掺杂二氧化钛纳米管对有机电致发光性能的影响*

钱 磊¹) 滕 枫¹) 徐 征^{1,2}) 权善玉¹) 刘德昂¹)

王元敏¹) 王永生¹) 徐叙¹

1) 北京交通大学光电子技术研究所 信息存储、显示与材料部级开放实验室,北京 100044)

2〕 天津大学博士后流动站 天津经济技术开发区博士后工作站 天津中环三津有限公司分站,天津 300192)

(2005 年 5 月 24 日收到 2005 年 7 月 5 日收到修改稿)

在聚合物电致发光器件中,通过在不同功能层中掺杂二氧化钛纳米管来改善器件的性能.由于二氧化钛纳米 管具有 p型传导特性,可以显著增大空穴传输层中载流子的迁移率.由于二氧化钛纳米管在发光层中可以增大发 光材料分子的刚性,从而减少无辐射跃迁.当把二氧化钛纳米管掺杂到空穴缓冲层中时,由于其与有机分子的强相 互作用,一方面降低了空穴的传导性,同时也减少了界面淬灭发光的缺陷态的产生.

关键词:二氧化钛纳米管,聚合物电致发光,掺杂 PACC:7860F,7280L

1.引 言

有机电致发光现象从被发现开始,就始终是人 们研究和关注的热点^[1-7].用聚合物制备电致发光 器件便宜,起亮电压低,而且具有机械柔软性.但是 它的量子效率低而且稳定性比较差(氧和水引起 的)^{8]}.近年来,随着一维纳米材料技术的发展,人 们利用其独特的光电性质来改善有机电致发光器件 的性能^[9-13].其中研究和应用最广泛的材料是碳纳 米管.把具有极好导电性能的碳纳米管掺杂到导电 聚合物当中,可显著提高其载流子的迁移率,从而提 高器件的效率.

二氧化钛纳米管具有 p 型传导特征和很强的光 致发光^[14].正是由于二氧化钛纳米管的这些独特的 光电性质 ,我们希望能利用它来改善有机电致发光 器件的性能.本文中我们将二氧化钛纳米管分别掺 杂在有机电致发光的传输层 ,发光层和注入层 ,观察 其对器件性能的不同影响.

2. 实 验

2.1. 二氧化钛纳米管的制备和形貌表征[15.16]

二氧化钛纳米管是通过离子交换的方法制备 的.其制备过程如下:首先把 120mL 的氢氧化钠溶 液(重量比 40%)放入装有冷凝管的聚四氟乙烯容 器中,然后利用油浴加热到 110℃并将 2g 二氧化钛 钠米颗粒加入(P-25,其中锐钛矿晶型与金红石晶型 的重量比例为 4:1,德国 Degussa 公司产).在磁控搅 拌下反应 20h.反应结束后,冷却到室温,把粉状材 料离心分离出来,并用盐酸中和至 PH 值为 5.最后 用去离子水反复清洗直到全部除去 CI 离子.真空室 温下,干燥后即可得到二氧化钛纳米管.纳米管的内 外径分别为 5—7nm 和 7—11nm,管长为 100nm 左右 (如图 1).

2.2. 利用二氧化钛纳米管提高传输层的性能^{17]}

把二氧化钛纳米管以不同的重量比掺杂到导电

^{*}国家自然科学基金(批准号:10374001,90301004),"973"国家重大基础研究(批准号:2003CB314707),北京市科技新星计划(批准号: 2004B10)资助的课题.

[;] 通讯联系人.E-mail:xrxu@center.njtu.edu.cn

聚合物 PVK 中,超声并静置后甩涂在导电玻璃衬底 上,厚度都控制在120nm 左右.这种复合材料的电流 -电压曲线如图2所示.

图 1 二氧化钛纳米管的电镜照片,插图为一个四层的纳米管, 其内外径分别为 6.4nm 和 9.3nm

图 2 不同掺杂浓度下导电聚合物的电流-电压曲线.二氧化钛 纳米管的掺杂浓度分别为重量百分比 0,1%,2%和 5%时,相应 样品分别标记为 A₀,A₁,A₂和 A₅

整个曲线有三个明显的区域,每个都满足 $J \propto V^{l+1}$ 的关系.低场强时l < 2对应的是界面限制 区,到了中场强时为4.5—8,对应的是陷阱限制区, 而高场强下则为2,对应的是空间电荷限制区.随着 掺杂浓度的增加,界面限制区到陷阱限制区的拐点 逐渐下降,表明二氧化钛纳米管的加入降低了空穴 的注入势垒.对二氧化钛纳米管的光致发光研究表 明在禁带中存在大量表面态,这些表面态可以成为 空穴从电极隧穿注入的通道,从而降低注入势垒.利 用 Child 公式: $\mu_{eff} = \frac{8}{9\epsilon} J_{SCL} \frac{d_3}{V_2}$ ^[18]计算得到的空穴迁 移率也从未掺杂的1.42×10⁻⁷ cm²·V⁻¹·s⁻¹ / 增大到 了 5.38×10⁻⁷ cm²·V⁻¹·s⁻¹ (掺杂浓度为重量比 5%),说明 p 型传导的二氧化钛纳米管的加入,增大了 PVK 的空穴传输性能.

