电子全息对磁隧道结势垒层的研究*

王 勇¹⁾ 张 泽²⁾ 曾中明¹⁾ 韩秀峰¹⁾

1)(中国科学院物理研究所,北京凝聚态物理国家实验室,北京 100080)
 2)(北京工业大学,北京 100022)
 (2005年5月26日收到2005年7月12日收到修改稿)

利用电子全息显微学方法,从理论和实验两方面,系统研究了磁隧道结势垒层的内势分布,指出了一些在实验 过程中应予以注意的实验现象,提出了可能的解决方法.

关键词:电子全息,磁隧道结,平均内势 PACC:4240M,7570C,0780

1.引 言

自 Gabor^[1]1948 年提出电子全息以来 这种显微 学方法现已经发展成为一种具有独特优势的先进电 子显微术,通常人们得到的电子显微成像,无论是衍 射衬度像还是高分辨原子像,只是电子波函数的强 度 无法获得其波函数位相的直接信息 因此无法获 得波在晶体周期性势场中传播的完整结构信息,而 电子全息显微术可以同时提供电子波的振幅和相位 信息 从而使这种先进显微分析方法在磁场和电场 分布等与相位密切相关的研究上获得广泛应用,例 如半导体 p-n 结和 CMOS 晶体管的静电势分布^[23], 平均内势和极性材料极性的测量[45],铁电畴和超导 中磁通量子的研究[67],等等.近年来随着磁性隧道 结 MTI)研究的发展^[8-11],越来越多的研究者试图 利用电子全息来研究隧道结中的非晶势垒层,因为 一般传统的电镜方法对非晶态物质的研究能力非常 有限,特别是对其势场的研究.Shen^[12],Xu^[13], Wang^{14]}等人在这方面做了系统的研究工作,他们利 用电子全息来研究势垒层电势的分布及势垒层与其 两侧铁磁金属薄膜电极界面的粗糙度,在相位变化 (电势)图中, Shen 得到了这样的结果:电子通过非 晶 AlO.(势垒层 相对其两侧的金属电极相位超前, 也就是说势垒层的电势比两边金属的高,所以在相 位变化图中表现为" 垒", 而 Xu 的结果则显示, 电子

通过经不同热处理后 AIO, 非晶势垒层,其相位的改 变有时超前,有时滞后,即相应的非晶势垒层有时表 现为势'垒",有时表现为势'阱".于是,对于给定的 氧化物势垒层,为什么在电子全息相位变化图中表 现不一样呢?究竟是热处理条件改变引起的成分变 化导致势垒层的电势的倒反,还是可能另有别的原 因呢?显然,这不仅对致力于用电子全息方法研究 自旋磁隧道结物理性能与显微结构间关系来说,是 必需要解决的先决性问题,而且对于更深入有效地 利用电子全息术去研究各种多层膜结构有着重要的 现实意义.本文将从理论和实验两方面来解释这个 问题,并澄清一些在电子全息实验中容易出现的假 象,同时提出了具体避免方法.

2. 实验及讨论

实验中所用的双隧道结样品的结构如下:Ta(5 nm)/Cu(30 nm)/Ni₇₉ Fe₂₁(10 nm)/Ir₂₂ Mn₇₈(12 nm)/ Co₇₅ Fe₂₅(4 nm)/Ru(0.9 nm)/Co₇₅ Fe₂₅(4 nm)/Al(1 nm)-oxide/Co₇₅ Fe₂₅(1 nm)/Ni₇₉ Fe₂₁(2 nm)/Co₇₅ Fe₂₅(1 nm)/Al(1 nm)-oxide/Co₇₅ Fe₂₅(4 nm)/Ru(0.9 nm)/ Co₇₅ Fe₂₅(4 nm)/Ir₂₂ Mn₇₈(12 nm)/Ni₇₉ Fe₂₁(10 nm)/Cu (30 nm)/Ta(5 nm).用于电镜观察的截面样品采用 传统工艺制备,最后用氩离子减薄而成,高分辨和电 子全息实验均是在一台 Philips CM200 透射电子显 微镜上同时完成的,全息图的处理是用带有

^{*}国家重点基础研究发展规划项目(973项目)(批准号 2002CB613500 2001CB610601)资助的课题.

