一种四参数势能函数,该势能函数的形 式为

$$\mathcal{N}(\rho) = \frac{a_1}{\rho - a_2} - \frac{a_3}{(\rho + a_4)^2},$$
 (6)

式中

$$\rho = R - R_{\min}$$

其中 R 为核间距, R_{min}为能量极小点的原子核间距 离. CrH²⁺ 拟合势能曲线见图 4,其中实线为计算数 据所得势能曲线. 拟合所得各势能参数见表 3,表 中 △E 是势能极大点与极小点的能量之差. 由该势 能函数可计算二阶、三阶和四阶力常数,进而可计算 得到光谱数据.

图 4 CrH²⁺(⁶∑⁺,⁴∑⁺)的势能曲线 (a)⁶∑⁺,(b)⁴∑⁺

电子态	$\Delta E/{ m eV}$	a_1 /eVnm	a_2 /nm	a_3/eVnm^2	a_4 /nm
$^{2}\Sigma^{+}$	0.12491	47.49341	- 0.32639	2.69722	0.50919
$^{4}\Sigma^{+}$	0.28337	49.17211	- 0.33121	30.49171	0.52495
⁶ Σ ⁺	0.01427	20.9011	- 0.26252	8.92744	0.40242

表 3 CrH²⁺ 的势能函数参量

5. 讨论

表 4 为势能函数各参数计算所得的力常数和光 谱数据.从计算结果看,本工作的数据与文献值基本 符合,说明我们的计算方法是可靠和正确的.应该 指出,对于 CrH^{2+} ,我们的 R_e 计算值为 0.24005 nm, 而文献 8]为 0.2101 nm,有较大的差异,但我们计算 的光谱数据 ω_e 与之符合较好.

由图 1 的势能曲线可知 ,CrH 和 CrH⁺ 分子及离 子均具有对应于分子稳定平衡结构的极小点 ,说明 CrH 和 CrH⁺ 分子及离子可稳定存在.分子离子能 否稳定存在与其离解通道有关 ,根据 CrH 和 CrH⁺ 分 子及离子的离解通道 ,两原子间只存在化学键力和 核排斥力,与一般的双原子分子一样,势能曲线仅有 一个极小点,对应稳定的分子和离子态,离解能越大 分子离子就越稳定.

由图 2 的势能曲线和表 3 的 ΔE 值可知, CrH²⁺ 各态的势能曲线呈现两种类型:一种是被称为火山 态的势能曲线形态,如 CrH²⁺(${}^{2}\Sigma^{+}, {}^{4}\Sigma^{+}$)的势能曲 线. 另一种是由于 ΔE 很小,表现出完全排斥态的 势能曲线(CrH²⁺(${}^{6}\Sigma^{+}$))(见图 4). 从图 4(a)可以看 出:对于基态的 CrH²⁺(${}^{6}\Sigma^{+}$)使能曲线,随着 Cr—H 键长的减小,一直以排斥支出现.当 Cr—H 键长无 限大时,CrH²⁺完全解离,势能曲线走平.当 Cr—H 键长逐渐减小时,出现弱的库仑排斥支.随着 Cr—H 键长的减小,由于极其微弱的化学键力的存在,排斥 支变得平缓.当 Cr—H 键长继续减小时,出现 Cr 与 H 核间强的核排斥支. 据此判断,基态 CrH²⁺(${}^{6}\Sigma^{+}$) 的离解通道应为通道(4),即 CrH²⁺—→Cr²⁺ + H.

火山态势能曲线类型可用 CrH²⁺(⁴∑⁺)的势能 曲线进行说明.从图 4(b)可以看出:随着 Cr—H 键 长的减小,首先出现正离子对间才存在的较强的库 仑排斥支,当距离达到 0.3500 nm 时,由于 Cr—H 之 间化学键力和库仑排斥力达到平衡,出现极大值. 随着 Cr—H 键长继续减小,化学键力逐渐增大,当 距离达到平衡核间距0.2168 nm 时,Cr—H之间存在 较强的化学键力,Cr—H 体系能量下降,达到极小 值 形成稳定的 CrH²⁺. 当 Cr—H 键长继续减小,出 现 Cr 与 H 核间的强排斥支. 据此判断,CrH²⁺(⁴Σ⁺) 的离解通 道 应 为 通 道(3),即 CrH²⁺ → Cr⁺ + H⁺.

