TM 掺杂的Ⅲ-Ⅴ族稀磁半导体电磁 性质的第一原理计算*

林秋宝¹²) 李仁全¹²) 曾永志¹) 朱梓忠¹;

1)(厦门大学物理系,厦门 361005)

2)(集美大学理学院 厦门 361021)

(2005年4月29日收到;2005年7月4日收到修改稿)

使用基于自旋局域密度泛函理论的第一性原理方法对 3d 过渡金属(TM = V, Cr, Mn, Fe, Co 和 Ni)掺杂的 III-V 族半导体(GaAs 和 GaP)的电磁性质进行了计算.结果发现:用 V, Cr 和 Mn 掺杂时体系将出现铁磁状态,而 Fe 掺杂 时将出现反铁磁状态 Co 和 Ni 掺杂时,其磁性则不稳定.其中, Cr 掺杂的 GaAs 和 GaP 将可能是具有较高居里温度 的稀磁半导体(DMS).在这些 DMS 系统中, V 离子的磁矩大于理论期待值, Fe, Co 和 Ni 离子的磁矩小于理论期待 值, Cr 和 Mn 离子的磁矩与期待值的差距取决于晶体的对称性以及磁性离子的能带分布.此外,使用 Si 和 Mn 共同 对III-V 族半导体进行掺杂,将有利于 DMS 表现为铁磁状态,并可以使体系的 T_c 进一步提高.

关键词:稀磁半导体,过渡金属,掺杂,共掺杂 PACC:7550P,6170T,7540M,7115H

1.引 言

自从 Mn 掺杂的 InAs 和 GaAs 表现出磁性以来, 人们从理论上和实验上都对Ⅲ-Ⅴ基的稀磁半导体 (DMS)进行了大量的研究,新近发展的自旋电子学 期望在同一种物质中同时运用电子的电荷和自旋, 而 \square -V 族基的 DMS 是最典型自旋电子学新材料. 人们已经证实^{□1}Mn 掺杂的Ⅲ-V 族 DMS 是一种半 金属物质. Akai 通过 KKR-CPA(Korringa-Kohn-Rostker coherent potential approximation)方法对(In, Mn)As(表 示: Mn 掺杂的 InAs)的 DMS 进行了计算,提出磁性 离子之间的双交换作用使得Ⅲ-V族基的 DMS 具有 铁磁(FM)的性质^[2],从实际应用的角度,合成具有 较高居里温度 T.(高于室温)的 DMS 才具有较广泛 的用途.最近 Sato 等^[3]在他们的计算中预测了在 Cr 和 Mn 掺杂的 GaAs 中 将出现较高的居里温度 T_{c} . 根据他们的预测 5% Mn 掺杂的 GaAs 的 $T_{\rm C}$ 将达到 260K 5% Cr 掺杂的 GaAs 的 T_c 将达到 600K.但是直

到最近,实验报道的 (Ga,Mn)As 具有的最高 T_c 只有 150K^[4],这主要是由于过渡金属(TM)的浓度在 GaAs 中非常低的缘故,一旦超过临界浓度(在 GaAs 中为 8%),半导体便容易趋于形成团簇^[5].最近,对于 Mn 及其他过渡金属掺杂的稀磁半导体的磁学性 质有了一些第一原理的理论计算^[6,7].为了寻找具有 较高 T_c 的 DMS,我们利用第一性原理方法系统地计 算了 3d 过渡金属(TM = V,Cr,Mn,Fe,Co和 Ni)掺杂的 III-V族半导体(GaAs 和 GaP)的电磁性质,讨论 了各个过渡金属掺杂时出现的磁性状态,如铁磁或 反铁磁态等;本文也讨论了 TM 离子的磁矩以及它 们与理论期待值的差距;最后,还计算了 Si 与 Mn 的共掺杂对 III-V 族半导体 FM 状态稳定性的影响 以及共掺杂在提高 T_c 方面所起的作用.

2. 计算方法

由于稀磁半导体的磁学性质与材料的结构有密 切的关系 ,所以我们对元胞中的离子位置以及元胞

† E-mail:zzhu@xmu.edu.cn

^{*} 国家自然科学基金(批准号:10374076)和 集美大学自然科学基金(批准号:4411C50327)资助的课题.