δ

holowork 插件的 Digital Micrograph 软件完成的.图 1 是这种双隧道结样品的高分辨像 从中可以清楚地 看到两条白色衬度的亮带,对应着双隧道结的两 AlO, 非晶层,每层 AlO, 非晶层的两侧均为 Co-Fe 铁 磁性金属电极,在两非晶层中间的铁磁层,由于 Co-Fe Ni-Fe 混合到一起故没有明显的层状结构,此样 品没有经过退火处理 ,故势垒层与顶底电极之间的 界面不是很锐利 势垒层比较宽 关于结构以及退火 的详细研究还在进行之中,将会另文发表,图 2(a)是样品的电子全息图,中间两条明显的白带即为 AlO. 双势垒层,图中的全息干涉条纹比较细小,并 且覆盖了样品的主要研究区域 即双势垒层 但由于 文中图片尺寸比较小 研究的范围比较大 加上全息 图是电子干涉条纹与物体形貌像的叠加,所以并不 能很清楚地看到细小密集的干涉条纹,但放大图片 后,干涉条纹则清晰可见,另外靠近图片边缘地方的 条纹则是由于双棱镜的菲涅尔衍射所引起的 图 2 (b)是由(a)重构后得到的相位图(c)为双隧道结附 近区域位相变化分布 统计范围如图 χ_b)中白色框 图所示区域 考察方向如图中箭头所示 即从样品内 部指向真空.图中横坐标表示从样品内测量起点向 真空方向的位置变化 纵坐标为相应相位改变.从图 (c)可以清楚地看到 通过 AIO, 非晶势垒层的电子 波函数的相位滞后于通过其两侧金属区的波函数的 相位 即在电子全息像的相位变化图中表现为"阱" (相对于其两侧铁磁性金属电极).

图 1 隧道结样品的高分辨像

下面 將结合电子全息成像理论解释如上实验 结果. 根 据 量 子 力 学 理 论,利 用 格 列 波-高 登 (Glebsch-Gordon)方程可以得到材料势场 U(x, y, z)对在其中 z 方向传播的粒子波函数位相 $\varphi(x, y, z)$ 的改变^[15,16]

$$\varphi(x,y,z) = \frac{-2\pi(m_0c^2 + E_k)}{hd[E_k(E_k + 2m_0c^2)]^{1/2}} \times \int_{-z_0}^{z} U(x,y,z) dz, \qquad (1)$$

式中 , E_k , m_0 ,h 和 c 分别是粒子的动能 ,静止质量 , 普朗克常数和光速.对于电子波来说则有 U(x, y, z) = -eV(x, y, z),其中 ,V(x, y, z)是相对于真空 中定义的势函数.因此 ,由材料势场作用导致的电子 波函数相位的改变可以表示为

$$\Delta \varphi(x,y,z) = \frac{2\pi e(m_0 c^2 + E_k)}{h d[E_k(E_k + 2m_0 c^2)]^{1/2}} \times \int_{-z_0}^{z} V(x,y,z) dz.$$
(2)

如果样品中没有外电场的情况下 ,上式可进一步简 化为^[4]

$$\Delta \varphi(x, y) = C_{\rm E} V_0 t(x, y), \qquad (3)$$

其中 C_E 是与波长相关的常数,V₀为样品的平均内 势,t为样品的厚度,均为正值.若研究的样品区域 内厚度均匀或变化可忽略不计,则电子波函数的相 位变化直接与样品的平均内势成正比.

对于入射电子来说,AlO,非晶层和 Co-Fe 金属 层的的平均内势分别约为 18 V 和 29 V^[17,18]. 根据 (3) 武可知,在如上自旋双隧道结的电子全息相位变 化图中,势垒层应该表现为"阱",即经过 AlO, 非晶 层电子波函数相位变化滞后于其两侧的金属层,这 与我们的实验结果完全一致,如图 2(c) 中黑色箭头 所示区域,若不知道研究样品的平均势场,仅从如图 众 c)所示的波函数相位变化 ,也可看出这一点 .考虑 真空中电子波函数的相位作为参考(设为零点)则 穿过研究样品的电子波函数相位变化均应大于零 (高于真空的情况),只是在某些位置相对滞后.如对 应图 2(c)所示的双 AlO, 非晶层处,相位变化曲线 呈现"波谷"或"阱",即透过氧化层的电子波函数相 位相对其两侧金属层的情况滞后,这也与(3)式的 结论是一致的.需要指出的是,由于样品厚度的影 响 导致位于较厚样品处的金属电极相位变化较薄 膜边缘处电极相位变化更大,如图 2(c)所示曲线在 厚样品处有较大的相位改变.这是因为对于经离子 束轰击减薄的电镜样品厚度变化一般呈一楔形,这 种厚度变化对电子全息像相位改变的影响可通过厚 度校正消除,但在这里并不影响我们的主要结果,若 进行定量的相位变化以及相应晶体势变化的研究, 就需要对电子全息像相位改变进行厚度的校正[19].