表4 基态 CrH($X^6\Sigma^+$),CrH⁺($^5\Sigma^+$),CrH²⁺($^6\Sigma^+$)的力学和光谱数据

电子态	$R_{\rm e}/{\rm nm}^{-1}$	$D_{\rm e}/{\rm eV}$	$f_2/a\mathbf{J}\cdot nm^{-2}$	f_3/a J·nm ⁻³	$f_4/a J \cdot nm^{-4}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$	$\alpha_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$
CrH($^{2}\Sigma^{+}$)	0.16361	2.25912	1.68337	- 6.18892	12.37783	1706.50552	32.59244	0.14559	6.13891
CrH(${}^{4}\Sigma^{+}$)	0.16336	2.28009	1.30853	- 6.51396	42.55860	1504.56601	18.85278	0.28281	6.43860
CrH($X^6 \Sigma^+$)	0.16729	2.181	1.52991	- 6.21881	18.62061	1626.84973	33.00493	0.17984	6.22822
实验值^[17,18]	0.1656	2.03 ± 0.07				1581			
计算值 ^[89]	0.16654					1656.051	30.4912	0.18097	6.22222
	0.1656	1.930				1581			
$\mathrm{CrH^{+}(^{1}\Sigma^{+})}$	0.15842	1.21462	1.51529	- 8.53811	35.85196	1619.07290	62.83358	0.34314	6.84641
CrH ⁺ (${}^{3}\Sigma^{+}$)	0.16309	1.38373	1.60038	- 7.77294	26.67217	1663.90777	48.64824	0.246846	6.49994
CrH+($X^5\Sigma^+$)	0.16200	1.299	1.52574	- 7.81171	28.61613	1624.62976	53.55394	0.28792	6.71181
<u>实验值^[19 20]</u>	0.163	1.37 ± 0.09							
计算值 ^[4679]	0.1634	1.387				1882			
	0.1604	1.202							
${\rm Cr}{\rm H}^{2+}(^2\Sigma^+$)	0.217		0.51967	- 0.99286	1.95475	943.88635	4.94276	0.031751	3.61611
$CrH^{2+}(^{1}\Sigma^{+})$	0.2186		0.47673	- 0.98684	1.94245	904.05321	6.52814	0.042839	3.56337
${\rm CrH}^{2+}(X^6\Sigma^+)$	0.24005		0.42946	- 0.97766	2.40438	858.05914	6.46813	0.050184	2.9562
计算值 [21]	0.2107					883			

下面确定通道(3)的离解极限: $H^{+}(^{1}S_{g})$ 分解为 C_{∞} ,群表示的直和为

 ${}^{1}S_{g} \rightarrow {}^{1}\Sigma_{g}^{+}$.

基态 $\operatorname{Cr}^{+}({}^{4}F_{u})$ 分解为 $C_{\infty v}$ 群表示的直和为

 ${}^{4}F_{u} \rightarrow {}^{4}\Sigma_{u}^{+} \oplus {}^{4}\Pi_{u} \oplus {}^{4}\Delta_{u} \oplus {}^{4}\Phi_{u}.$

若 H⁺(${}^{1}S_{g}$)与基态 Cr⁺(${}^{4}F_{u}$)按通道(2)组合, ${}^{1}S_{g} + {}^{4}F_{u}$ 的直积为

 ${}^{1}\Sigma_{g}^{*} \bigoplus ({}^{4}\Sigma_{u}^{*} \bigoplus {}^{4}\Pi_{u} \bigoplus {}^{4}\Delta_{u} \bigoplus {}^{4}\Phi_{u})$ $= {}^{2}{}^{A}\Sigma_{u}^{*} \bigoplus {}^{2}{}^{A}\Pi_{u} \bigoplus {}^{2}{}^{A}\Delta_{u} \bigoplus {}^{2}{}^{A}\Phi_{u}.$

所以,激发态的 CrH^{2+} 可能的电子状态有^{2 +} Σ_{u}^{+} , ^{2 +} Π_{u} ,^{2 +} Δ_{u} ,^{2 +} Φ_{u} ,而从头计算给出 CrH^{2+} 的电子占 据的最外层分子轨道均是 σ ,由电子组态法得到电 子状态为 Σ^{+} .可得激发态的 CrH^{2+} 的离解极限为

 $\operatorname{CrH}^{2+}({}^{2\,4}\Sigma_{u}^{+}) = \operatorname{Cr}^{+}({}^{4}F_{u}) + \operatorname{H}^{+}({}^{1}S_{g}).$

本文计算表明:基态 CrH^{2+} 的 $R_e = 0.24005$ nm 比 CrH 和 CrH^+ 分子的 R_e 大(见表 1),表明其化学 键力较弱,表现在其势能曲线呈现较强的排斥支,对 应于不稳定的排斥态,并且未见明显的势能曲线的 极小值,说明 CrH²⁺(⁶ Σ^+)的稳定性极差.处于激发 态的 CrH²⁺(^{2 #} Σ_{u}^{*}),虽然具有明显的能量极小点, 但其 ΔE 值均小于 0.5 eV^[13],所以它们也是不太稳 定的.

6.结 论

本工作用原子分子反应静力学原理推导出了 CrH"(*n*=0,+1,+2)分子及离子的基态电子状态 及其离解极限,对H原子采用6-311++G**基组, 对Cr原子采用SVP基组,用密度泛函B3PW91方法 计算了其分子及离子的各电子状态的解析势能函数 及其对应的平衡几何和光谱参数.计算值与实验值 和文献计算值基本符合,说明采用6-311++G**/SVP 基组计算CrH"(*n*=0,+1,+2)分子离子体系的结 构和性质是可行的,计算结果也是可靠的.计算表 明CrH*的势能曲线具有对应于稳定平衡结构的极 小点,说明CrH*可稳定存在,而CrH²⁺的稳定性较差.