利用掺杂二氧化钛纳米管的 PVK 做空穴传输 层,我们制备了有机电致发光器件:ITO/PVK:TiO₂ nanotube/AlQ/LiF/Al.其中纳米管的掺杂比例分别为 重量比 1% 2%和 5% ,分别标记为 D₁ ,D₂ 和 D₅.与 未掺杂的器件(记为 D₀)相比,掺杂比例为 2%的器 件最大亮度提高了将近一个量级,起亮电压也下降 了 4V(如图 3).

图 3 不同掺杂浓度下有机电致发光器件的电流-电压,亮度-电压曲线.器件结构是 ITO/PVK :TiO₂ nanotube/AlQ/LiF/Al

起亮电压的减小是由空穴注入势垒的减小引起 的,而电流的增大是由于 p 型传导的二氧化钛纳米 管引起的.与未掺杂的器件相比,掺杂浓度为 2% 的 器件效率从 1.3cd/A 提高到了 2.4cd/A.由于在器件 ITO/PVK :TiO₂ nanotube/AlQ/LiF/Al 中空穴的注入势 垒(1.1eV)比电子的注入势垒(0.5eV)高,因此空穴 注入和传输性质的改善显著提高了器件的效率.当 掺杂浓度进一步增大后,尽管器件的注入电流增大 了,但由于 PVK 膜形貌的平滑性和结构的有序性都 遭到了破坏,因而器件的性能和稳定性反而下降了.

2.3. 利用二氧化钛纳米管改善发光层的性能^{19]}

制备了以 PVK 掺杂二氧化钛纳米管复合膜为 发光层的器件:TTO/PVK:TiO₂ nanotube /BCP/AlQ/LiF/ Al.其中 BCP 作为激子阻挡层可有效的把复合区域 控制在 PVK 层.器件的亮度-电压,电流-电压和 效率-电压曲线如图4所示.

掺杂纳米管后(掺杂浓度为重量百分比 2%), 器件的亮度与未掺杂器件的亮度相比提高了大约三 倍.而电流在低压时比未掺杂的器件高,但在高压区

图 4 (a) 亮度-电压曲线 (b) 电流-电压曲线 (c) 效率-电流曲 线.器件结构是 ITO/PVK :TiO₂ nanotube/BCP/AlQ/LiF/Al 未掺杂和 掺杂浓度为重量比 2% 的器件分别标记为 B_0 (▲) B_2 (△)

却有所降低.另外在电流-电压曲线上,在4—5V的 地方可以看到有一个负阻区,这是由于载流子的不 平衡注入导致的²⁰¹.二氧化钛纳米管的加入降低了 阳极的注入势垒,因此在低压区,也就是所谓的界面 限制区,掺杂后的器件电流更大.在高压区,也就是 所谓的空间电荷限制区,由于 BCP 起了阻挡空穴的 作用 因此掺杂后的器件有更多的空穴被阻挡在了 PVK 层 大量空穴的累积就导致进一步注入空穴更困 难 所以在高压区掺杂器件的电流相比之下有所减 少.纳米管加入 PVK 层后,增大了 PVK 分子的刚性, 减少了激子的无辐射跃迁 因此器件的效率增大了.

从掺杂器件的电致发光光谱中可以看到(如图 5),随着电压的增高,PVK相比于 BCP 的发光强度 逐步增大 表明随着电压的增加,复合区域渐渐远离 界面.另外与不掺杂的器件相比,PVK 与 BCP 的相 对强度随电压的增大,也有改变.在掺杂器件中,由 于空穴迁移率的提高,所以复合区更接近界面处,因 此 BCP 的相对强度要比未掺杂的器件高.

图 5 (a)随电压变化的掺杂器件的电致发光光谱 (b)未掺杂器 件(▲)和掺杂器件(△)不同电压下的光谱比较

2.4.利用掺杂二氧化钛纳米管的空穴缓冲层改善 聚合物电致发光器件的性能

PEDOT 作为一种导电聚合物,其电离能很高, 接近 ITO 的能级;而且它的电子亲和势很低(大约 2.2eV),足以阻挡住电子,所以被广泛用作空穴缓冲 层^[21].另外,PEDOT还能起到平整ITO表面增强器 件稳定性的作用.但是由于 PEDOT和 MEH-PPV之 间存在化学相互作用,这种相互作用在两种材料的 界面引起缺陷态的形成.大量的缺陷态对 MEH-PPV 的光致发光和电致发光都会有淬灭效应^[22].