55 卷

的体积都进行了驰豫优化,我们使用该优化后的结 构来计算 DMS 的电磁性质和稳定性 所计算的系统 是使用 TM 来取代 GaAs 和 GaP 中 Ga 的位置.在所 有的计算中,我们采用 32 个原子的超原胞,2 个磁 性杂质均匀分布在对称的位置上(如图1所示),磁 矩的方向沿着 Z 轴平行(FM 状态)或者反平行 (AFM 状态)设置,用来进行 FM 与 AFM 的模拟,并 讨论 DMS 中各种离子的磁矩变化.在 Si 和 Mn 共同 对Ⅲ-V(GaAs和GaP)DMS进行掺杂时,也使用了同 样的超元胞,只是原胞中各含一个 Si 和一个 Mn 原 子,我们的计算是基于密度泛函理论的成熟的第一 原理方法 使用了 Vienna ab initial Simulation Package (VASP)程序包^[8,9]. 布里渊区积分采用 Monkhorst-Pack 的特殊 k- 点方案,使用了(5×8×5)个 k-网格 点. 赝势采用了投影缀加波(PAW)的处理方法^[10]. 在原子位置的驰豫计算时,收敛判据是原胞内所有 原子的 Hellmann-Feyman 力均小于 0.1eV/nm. 整个计 算是在广义梯度近似(GGA)下进行的.

图 1 使用的 32 个原子的超原胞 2 个磁性杂质均匀分布在对称 的位置上

3. 结果与讨论

3.1.TM 掺杂的Ⅲ-Ⅴ族 DMS 的磁性稳定性

图 2 是计算得到的 3d 过渡金属(TM = V, Cr, Mn, Fe, Co和 Ni)作为杂质取代 GaAs和 GaP 基中 的 Ga 位置时的反铁磁状态和铁磁状态之间的能量 差,正的能量差表示铁磁状态比反铁磁状态更稳定. 从图中可以看出,对于 TM 掺杂的 GaAs 和 GaP 体 系,其 FM 与 AFM 状态的能量差的变化趋势都是一 样的.其次,V,Cr,Mn 掺杂的 DMS 表现出铁磁性;而 反铁磁状态最稳定的是 Fe 掺杂的 DMS;Co,Ni 掺杂 的 DMS 的反铁磁和铁磁状态之间的能量差很小,说 明这类 DMS 基本上不表现出磁性.

通常 居里温度 T_c 的估算可以使用平均场近 似的海森堡模型^[3]来进行:

$$K_{\rm B}T_{\rm C} = 2\Delta E/3x , \qquad (1)$$

其中 ΔE 是反铁磁状态(或更严格地是自旋玻璃态)和铁磁状态之间的能量差, x 是磁性杂质取代 III 族离子的浓度.由于 Cr 掺杂时具有较大的 ΔE 根据 该模型, Cr 掺杂的 III - V 族 DMS 应该具有较高的 T_c ,实验上已经成功地合成出具有 400K 居里温度 的闪锌矿结构的(Ga, Cr)As^{III J}, 这个实验结果与图 2 的结果是一致的.

图 2 过渡金属(TM = V, Cr, Mn, Fe, Co, Ni) 掺杂的 GaAs 和 GaP 基 DMS 反铁磁状态和铁磁状态之间的能量差.正的能量差 表示铁磁状态比反铁磁状态更加稳定

3.2. TM 掺杂的 GaAs 的磁矩

DMS 的电磁性质是由两个不同的子系统决定 的.其中一个子系统是由非局域的能带电子所组成, 能带电子主要是导带中的电子和价带中的空穴等一 些低能载流子组成,DMS 的电学和光学性质主要由 这些载流子决定的;另一个子系统是由具有局域磁 矩的磁性离子所组成的,这些磁性离子具有不完整 的 d-或 f-电子组态,磁学性质主要由这些局域磁矩 决定.DMS 的重要特性之一就是这两个子系统之间 有非常强的与自旋有关的耦合交换作用.