图 2 全息图及相位变化的曲线((a)(b)(c)为样品放在图 3 中 A 处 (d)(e)(f)为 B 处的结果)

现在我们来考察图 χ d) 这是源于与图 χ a)相 同样品部位的电子全息像,不同的是 样品被调换到 相应双棱镜灯丝的另一侧。即从图 3 中的 A 位调换 到 B 位, 从全息像中, 也可以看出, 图 χ a) 中的真空 位置在左下角,而在图 χ (d)中却处于右上角.图2 (e)是从图 ((d)电子全息像重构而获得的相位像, (f)为隧道结附近区域位相变化分布曲线,对于图 2 (a)和图 $\chi(d)$,非晶的 AlO, 层在两种不同的情况下 全息图中所表现的均为白色带,然而,对比图 2(c) 不难看出 图 2(f)中相位变化符号发生了翻转 对应 非晶势垒层的相位改变在这里表现为"垒"了,等效 于电子通过势垒层受到的是吸引力 显然 这与上面 的结果相矛盾.同样,我们以真空为相位变化参考原 点 得到样品中相位的变化变成了负值 这显然也与 如(3) 式的结论相矛盾. 实际上, Frost 等人^[20]1997 年 就对类似现象给出了相应的理论计算解释,样品分 别放在图 3 中 A 和 B 位置,所得到的全息图的强度 分布分别为

$$I_A = 1 + a^2 + 2a\cos(\phi + \Delta\varphi), \qquad (4)$$

$$I_{B} = 1 + a^{2} + 2a\cos(\phi - \Delta\varphi), \qquad (5)$$

式中 a 为电子波函数通过物体的振幅调制 $\Delta \varphi$ 为 它的相位变化 ,即(3)式中的 $\Delta \varphi$ (x,y).式中 ϕ 为两 种情况下真空参考波的相位差.上两式中 ,主要决定

图 3 全息光路示意图

强度的前两项在 A 和 B 两种情况下是一样的 ,最后 一项相对较小但包含着相位变化的重要信息 ,并且 可以看出两种情况下的相位变化是相反的(A 为 $\Delta \varphi$,B 为 – $\Delta \varphi$),但需要对全息图进行重构才能具 体得到它们.所以我们看到的原始全息图它们的强 度分布一致 ,但经过重构后得到它们的相位变化却

是相反的.具体到本实验中,在全息图 2(a)和(d) 中 非晶 AlO, 层均表现为白色带 但在图 (b)和(e) 中却各自表现为黑色,白色带,这是因为全息图 2 (a)和(d)主要是电子波函数强度的表现,位相信息 隐藏在其中 故 AlO, 非晶层均表现得跟样品形貌图 (图1)相似,为白色带.但图2(b)和(e)为重构的位 相图 根据 Frost 等人^[20]的理论计算结果表明,两种 情况下的相位变化恰好相反 故在位相图中 AlO, 非 晶层分别表现为相反的黑,白色带.总而言之,由于 把样品分别放在图 3 中的 A 和 B 位置(即双棱镜的 两侧)而在重构的相位图中出现了黑白称度相反的 现象 即样品位置相对双棱镜灯丝的 180°调换,导致 相应电子全息相位相差一个负号,即在前一种情况 下相位图中是表现为相位超前的地方,在后一种情 况下就变成了相位滞后的地方了 这与上述情况是 一致的 因为样品位置换了一侧 本来为"阱"形相位 图改变变成了" 垒 " 这种现象是实验过程中经常遇 到的情况,因为一般用的是多层膜截面样品,在成电 子全息像的操作中如果要求双棱镜灯丝平行薄膜样 品的话^{19]}这样灯丝两侧任何一边都有可能成为样 品位置,关键在于操作者的选择,若实验所得的电子 全息像中没有同时包含真空部位的像 就会为判断 何为假象带来困难,所以可靠的办法是设法获得同 时包含样品和真空的全息图像,并以真空为参考,就 很容易判别是否为假象了.另外,用同样的方法做了

不同薄膜材料的样品,结果与上面得到的结论一致. 值得说明的是,这种方法也适合于半导体量子阱材 料研究,事实上,McCartney等人^[21]对量子阱的电子 全息像研究发现,入射电子通过量子阱引起的相位 改变相对其邻区表现为"垒",即相位超前,这与上述 的结论也是一致的.如果研究内容只涉及隧道结等 界面两侧势场的变化差异^[12,13],而并非定量测量晶 体势场本身的大小,图2(c)与(f)是同样的,而只是 纵坐标(势场改变)的符号相反,不会影响由势场变 化而得出的关于界面完整度的结论.另外,值得指出 的是这里所讨论的相位改变并没有考虑到样品本身 磁场的贡献,事实上,即使电镜物镜磁场达到2T,由 样品内部的磁场所引起的相位的改变也远小于平均 内势所引起的相位变化^[18,20],因此并不影响这里的 主要结论.

