短路过渡电弧焊电流信号的近似熵分析*

曹彪、吕小青曾、敏、王振民、黄石生、

(华南理工大学机械工程学院,广州 510640) (2005年8月8日收到 2005年10月26日收到修改稿)

依据近似熵的理论和算法,从非线性角度对纯 CO₂ 保护气体条件下短路过渡电弧焊的电流信号进行了近似熵 分析.通过对不同的送丝速度、给定电压及气体流量下电流信号的近似熵计算和比较,表明近似熵可以作为短路过 渡稳定性的评判标准.近似熵越大,波动越小,焊接过程就越稳定.

关键词:非线性,近似熵,短路过渡,稳定性 PACC:0547,0250,0660V

1.引 言

20 世纪 90 年代初, Pincus 为了克服混沌现象中 求解熵的困难,提出了一种近似熵(approximate entropy)的概念^[1],它是对非线性时间序列复杂度的 一种非负的定量描述,若一个非线性的物理过程复 杂程度越高,那么近似熵将越大.该方法具有需求的 数据短、抗干扰能力强的优点.在实际应用中,常把 它作为一个诊断的判据,已经在生理电信号^[2-5]、机 械设备故障诊断^[6]等领域进行了尝试并获得了良好 的效果.

CO₂ 短路过渡电弧焊效率高、经济性好,已在工 业中得到了广泛的应用.但由于它本身飞溅大、焊缝 成型质量差而妨碍它的使用,这也是一个数十年来 重点研究的问题.飞溅的大小及短路过渡频率是从 前判断短路过渡稳定性的主要标准,但是飞溅的大 小太过主观化,且短路过渡频率由于受到的影响因 素多,只能片面地反映过程稳定性.最近,人们企图 对采集到的电弧电信号进行统计分析来寻找稳定性 的过渡特征,并取得了一定进展,但该方法的实用性 太差.因此,本文从非线性角度出发,在不同的送丝 速度、不同的给定电压、不同的气体流量条件下,对 能真实反映熔滴短路过渡的电流信号进行近似熵分 析,探索短路过渡的稳定性与近似熵之间联系,期望 得到非线性角度下熔滴短路过渡电弧的新认识,并 在稳定性评判上得到更准确的数值评估.

2.短路过渡电弧的稳定性

短路过渡是在低电压、小电流情况下发生的现 象.电弧电流、电弧电压是决定短路过渡稳定与否的 最主要参数,只有电弧电流和电弧电压满足负载线 下才能得到稳定的短路过渡.由于送丝速度决定了 电弧电流的大小,送丝速度越大电弧电流也就越大, 因此稳定的短路过渡是要求送丝速度与电弧电压相 匹配.另外,气体流量、干伸长等也是影响短路过渡 稳定性的重要参数.

3. 近似熵的理论及算法

对数据长度为 *N*(一般在 75—5000)的时间序列 {*x*(*i*)}进行 *m* 维相空间重构 ,重构后的第 *i* 矢量表 示如下:

 $X(i) = \{x(i), x(i+1), x(i+2), \dots, x(i+m-1)\}$ (i = 123, ..., N - m + 1). (1) i = m 又称为窗口长度.

定义空间矢量 *X*(*i*)与 *X*(*j*)之间的距离 *d*[*X*(*i*),*X*(*j*))为最大的分量差,即

d[X(i),X(j)]

 $= \max_{0 \le k \le m-1} [x(i+k) - x(j+k)]]. \quad (2)$ 利用(2)式计算 X(i)与其余矢量 X(j)(j=1,2,3, … N - m + 1,且 $j \ne i$)的空间距离 d[X(i),

^{*} 国家自然科学基金(批准号 50375053 50575077)资助的课题.