在 TM 掺杂的Ⅲ-V 半导体中 ,V³⁺ ,Cr³⁺ ,Mn³⁺ ,

875

Fe³⁺ Co³⁺ Ni³⁺ 分别具有 2 3 A 5 6 和 7 个 d-电子, 从理论上讲,TM 离子将分别出现 $2\mu_{\rm B}$, $3\mu_{\rm B}$, $4\mu_{\rm B}$, 5µB AµB 和 3µB 的磁矩.根据已有的理论分析可 知^[12],当 TM 的自旋朝上 t2。轨道全满时,其离子磁 矩将小于理论期待值;当 TM 的自旋朝上 t₂,轨道全 空时,其离子磁矩将大于理论期待值;当 TM 的自旋 朝上 to...轨道部分被填充时,其离子磁矩大小与晶体 的对称性以及离子的能带状态有关,我们对 TM 掺 杂的 GaAs 体系的磁矩计算的结果与该理论分析的 趋势一致,我们将计算得到的 TM 掺杂的 GaAs 体系 的磁矩列在表1中,表中Ga和As的磁矩是在FM 状态下的结果.从该表可见,除了 V 诱发的总磁矩 等于 2µ_R/TM 之外 ,各掺杂体系的总磁矩都小于理 论期望值.对于 V(t2 轨道全空)掺杂的 GaAs ,V 离 子的磁矩大于理论期望值($2\mu_{\rm R}$);对于 Fe ,Co 和 Ni (t2g轨道全满) 掺杂的 GaAs, TM 离子磁矩小于理论 期望值(5µB AµB 和 3µB);而对于 Cr 和 Mn(t2 執道 部分填充 渗杂的 GaAs Mn 离子的磁矩小于理论期

待值($4\mu_B$),Cr 离子的磁矩在 FM 状态下略大于期待 值($3\mu_B$),而在 FM 状态下却小于期待值($3\mu_B$),这说 明在 TM 的 t_{2g} 轨道部分填充情况下,磁矩大小在不 同情况下将有不同的表现.此外,V,Cr 和 Mr(自旋 朝上轨道部分填充)掺杂时,在 FM 状态下 TM 离子 的磁矩大于 AFM 状态下的磁矩;而在 Fe,Co 和 Ni 掺杂时,TM 离子在 FM 状态下的磁矩小于 AFM 状 态下的磁矩.

图 3 是 Mn 掺杂的 GaAs 在 FM 状态下(110)面 的自旋面密度图,其中正(负)的自旋密度用实线 虚 线 ,表示.图中可以发现, Mn 诱发的磁矩基本上都局 域在 Mn 离子附近,在 As 离子附近,只有在阴离子 的中心有一点正的自旋密度,在阴离子周围却存在 大量负的自旋密度,而在 Ga 离子周围,正的自旋密 度仅贡献出 0.045μ_B 的磁矩.TM 在阴离子(As)附近 诱发出与 TM 离子方向相反的磁矩,这一点已为实 验所证实^[13],同时在 Ga 周围诱发出与 TM 方向相同 的磁矩,这一点在自旋密度图中可以清楚地看到.

表 1 TM 掺杂(Ga, Mn)As 体系的各离子的磁矩(μ))

	总磁矩	TM 离子磁矩		ту 南乙磁街田込店	c 瑞拓	
	($\mu_{ m B}/{ m TM}$)	FM	AFM	一面古城足哇比但	Ga 1222 AE	AS 122 XE
V	2.000	2.097	2.005	2	0.029	-0.077
Cr	2.999	3.006	2.889	3	0.024	-0.133
Mn	3.933	3.641	3.477	4	0.045	-0.137
Fe	2.877	2.495	2.928	5	0.043	- 0.023
Со	0.018	0.012	0.054	4	0	0
Ni	0.000	0.002	0.023	3	0	0

图 3 (Ga , Mn)As 在 FM 状态下(110)面的自旋面密度,正(负)的 自旋密度用实线(虚线)表示,每一条等高线相差 10e/nm³

3.3. Si 和 Mn 共掺杂的Ⅲ-V 族稀磁半导体

为了研究过渡金属对Ⅲ-V族半导体的掺杂所 引起的体系体积的变化,我们将经过驰豫优化后的 超元胞体积列在表 2 中.表中可见,V,Cr和 Mn 对 GaAs和 GaP 掺杂使得晶胞体积膨胀,而 Fe,Co和 Ni 对 GaAs和 GaP 掺杂使得晶胞体积减小.根据最近的 X 射线衍射(XRD)测量的结果(Ga,Mn)As的晶格 常数随着 Mn 浓度的增加而增大^[14],而(Ga,Fe)As 的晶格常数随着 Fe 的浓度的增加而减小^[15],这些 实验结果和我们的理论计算是一致的.