3.结 论

我们的实验结果和理论计算都清晰地表明,磁 隧道结中的非晶势垒层在全息的相位图中表现为 "阱",即透过该区电子波函数的相位相对于其两侧 金属电极是滞后的.通过对利用电子全息成像研究 磁隧道结的势分布,揭示了如何识别一些容易在全 息像中出现的假象,这种方法也同样适用于量子阱 及其他多层膜的势场研究.

- [1] Gabor D 1948 Nature 161 777
- [2] Rau W D , Schwander P , Ourmazd A 1998 Solid State Phenomena
 63 525
- [3] McCartney M R, Smith D J, Hull R, Bean J C, Voelkl E, Frost B 1994 Appl. Phys. Lett. 65 2603
- [4] Midgley P A 2001 Micron 32 167
- [5] Xu Q Y , Wang Y , Wang Y G , Du X L , Xue Q K , Zahgn Z 2004 Appl. Phys. Lett. 84 2067
- [6] Zhang X , Joy D C , Zhang Y , Hashimoto T , Allard L , Nolan T A 1993 Ultramicroscopy 51 21
- [7] Tonomura A 1992 Adv. Phys. 41 59
- [8] Moodera J S , Mathon G 1999 J. Magn. Magn. Mater. 200 248
- [9] Liu C Y et al 2000 Acta Phys. Sin. 49 1897 [刘存业等 2000 物 理学报 49 1897]
- [10] Xie Z W , Li B Z , Li Y X 2002 Chin . Phys. 11 1060
- [11] Zeng Z M et al 2005 Acta Phys. Sin. 54 3351[曾中明等 2005 物 理学报 54 3351]
- [12] Shen F, Zhu T, Xiang X H, John Xiao Q, Voelkl E, Zhang Z 2003

Appl. Phys. Lett. 83 5482

- [13] Xu Q Y, Wang Y G, Zhang Z, You B, Du J, Hu A 2003 J. Appl. Phys. 93 6229
- [14] Wang Y G , Shen F , Zhang Z , Cai J W , Lai W Y 2002 Chin . Phys. Lett. 19 1480
- [15] Ravikumar V, Rodrigues R P, Dravid V P 1997 J. Am. Ceram. Soc. 80 1117
- [16] Ye H Q, Wang Y M 2003 Progress of transmission electron microscopy(Beijing:Science Press)p228[叶恒强、王元明 2003 透 射电子显微学进展(北京 科学出版社)第 228 页]
- [17] Rez D , Rez P , Grant I 1994 Acta Crystallogr . A 50 481
- [18] Dunin-Borkowski R E , McCartney M R , Smith D J , Parkin S S P 1998 Ultramicroscopy 74 61
- [19] Weiss J K , de Ruijter W J , Gajdardziska-Josifovska M , McCartney M R , Smith D J 1993 Ultramicroscopy 50 301
- [20] Frost B G , Jenkins T L 1997 Journal of Microscopy 187 85
- [21] McCartney M R, Ponce F A, Cai J, Bour D P 2000 Appl. Phys. Lett. 76 305

Electron holography investigation of the barrier of magnetic tunnelling junctions *

Wang Yong¹) Zhang Ze²) Zeng Zhong-Ming¹) Han Xiu-Feng¹)

1 X Beijing National Laboratory for Condensed Matter Physics , Institute of Physics ,

Chinese Academy of Sciences, Beijing 100080, China)

2) Beijing University of Technology , Beijing -100022 , China)

(Received 26 May 2005 ; revised manuscript received 12 July 2005)

Abstract

Electron holography was successfully used to investigate the distribution of the potential of the barrier in magnetic tunnelling junctions experimentally and theoretically. We got a clear profile of the potential which shows a "well" in reconstructed phase profile. We also pointed out some artefacts in electron holographic study of magnetic tunnelling junctions and suggested some possible methods to resolve them.

Keywords : electron holography , magnetic tunnelling junction , mean inner potential PACC : 4240M , 7570C , 0780

^{*} Project supported by the National Key Basic Research and Development Program of China Grant No. 2002CB613500, 2001CB610601).