X(j)].令

4 期

$$C_{i}^{m}(r) = (N - m + 1)^{-1} \times \sum_{j=1, j \neq i}^{N-m+1} \Theta(r - d[X(i),X(j)]), (3)$$

式中 $\Theta(\cdot)$ 是 Heaviside 函数 ,r 是容许偏差. $C_i^m(r)$ 表示以 X(*i*)为中心 其余矢量 X(*j*)与 X(*i*)的距离 d[X(*i*),X(*j*)]小于 r 的概率 ,即表示所有 X(*j*) ($j \neq i$)与 X(*i*)的关联程度.再令

$$\Phi^{m}(r) = (N - m + 1)^{-1} \sum_{i=1}^{N-m+1} \ln C_{i}^{m}(r), \quad (4)$$

 $\Phi^{m}(r)$ 便表示矢量序列 {X(i)}平均自相关程度.当 然 $\Phi^{m}(r)$ 表示关联程度与 m 的大小有关:m 越大相空间中的状态点就越稀,关联机会也就越少,因此 $\Phi^{m}(r)$ 随 m 增大而变小.于是近似熵 S_a 为

$$S_{a} = \Phi^{m}(r) - \Phi^{m+1}(r).$$
 (5)

由文献 7 可知,对于规则的信号,当 *m* 增大到 一定程度后,该物理过程的内部结构全部被打开,因 此 $\Phi^{m}(r)$ 不再随 *m* 出现变化,即近似熵是接近于零 的,而对于越复杂的信号近似熵也越大.在本文计算 中取 m = 2, $r = 0.15\sigma(x)$, $\sigma(x)$ 为原始数据序列的 标准方差.

实验采用福尼斯 TPS2700 型焊机进行 CO₂ 气体 保护焊平铺实验.工件材料为低碳钢,板厚 5.0 mm, 焊丝牌号为 H08Mn₂SiA,直径 1.0 mm,焊接速度 35 cm/min,保护气体为纯 CO₂(99.9%).分别改变焊接 参数,利用 NI 公司的数据采集卡 PCI-6221 进行电流 信号采集.采样频率为 10 kHz,每个焊接过程采样 50 s,从中截取 10 s 即 100000 个数据点来进行近似熵 计算.

4.1.不同送丝速度下的近似熵计算与分析

在给定电压为 20 V、干伸长为 13 mm、气体流量 V_q 基本保持不变的条件下,逐渐增加送丝速度 V_f 的焊接电弧电流波形如图 1—图 9 所示,从图中可见这些焊接过程基本上都是处于短路过渡.

以每 5000 个采集数据计算一个近似熵值,那么 每个送丝速度下将有 20 个近似熵值,取其平均值 S_{ave},近似熵 S_a计算结果如图 10 所示.

图 1 V_f = 2.0 m/min 采集的电流信号 (a)10 s 采样 (b)5—6 s 的放大

图 2 V_f = 2.5 m/min 采集的电流信号 (a)10 s 采样 (b)5—6 s 的放大

图 4 V_f = 3.5 m/min 采集的电流信号 (a)10 s 采样 (b)5—6 s 的放大

图 5 V_f = 4.0 m/min 采集的电流信号 (a)10 s 采样 (b)5—6 s 的放大

图 6 $V_f = 4.5 \text{ m/min}$ 采集的电流信号 (a)10 s采样 (b)5-6 s的放大

图 7 $V_f = 5.0 \text{ m/min}$ 采集的电流信号 (a)10 s采样 (b)5-6 s的放大

图 8 V_f = 5.5 m/min 采集的电流信号 (a)10 s 采样 (b)5-6 s 的放大

图 9 V_f = 6.0 m/min 采集的电流信号 (a)10 s 采样 (b)5—6 s 的放大

表1给出了不同送丝速度下焊接参数与近似熵 的计算结果,其中电弧电流、电弧电压是指实际采集 到的焊接电弧电信号的平均值,即平均电流及平均 电压.表1列出的在较低送丝速度下保护气体流量 较小,这是为了减小保护气体流量过大对近似熵的 影响.