表 2 TM 掺杂的Ⅲ-V 半导体在 FM 状态下超元胞的体积/10-3 nm3

	未掺杂	V	Cr	Mn	Fe	Со	Ni
GaAs	748.21	759.76	749.88	755.00	730.54	713.12	717.76
GaP	646.36	672.80	662.96	660.58	628.90	623.44	627.38

根据实验上的报道 ,DMS 的居里温度 T_将随 TM 的浓度和空穴浓度的增加而增大. Dietl 等人根 据 Zener 的铁磁模型提出^[16]:T_c = Cxp^{1/3},其中 x 是 替代阳离子的过渡金属离子的浓度, , 为空穴浓度, C 是和基质有关的常数,在 TM 掺杂的 GaAs 和 GaP 中、TM 占据 Ga 位置将成为受主,一个 TM 杂质将带 来一个空穴,但是在(Ga,TM)As和(Ga,TM)P中空 穴的浓度远比 TM 的浓度小. 根据 Yu 等的报道^[17], 在(Ga, Mn)As中, Mn原子主要占据两种位置:1)占 据Ⅲ族原子的位置 形成替位式杂质 2)占据间隙位 置而形成间隙式杂质.如果 TM 占据间隙的位置, TM 原子将成为施主,并因此补偿了替位而带来的空穴 浓度,使得空穴浓度减少,从而使Tc降低.如前面 所述,由于过渡金属的掺杂,晶胞体积将增大,这又 增加了 TM 原子占据间隙的位置的机会 ,导致 DMS 中的空穴浓度远低于过渡金属的浓度.

我们设想从两方面来提高 *T*_c :1)在 GaAs ,GaP 基的 DMS 中增加空穴浓度.例如在 DMS 中共掺杂 Ⅳ族 Si 元素 ,期待Ⅳ族元素能取代 As ,P 位置 ,这样 每一个杂质将带来一个空穴 ,从而增加半导体中的 空穴浓度 2)减少晶格的膨胀 ,由此减少 TM 原子占 据间隙位置的机会.例如 ,可以让 TM 原子和一种半 径较小的原子共同掺杂来达到这个目的.本文中 ,我 们使用 Si 和 Mn 共同对 GaAs 和 GaP 进行掺杂 ,期望 提高 DMS 的居里温度.

使用 Si 共掺杂时 Si 取代基体的哪种离子主要 由 Si 取代不同离子的结合能决定的.为了得到 Si 最 可能的取代位置,我们采用下面的公式来计算结合 能^{IB1} : $E^{f} = E_{T} \pm \sum_{i} N_{i}\mu_{i}$,其中表示 E_{i} (Ga ,Mn)As 超 原胞的总能 , N_{i} 为替位的 Si 和被替位的 As 或者 Ga 离子的个数 , μ_{i} 为相应的化学势.我们用原子在孤 立状态下的总能来估计它的化学势,增加或减少一 个原子分别取正号或负号.Si 取代 Ga 或者 V 族元 素离子的结合能列在表 3 中 , E_{1} 表示 Si 取代阳离子 Ga 位置的结合能 , E_{2} 表示 Si 取代阴离子(P,As)位 置的结合能.表 3 说明 ,在(Ga ,Mn)As 和(Ga ,Mn)P 系统中 Si 更加容易取代阴离子的位置 ,而形成受 主,故每一个 Si 原子的加入可期望带来一个空穴.

由于 Si 离子的半径为 0.041nm 远小于 As(0.222nm)

和 F(0.212nm)离子半径.为了验证 Si 共同掺杂时 GaAs 和 GaP 体积的变化,在未共掺杂时,在 FM 状态 下(Ga,Mn)As 和(Ga,Mn)P 晶胞的体积分别为: 0.755nm³ 和 0.66058nm³;而在 Si 和 Mn 共掺杂时,其 晶胞的体积变为:0.74242nm³ 和 0.65521nm³.因此, Si 和 Mn 共同掺杂使晶胞体积减小,补偿由于 Mn 掺 杂而引起的晶格膨胀.