我们利用掺杂二氧化钛纳米管的 PEDOT :PSS 做空穴缓冲层,减少了界面淬灭发光的缺陷态的产 生,提高了 MEH-PPV 的电致发光效率.

图6 光致发光光谱:▲单层 MEH-PPV;●双层 MEH-PPV/ PEDOT ;○双层 MEH-PPV/PEDOT :TiO₂ nanotube.

首先我们对比了单层 MEH-PPV 和双层 PEDOT/ MEH-PPV 中 MEH-PPV 的光致发光强度,在实验的 过程中,保持 MEH-PPV 层厚度不变.如图 6 所示,双 层器件中 MEH-PPV 的光致发光强度相比单层器件 要下降 30%.这种发光的降低应该是来源于界面缺 陷态的淬灭.当在 PEDOT 中掺杂二氧化钛纳米管后 (掺杂比例为重量比 1%),MEH-PPV 的发光强度又 增大了 10%.我们认为这种发光的增强可能由于 PEDOT 与纳米管的作用有关,这种作用减弱了 PEDOT 和 MEH-PPV 之间的相互作用,从而减少了

图 7 未掺杂曲线 a 和掺杂二氧化钛纳米管曲线 b 的 PEDOT 的 拉曼光谱

●ITO/PEDOT/MEH-PPV/Mg: Ag ○ITO/PEDOT:TiO₂ nanotube/MEH-PPV/Mg: Ag

为了证实这种想法,对比了纯 PEDOT 和掺杂二 氧化钛纳米管的 PEDOT 的拉曼光谱(图 7).结果发 现表征 PEDOT 中噻吩基团上 C—S 键的伸缩振动的 853cm⁻¹的 拉曼 峰 在 掺 杂 纳 米 管 后 红 移 到 了 800cm^{-1[23]}.由于噻吩基团上的硫原子有孤对电子, 可以和纳米管中的钛离子发生软化学配位,因此二 氧化钛纳米管的加入强烈影响了 PEDOT 中的噻吩 基团.而 PEDOT 与 MEH-PPV 之间的相互作用主要 是 PEDOT 中传输空穴的噻吩基团和 MEH-PPV 中的 乙烯撑.当二氧化钛纳米管加入后,其与 PEDOT 中 噻吩基团的作用会减小噻吩与聚苯乙烯撑之间的化 学作用,从而减少界面缺陷态的数目.

图 8 是聚合物电致发光器件的电流-电压,亮度 -电压及效率-电流曲线.器件结构为:器件 A ITO/ PEDOT/MEH-PPV/Mg: Ag;器件 B ITO/PEDOT:TiO₂ nanotube/MEH-PPV/Mg:Ag.

掺杂纳米管以后,器件的亮度和电流都有不同 程度的降低,但器件的效率却从未掺杂的1.3cd/A, 提高到了掺杂后的2.6cd/A.由于 PEDOT 中的空穴 传导主要依靠噻吩基团,二氧化钛纳米管与噻吩基 团之间的相互作用,阻碍了空穴的传输,从而降低了 电流.掺杂器件发光亮度的下降是因为注入的载流 子数目减少 相应的形成激子的数量就少.而掺杂器 件效率的增加与二氧化钛纳米管的加入有关.从拉 曼图上可以看到二氧化钛纳米管与 PEDOT 之间发 生了强的相互作用.这种强的相互作用抑制了 PEDOT 与 MEH-PPV 之间的作用,从而减少了对发 光有淬灭作用的界面缺陷态的产生增大了辐射复合 的概率.尽管产生的激子数量减少,但由于辐射复合 的概率增大了,因此器件的效率得以提高.

3.结 论

我们利用二氧化钛纳米管分别对有机电致发光 器件的传输层、发光层和空穴缓冲层进行了改善,器 件性能有不同程度的提高.这种效果分别和二氧化 钛纳米管独特的光电性能及其与基质之间的相互作 用有关.通过我们的研究表明 利用一维纳米材料来 改善有机电致发光的性能是一个有效的途径.