比较图 1—图 9 的(a)图,发现焊接过程较稳 定、波动较小的为图 4 和图 5,即送丝速度为 3.5 和 4.0 m/min.这是由于在低的送丝速度下,电弧电压 与电弧电流不匹配于负载线,给定电压过大,从而使 得熔滴过渡处于大滴过渡状态,焊接过程不稳定.而 在高的送丝速度下,给定电压过小,从而使得焊接过 程中熔滴还没有长大就已经接触到了熔池,短路过 渡不充分易形成顶丝,从而造成熄弧,焊接过程也不 稳定.在实验中,当送丝速度达到6.5 m/min 时,由于 顶丝熄弧现象太严重而不能进行焊接了.只有在电 弧电压与电弧电流匹配时,短路过渡充分,焊接过程 最稳定,波动最小.所以送丝速度为3.5和4.0 m/min是在此给定电压下的最佳焊接规范.由表1可 知,这两处的近似熵也是最大.

图 10 不同送丝速度下的近似熵 (a) V_f为 2.0—3.0 m/min (b) V_f为 3.5—4.5 m/min (c) V_f为 5.0—6.0 m/min

送丝速度	电弧电流	电弧电压	气体流量		短路频率	g	
$V_{\rm f}/{ m m\cdot min^{-1}}$	$I_{\rm a}/{\rm A}$	$U_{\rm a}/{ m V}$	$V_{\rm q}/{\rm L}\cdot {\rm min}^{-1}$	十伸长/mm	f/Hz	S_{aavg}	$\sigma(S_a)$
2.0	46.0	20.4	8	13	20	0.1689	0.0408
2.5	68.6	20.2	8	13	61	0.2954	0.0414
3.0	81.6	20.3	10	13	76	0.3668	0.0491
3.5	95.7	20.2	10	13	86	0.4259	0.0311
4.0	107.8	20.2	10	13	94	0.4510	0.0308
4.5	113.8	20.3	10	13	79	0.3881	0.0608
5.0	125.1	20.2	10	13	90	0.4100	0.0469
5.5	133.0	20.3	10	13	86	0.3933	0.0469
6.0	140.0	20.3	10	13	69	0.3542	0.0492

表 1 不同送丝速度下的焊接参数与近似熵

由表 1 可知,在送丝速度由低到高逐渐增加时, 短路过渡频率逐渐增加,且近似熵也是逐渐增大的, 直到送丝速度为 4.0 m/min 时达到了最大值.近似熵 是一个复杂性的度量,所以当具有无规则特性的熔 滴短路过渡频率越高时近似熵应该越大.同时发现, 在送丝速度超过 4.0 m/min 后,虽然短路过渡频率只 是稍有减少,但是近似熵都比最佳规范时要小.如把 送丝速度5.05.5与3.5m/min进行比较,发现三者 中送丝速度为5.0m/min时短路过渡频率最高(90 Hz),其余两者短路过渡频率相等(86 Hz),但近似熵 却在最佳规范3.5m/min时最大.这表明短路过渡频 率只是影响近似熵的一个因素,而近似熵是与短路 过渡焊接过程的稳定性有着更紧密的联系.焊接过 程越稳定近似熵就越大.实际上,在较低的送丝速度 时,短路过渡频率的增加只不过是稳定性增加的一 个表征,因为此时是由不稳定的大滴过渡逐渐转变 成稳定的短路过渡过程.因此在给定电压一定、不同 的送丝速度下,近似熵能作为短路过渡焊接过程稳 定性的评判标准.