表 3 (Ga , Mn)V(V = As , P)中, 一个 Si 替位 Ga 或者 V族元素在 FM 状态下的能量/eV

	E_1 (Si-> Ga)	$E_2(\text{Si} > \text{As}, P)$
(Ga ,Mn)As	1.839	- 2.83
(Ga ,Mn)P	0.465	- 1.55

为了进一步弄清 Si 共同掺杂的效果,我们进一 步计算了 Si 和 Mn 共同掺杂的 GaAs 和 GaP 的 DMS 的电子结构.图 4 是(Ga_{1-x}, Mn_x)Si_yV_{1-y}(其中 V = As ,P, x = 0.125, y = 0.0625)在 FM 状态下的总态密 度和分波态密度.从图中可以看到,DMS 保持半金 属的特性,由 3d-TM 的 t_{2g} 态电子, As 的 4p 电子或者 P 的 3p 电子以及 Si 的 3p 电子杂化而形成的杂质能 级出现在带隙中.由于 Si-3p 能级和 Mn-3d 能级几乎 交叠在同一区域,这样杂化的结果将改变能带的结 构,将 Mn-3d 电子的峰值推向能量更高的区域,使得 Mn-3d 电子的外布更加弥散,同时也使得由 Si 掺杂 而带来的空穴具备了 Mn-3d 电子的特征.而这种空 穴非局域化的分布特点又是稳定 FM 状态的双交换 作用所必须的²¹.因此,Si 和 TM 在 III-V DMS 中共 同掺杂的结果会使得铁磁态更加稳定.

表 4 中的 ΔE 表示对 DMS 超原胞(没有 Si 的共 掺杂)分别进行反铁磁计算和铁磁计算的总能之差, $\Delta E'$ 表示 Si 和 Mn 共同掺杂时分别对超原胞进行反 铁磁计算和铁磁计算的能量差, N_{3d} (E_F)表示没有 Si 共掺杂时的 Mn-3d 电子分波态密度在 E_F 处的 值, N_{3d} (E_F)表示 Si 共掺杂时 TM 的 3d 分波态密度 在 E_F 处的值.根据海森伯的平均场近似模型^[3], DMS 的 T_C 与 AFM 和 FM 的能量差成正比.从表 4 中可以看出,所研究的系统中共掺杂的 ΔE 都比单 掺杂的 $\Delta E'$ 大.由此,Si 和 TM 的共掺杂将使得居里 温度提高.在 DMS 的双交换机制中,居里温度 T_C 和 Mn-3d 分波态密度在 E_F 处的值 N_{3d} (E_F)成正比^[3].

876

图 4 (Ga_{1-x}, Mn_x)Si_yV_{1-y}(其中 V = As, P, x = 0.125, y = 0.0625)在 FM 状态下总态密度 和 TM-3d 以及 Si-3p 分波态密度

从表 4 可以发现:共掺杂时的 $N_{3d}(E_F)$ 均比单掺杂时的 $N_{3d}(E_F)$ 大.由此也可见,Si 共掺杂的结果将使得 T_c 提高.

总之,在(Ga,Mn)As 和(Ga,Mn)P中进行Si的 共掺杂时,将提高体系的 T_c ,主要表现在共掺杂:a) 增加了DMS中的空穴浓度;b)补偿了Mn掺杂而引 起的晶格膨胀,从而减少了Mn原子占据填隙位置 的机会;c)改变了能带的结构,使得Mn-3d能带被推 到能量的更高区域,分布更加非局域化,双交换作用 进一步加强.Mn-3d分波态密度在 E_F 位置的数值 N_{3} (E_F)增大,FM状态更加稳定.

表4 GaAs 和 GaP 中 Mn 掺杂以及 Mn 与 Si 共掺杂时, AFM 状态和 FM 状态之间的能量差 ΔE 以及 FM 状态下 TM 的 3d 能级在费米能处的态密度,能量差的单位为/meV

	ΔE	$\Delta E'$ (Si)	N_{3d} ($E_{\rm F}$)	N'_{3d} ($E_{\rm F}$) Si)
(Ga ,Mn)As	143.72	206.54	0.508	0.902
(Ga ,Mn)P	92.5	161.76	0.726	1.164

4.结 论

本文中,我们用基于自旋局域密度泛函理论的 第一性原理方法对过渡金属(TM = V,Cr,Mn,Fe,Co 和 Ni)掺杂的 GaAs 和 GaP 的电磁性质进行了计算. 根据计算的结果:V-,Cr-和 Mn-掺杂的 GaAs 和 GaP 将表现为铁磁状态,其中 Cr 掺杂时将可能出现较高 的居里温度.Fe 掺杂时将出现反铁磁状态,Co 和 Ni 掺杂时,其磁性则不稳定.这些系统中,Fe,Co 和 Ni 离子的磁矩小于理论期待值,V离子的磁矩大于理 论期待值,Cr 和 Mn离子磁矩与期待值的差距取决 于晶体的对称性以及磁性离子的能带分布.此外,使 用 Si 和 Mn 共同对 U - V 族半导体进行掺杂,将有利 于 DMS 表现为 FM 状态,并可以使体系的 T_c 进一步 提高.