- [1] Tang C W , VanSlyke S A 1987 Appl. Phys. Lett. 51 913
- [2] Burroughes J H , Bradley D D C ,Burn A R 1990 Nature 347 529
- [3] Braun D ,Heeger A J 1991 Appl. Phys. Lett. 58 1982
- [4] Gustafsson G , Cao Y ,Heeger A J 1992 Nature 357 477
- [5] Liao L S , Klubek K P , Tang C W 2004 Appl. Phys. Lett. 84 167
- [6] Lou Z D, Xu Z, Xu C X, Yu L, Teng F, Xu X R 1998 Acta Phys. Sin. 47 139 (in Chinese] 娄志东、徐 征、徐春祥、于 磊、滕 枫、徐叙 1998 物理学报 47 139]
- [7] Deng Z B , Lee S T , Chen L C , Dong S Z , Sun H H , Wang X 1997 Chin . Phys. 6 921
- [8] Kaminorz Y, Smela E, Inganas O, Brehmer L 1998 Adv. Mater. 10 765
- [9] Kim J Y , Kim M , Choi J H 2003 Synth . Met . 139 565
- [10] Kim J Y , Kim M , Kim H , Joo J , Choi J H 2002 Opt . Mater . 21 147
- [11] Woo H S , Czerw R , Webster S , Carroll D L , Ballato J , Strevens A E , O 'Brien D , Blau W J 2000 Appl. Phys. Lett. 77 1393
- [12] Woo H S , Czerw R , Webster S , Carroll D L , Park J W , Lee J H 2001 Synth. Met. 116 369
- [13] Curran S A , Ajayan P M , Blau W J , Carroll D L , Coleman J N , Dalton A B , Davey A P , Drury A , McCarthy B , Maier S , Strevens

A E 1998 Adv. Mater. 10 1091

- [14] Qian L , Jin Z S , Zhang J W , Huang Y B , Zhang Z J , Du Z L 2005 Appl. Phys. A 50 1801
- [15] Yang J , Jin Z , Wang X , Li W , Zhang J , Zhang S , Guo X , Zhang Z 2000 Dalton Trans. 20 3898
- [16] Zhang S , Zhou J , Zhang Z , Du Z , Vorontsov A V , Jin Z 2000 Chin. Sci. Bull. 45 1533
- [17] Qian L, Teng F, Jin Z J, Zhang Z J, Zhang T, Hou Y B, Yang S Y, Xu X R 2004 J. Phys. Chem. B 108 13928
- [18] Coleman J N , Curran S , Holme A B , Davey A P , McCarthy B , Blau W , Barklie R C 1998 Phys. Rev. B 58 7492
- [19] Qian L, Yang S Y, Jin Z S, Zhang Z J, Zhang T, Teng F, Xu X R 2005 Physics Letters A 335 56
- [20] Laubender J , Chkoda L , Sokolowski M , Umbach E 2000 Synth. Met. 111-112 373
- [21] Brown T M, Kim J S, Friend R H, Cacialli F, Daik R, Feast W J 1999 Appl. Phys. Lett 75 1679
- [22] Dijken A van, Perro A, Meulenkamp E A, Brunner K 2003 Organic Electronics 4 131
- [23] Kupka T , Wrzalik R , Pasterna G , Pasterny K 2002 J. Mol. Struct. 616 17

Influence of doping with titania nanotubes on performance of polymer light-emitting diodes *

Qian Lei¹) Teng Feng¹) Xu Zheng¹) Quan Shan-Yu¹) Liu De-Ang¹)

Wang Yuan-Min¹) Wang Yong-Sheng¹) Xu Xu-Rong¹)[†]

 $1\$) Institute of Optoelectronics Technology , Northern Jiaotong University ,Beijing -100044 , China)

2 X Postdoctoral Working Station of Zhong-Huan San-Jin Ltd., TianJing 300192 , China)

(Received 24 May 2005; revised manuscript received 5 July 2005)

Abstract

The performance of polymer light-emitting diodes was optimized by dispersing titania nanotubes into different functional layers. When titania nanotubes are doped into the hole-transport layer, the hole mobility of the device is greatly increased due to the good p-type conductibility of titania nanotubes. In the case of doping titania nanotubes into emitting layer, irradivative recombination was decreased since organic molecules wrapped on outer surface or entering into the nanotube make the chain conformation of polymer molecules more open. At last, the device efficiency of PLEDs was greatly improved by doping titania nanotubes into the hole buffer layer. This contributes to strong interaction between the titania nanotube and the polymer. This interaction reduces not only the hole conductibility but also the creation of defect states on interface region which can quench the luminescence.

Keywords : titania nanotube , polymer light-emitting diodes , doped PACC : 7860F , 7280L

^{*} Project supported by National Natural Science Foundation of China (Grant Nos. 90301004 and No. 10374001) and State Key Project of Basic Research MOST , China (Grant No. 2003CB314707) and Beijing NOVA Program (Grant No. 2004B10).

[†] Corresponding author. E-mail:xrxu@center.njtu.edu.cn