从近似熵的计算过程看,如果短路过渡焊接过 程越稳定,波动越小,那么近似熵的波动也应该越 小.图 10 给出的是近似熵的计算过程波动,发现在 较低和较高的送丝速度下,近似熵的波动都较大.近

似熵的标准方差 $\sigma(S_a)$ 是其计算过程波动的数值描述 标准方差越小波动也就越小.由表 1 可见,在 3.5 和 4.0 m/min 的送丝速度下近似熵的标准方差 最小,说明该送丝速度下波动最小,稳定性也就最好.这也证实了上述分析中提出的送丝速度为 3.5 和 4.0 m/min是给定电压下的最佳规范.

4.2.不同电压下的近似熵计算与分析

图 11—图 14 给出了在送丝速度为 3.0 m/min、 气体流量为 8 L/min、干伸长为 13 mm 条件下,不同 给定电压 U 下的焊接电弧电流波形.

图 11 V_f = 3.0 m/min, U = 18 V 采集的电流信号 (a) 10 s 采集 (b) 4-5 s 的放大

图 12 V_f = 3.0 m/min, U = 20 V 采集的电流信号 (a) 10 s 采集 (b) 4-5 s 的放大

图 13 V_f = 3.0 m/min, U = 22 V 采集的电流信号 (a)10 s 采集 (b)4-5 s 的放大

图 14 V_f = 3.0 m/min, U = 24 V 采集的电流信号 (a) 10 s 采集 (b) 4—5 s 的放大

不同给定电压下的焊接参数与近似熵的计算结 果如图 15 及表 2 所示.

图 15 不同给定电压下的近似熵

表 2	不同给定电压	下的焊接参数与近似熵

给定电压 U/V	电弧电压 $U_{\rm a}/V$	电弧电流 I _a /A	$S_{ m aavg}$
18.0	18.2	84.6	0.4559
20.0	20.2	86.3	0.3674
22.0	22.4	78.4	0.2441
24.0	25.0	69.8	0.1983

比较图 11—图 14 可知,随着给定电压的增加 焊接稳定性越来越差,且熔滴短路过渡频率逐渐减 小,焊接质量也会随之变差,这是由于熔滴过渡形态 由稳定的短路过渡转变成不稳定的大滴排斥过渡. 再进一步增加电压,焊接过程会变得更不稳定,开始 出现断弧现象,如图 14 所示.由表 2 可知,随着给定 电压的增大,近似熵是逐渐减小的.这也说明了越是 稳定的电弧近似熵越大,而越是不稳定的电弧近似 熵越小.因此,在同一送丝速度、不同的给定电压下, 近似熵能作为一种短路过渡焊接过程稳定性的判 据.表 2 中在给定电压为 24.0 V 时,实际的焊接电 弧电压与给定的电压偏差较大,这是由于断弧的存 在引起不断起弧造成的(断弧区间空载电压远远高 于电弧电压).

4.3.不同气体流量下的近似熵计算与分析

在送丝速度为 4.0 m/min、给定电压为 18.5 V、 干伸长为 10 mm 条件下,不同气体流量下的焊接电 弧电流波形如图 16—图 19 所示.

图 16 V_f = 4.0 m/min ,V_q = 6 L/min 采集的电流信号 (a) 10 s 采 集 (b) 4—5 s 的放大

不同气体流量下的焊接参数与近似熵的计算结 果如表 3 及图 20 所示.

图 17 V_f = 4.0 m/min , V_g = 10 L/min 采集的电流信号 (a)10 s 采集 (b)4—5 s 的放大

图 18 $V_f = 4.0 \text{ m/min}$, $V_g = 14 \text{ L/min}$ 采集的电流信号 (a) 10 s 采集 (b) 4—5 s 的放大

图 19 $V_{\rm f}$ = 4.0 m/min , $V_{\rm q}$ = 18 L/min 采集的电流信号 (a)10 s 采集 (b)4—5 s 的放大

气体流量 V _q /L·min ⁻¹	电弧电压 U _a /V	电弧电流 $I_{\rm a}/{ m A}$	${S}_{ m aavg}$
6	18.7	119.6	0.5092
10	18.7	113.1	0.5313
14	20.3	105.6	0.3359
18	20.9	94.5	0.2333