- [1] Ohno H , Chiba D , Matsukura F et al 2000 Nature 408 944
- [2] Akai H 1998 Phys. Rev. Lett. 81 3002
- [3] Sato K , Dederichs P H , Katayama-Yoshida H 2003 Europhys. Lett. 61 403
- [4] Ku K C , Potashnik S J , Wang R F , Chun S H 2003 Appl. Phys. Lett. 82 2302
- [5] Mahadevan P , Zunger A 2002 Phys. Rev. Lett. 88 047205
- [6] Guo X G, Chen X S, Sun Y L *et al* 2004 *Acta Phys*. *Sin*. **53** 3545 (in Chinese] 郭旭光、陈效双、孙沿林 等 2004 物理学报 **53** 3545]
- [7] Zeng Y Z, Huang M C 2005 Acta Phys. Sin. 54 1749(in Chinese) [曾永志、黄美纯 2005 物理学报 54 1749]
- [8] Kresse G, Hafner J 1993 Phys. Rev. B 47 R558
- [9] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

[15]

[16]

[17]

Phys. 39 L9

65 201303

[18] Geng W T 2003 Phys. Rev. B 68 233402

Haneda S , Yamaura M , Takatani Y et al 2000 Jpn. J. Appl.

Yu K M , Walukiewicz W , Wojtowicz T et al 2002 Phys. Rev. B

Dietl T, Ohno H, Matsukura F et al 2000 Science 287 1019

- [10] Blöchl P E 1994 Phys. Rev. B 50 17953
- [11] Akinaga H, Manago T, Shirai M 2000 Jpn J. Appl. Phys. 39 1118
- [12] Kacman P 2001 Semicond. Sci. Technol. 16 R 25
- [13] Beschoten B, Crowell P A, Malajovich I et al 1999 Phys. Rev. Lett. 83 3073
- [14] Ohno H, Shen A, Matsukura F et al 1996 Appl. Phys. Lett. 69 363

Electronic and magnetic properties of 3d transition-metal-doped III - V semiconductors first-principle calculations*

Lin Qiu-Bao^{1,2}) Li Ren-Quan^{1,2}) Zeng Yong-Zhi¹) Zhu Zi-Zhong¹)[†]

1)(Department of Physics , Xiamen University , Xiamen 361005 , China)

2)(School of Science , Jimei University , Xiamen 361021 , China)

(Received 29 April 2005; revised manuscript received 4 July 2005)

Abstract

A systematic study based on *ab initio* calculations within the local spin density approximation (LSDA) has been performed on the III - V semiconductors (GaAs and GaP) doped by the 3d-transition metals (TM = V, Cr, Mn, Fe, Co and Ni). It is shown that the ferromagnetic (FM) state will be realized when the GaAs and GaP are doped by V, Cr or Mn, however, the system is antiferromagnetic (AFM) when doped by Fe; whereas these dilute magnetic semicondutors (DMS 's) show unstable magnetism when doped by Co or Ni. It is suggested that III - V semiconductors doped by Cr can be candidates for high Curie Temperature DMS. For the present systems, the magnetic moment of V ion is greater than the theoretical value, those of Fe, Co and Ni are smaller than theoretical values, whereas for those of Cr and Mn, the difference between TM 's magnetic moment and the expected value depends on the crystal symmetry and electronic states of ions. Finally, we show that, by the co-doping of Si and Mn in GaAs and GaP, the DMS 's present a more stable FM state and a higher T_C .

Keywords : dilute magnetic semiconductors (DMS), transition metal (TM), doping , codoping PACC : 7550P , 6170T , 7540M , 7115H

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10374076) and Science Foundation of Jimei University (Grant No. 4411C50327).

[†] E-mail:zzhu@xmu.edu.cn