- [1] Hiraca I, Matsnmoto T, Amano M et al 1983 J. Less-Common Met. 89 85
- [2] Shang C X , Bououdinal M , Song Y et al 2004 Int. J. Hydrogen Energy 29 73
- [3] Chen D, Wang YM, Chen L et al 2004 Acta Mater. 52 521
- [4] Xiao Z L , Hauge R H , Margrave J L 1992 J. Phys. Chem. 96 636
- [5] Armentrom P B , Beauchamp J L 1998 Acc. Chem. Res. 22 315
- [6] Galbraith J M , Shurki A , Shaik S 2000 J. Phys. Chem. A 104 1262
- [7] Wang X F , Andrews L 2003 J. Phys. Chem. A 107 570
- [8] Bauschlicher C W , Ram R S , Bermath P F 2001 J. Chem. Phys. 115 1312
- [9] Wilson D J D, Marsden C J, Nagv-Felsobuki E I V 2003 Phys. Chem. Chem. Phys. 5 252
- [10] Fan X W, Geng Z D Zhang Y S 2005 Acta Phys. Sin. 54 5614 (in Chinese] 樊晓伟、耿振铎、张岩松 2005 物理学报 54 5614]
- [11] Li Q Zhu Z H 2006 Acta Phys. Sin. 55 102 (in Chinese) 李 权、朱正和 2006 物理学报 55 102]

- [12] Shi D H Sun J F , Yang X D et al 2005 Chin. Phys. 14 1566
- [13] Harrison J F 2000 Chem. Rev. 100 679
- [14] Zhu Z H 1996 Atomic and Molecular Reaction Statics (Beijing: Science Press)(in Chinese] 朱正和 1996 原子分子反应静力学 (北京 科学出版社)]
- [15] Zhu Z H 1997 Molecular Structure and Molecular Potential Energy Function (Beijing: Science Press)(in Chinese)[朱正和 1997分 子结构与分子势能函数(北京 科学出版社)]
- [16] Wang F H , Yang C L Zhu Z H et al 2005 Chin . Phys. 14 317
- [17] Huber K P, Herzberg G 1979 Constants of Diatomic Molecules (New York :Van Nostrand Reinhold)
- [18] Armentrout P B, Sunderlin L S 1992 Transition Metal Hydrides (New York : VCH Publishers)
- [19] Alvarado-Swaisgood A E, Allison J, Harrison J F 1985 Phys. Chem. 89 2517
- [20] Barone V, Adamo C 1997 Int. J. Quantum Chem. 61 443
- [21] Harrison J F , Christopher P S 1999 Mol. Phys. 96 31

Potentional energy function of $CrH^n(n = 0, +1, +2)$

Huang Ping¹[†] Zhu Zheng-He²

1 X College of Chemistry and Material Science , Sichuan Normal University , Chengdu 610066 , China)

2) Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

(Received 13 March 2006; revised manuscript received 12 July 2006)

Abstract

Based on the atomic and molecular reaction statics, the ground electronic states of CrH($X^6 \Sigma^+$), CrH⁺(${}^5 \Sigma^+$), CrH²⁺(${}^6 \Sigma^+$) and their dissociation limits have been derived. Using density functional method (B3PW91), 6-311 + + G^{**} basis sets for H and split valence polarization basis sets for Cr , the molecular equilibrium geometry and dissociation energies for CrH⁺(${}^5 \Sigma^+$) and CrH²⁺(${}^6 \Sigma^+$) have been calculated. The analytical potential energy functions for CrH($X^6 \Sigma^+$), CrH⁺(${}^5 \Sigma^+$) and CrH²⁺(${}^6 \Sigma^+$) are determined. The force fields and spectroscopic parameters have been worked out from these analytical potential energy functions. For the ground state of CrH⁺, the calculated results of R_e , f_2 , f_3 , f_4 , B_e , α_e , ω_e and $\omega_e \chi_e$ are 0.16200 nm, 1.52574 aJ/nm², -7.81171 aJ/nm³, 28.61613 aJ/nm⁴, 6.71181, 0.28792, 1624.6297 and 53.55394 cm⁻¹, respectively; and for the ground state of CrH²⁺ , the corresponding parameters are 0.24005 nm, 0.42946 aJ/nm², -0.97766 aJ/nm³, 2.40438 aJ/nm⁴, 2.9562, 0.050184, 858.059 and 6.46813 cm⁻¹, respectively. The theoretical results show minimum points in the potential energy curves of CrH⁺ (${}^5 \Sigma^+$) and CrH²⁺(${}^6 \Sigma^+$), so we conclude that CrH ($X^6 \Sigma^+$) are stable. But there are no minimum points in the potential energy curves of CrH²⁺(${}^6 \Sigma^+$) and CrH²⁺(${}^6 \Sigma^+$), so CrH²⁺(${}^6 \Sigma^+$) is not stable.

Keywords : CrH^n (n = 0, +1, +2), potential energy function, spectroscopic parameters, stability **PACC** : 3110, 3120, 3130

[†] E-mail: huangping56@126.com