表 3 不同气体流量下的焊接参数与近似熵

气体流量在一定范围内是不会对焊接质量有影响的,但是气体流量过大时,由于气体的冷却作用,

反而使得熔滴过早冷却,引起熔滴在焊缝中不能完 全铺展开,造成焊缝余高太大.如果再加大气体流量 就能形成断弧,如图 18、图 19 所示.比较图 16—图 19 可知,由于气体流量过大,冷却作用加强,使得短 路频率降低,焊接过程变得不稳定.由表 3 可知,当 处于稳定的焊接过程时,如气体流量为 6 和 10 L/min 近似熵值都偏大,而当处于不稳定的焊接过 程时,如气体流量为 14 和 18 L/min 则近似熵值都偏 小,这进一步证明了近似熵可以作为短路过渡稳定 性评定的判据.

5.结 论

1)通过对不同送丝速度下电流信号的近似熵计 算与分析,发现近似熵的大小不但与熔滴过渡频率 相关,且与短路过渡焊接过程的稳定性有着更紧密 的联系,即焊接过程越稳定近似熵越大.当处于最佳 焊接规范时,近似熵最大.另外,从近似熵的计算过 程看,越是不稳定的焊接过程近似熵的波动也越大.

2 / 在改变给定电压、气体流量条件下 通过对电 流信号的近似熵计算及分析 ,进一步证实了越稳定 的电弧 ,近似熵越大.这表明近似熵能作为短路过渡 焊接过程稳定性的一种判据.

- [1] Pincus S M 1995 Chaos 5 110
- [2] Liao W C, Hu G S, Yang F S 1996 Chin. J. Biomed. Eng. 15
 193(in Chinese)[廖旺才、胡广书、杨福生 1996 中国生物医学 工程学报 15 193]
- [3] Xie Y, Xu J X, Yang H J et al 2002 Acta Phys. Sin. 51 205(in Chinese)[谢 勇、徐健学、杨红军等 2002 物理学报 51 205]
- [4] Gong Q, Ye D T, Guo L S et al 2002 J. Tsinghua Univ. (Sci. & Tech.) 42 299(in Chinese)[宫 琴、叶大田、郭连生等 2002清 华大学学报(自然科学版) 42 299]
- [5] Yang C M, Wan B K, Qi H Z et al 2002 J. Tianjin Univ. 35 521
 (in Chinese)[杨春梅、万柏坤、綦宏志等 2002 天津大学学报 35 521]
- [6] Xu Y G, Li L J, He Z J 2002 Inform. Contr. **31** 547 (in Chinese) [胥永刚、李凌均、何正嘉 2002 信息与控制 **31** 547]
- [7] Liu B Z, Peng J H 2004 Nonlinear Dynamics(Beijing: Higher Education Press) p42公 in Chinese)[刘秉正、彭建华 2004 非线 性动力学(北京 高等教育出版社)第 429页]

Approximate entropy analysis of current in short-circuiting arc welding *

Cao Biao Lü Xiao-Qing Zeng Min Wang Zhen-Min Huang Shi-Sheng

(College of Mechanical Engineering , South China University of Technology , Guangzhou 510640 , China)
 (Received 8 August 2005 ; revised manuscript received 26 October 2005)

Abstract

Based on the approximate entropy theory and related algorithm, approximate entropy analysis of current in short-circuiting arc welding in CO_2 shielding gas are performed from the point of view of nonlinear time sequences. Calculation and comparison of approximate entropy of current under different wire-feeding speeds, setting voltages and different gas flow rates show that approximate entropy of current can be taken as a creterion of stability of short-circuiting transfer. The results show that greater approximate entropy and less fluctuation indicate a more stable welding process.

Keywords : nonlinear , approximate entropy , short-circuiting transfer , stability PACC : 0547 , 0250 , 0660V

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 50375053, 50575077).