掺铒高硅氧玻璃光谱性质的研究*

达 宁¹²) 杨旅云¹²) 彭明营¹²) 孟宪庚¹²) 周秦岭¹) 陈丹平¹^{*} 赤井智子³) 角野广平³) 1)(中国科学院上海光学精密机械研究所 上海 201800) 2)(中国科学院研究生院 北京 100080)

应用 Judd-Oflet 理论计算了新型掺铒高硅氧玻璃中铒离子的强度参量 $\Omega_i(t = 2 A 6)_{\Omega_2} = 8.15 \times 10^{-20}_{\Omega_4} = 1.43 \times 10^{-20}_{\Omega_6} = 1.22 \times 10^{-20}_{\Omega_6}$ 相比于其他氧化物玻璃 表现出较大的 $\Omega_{2.6}$ 值 反映了铒离子周围的近邻结构不对称性和 Er-O 键的离子键成分较高.利用 McCumber 理论计算得到了能级⁴ I_{13/2}→⁴ I_{15/2}跃迁的受激发射截面为 $\sigma_e = 0.51 \text{ pm}^2$.这种高硅氧玻璃掺铒离子浓度尽管高于石英光纤的掺杂浓度 10 倍左右 ,其荧光寿命和量子效率仍达到 6.0ms 和 66.0% ,有可能成为新的光学放大和微片激光材料.

关键词:掺铒高硅氧玻璃, Judd-Ofelt 理论,量子效率 PACC:4270C,4279,6146

1.引 言

掺铒石英光纤放大器(EDFA)目前已经成为光 纤通信系统中必不可少的关键器件,但是 稀土离子 掺杂的石英玻璃存在着一些不足:一是掺杂离子浓 度不高 这是因为稀土离子在石英玻璃中容易自发 形成团簇,引起浓度淬灭[1],为弥补此不足,掺稀土 离子石英玻璃只能在光纤中得到应用,因为长距离 的光纤可以弥补低浓度的低吸收问题,但是,低浓度 会使得光纤的单位长度的增益小,不利于器件小型 化的发展,二是铒离子在石英玻璃中发光带宽较窄, 为放大带宽的扩展带来了困难,所以,尽管掺稀土离 子石英玻璃光纤已经在光纤通信系统中得到了应 用 但如果能够研究发现一种合适的基质材料或者 是制备方法,不仅使得石英玻璃的基本特性得到保 持 同时又有较高的离子掺杂浓度和较宽的发射带 宽,无疑可以弥补目前掺稀土离子石英玻璃的不足, 拓宽其应用范围。

为了抑制浓度淬灭,几十年来,国内外的科学家 们已经做了大量的研究工作,人们采用了 CVD¹¹和 溶胶-凝胶²¹等方法,试图获得石英发光和激光玻 璃,但都没能明显地增强它们的发光强度.具有纳米 级孔的微孔高硅氧玻璃其微孔分布均匀 比表面活 性大,可以使稀土和过渡金属等发光离子在玻璃中 得到充分分散 再经过比玻璃熔融温度低的固相烧 结就可以消除微孔而得到密实透明的高硅氧玻璃. 由于没有高温熔融过程 稀土和过渡金属离子迁移 困难,难以形成产生团簇的自发行为,用这种方法有 可能在一定程度上抑制浓度淬灭 提高掺杂玻璃的 发光强度,并且实验测得 1530nm 处的发光带宽得到 增加,这种烧结的高硅氧玻璃中二氧化硅的含量超 过96% 其性质接近于石英玻璃,我们通过在纳米 多孔高硅氧玻璃中掺入铕等发光活性离子,进行还 原烧结 得到了量子效率超过了 90% 的多种发蓝光 的高硅氧玻璃3〕掺入钕离子获得了高硅氧微片激 光玻璃41.本文制备了掺铒离子的烧结高硅氧玻璃, 研究了铒离子在这种高硅氧玻璃的吸收光谱和荧光 光谱.利用 Judd-Oflet 理论^{56]}和 McCumber 理论分析 了吸收光谱和荧光光谱性质 并比较了掺铒高硅氧 玻璃与其他基质玻璃的光谱性质。

2.实验

实验所采用的高硅氧玻璃是通过碱硼硅酸盐玻 璃分相方法来制备的^[7].先制备重量百分比为

^{3 (}日本产业技术综合研究所,大阪 563-8577 日本)

⁽²⁰⁰⁵年7月8日收到;2005年11月17日收到修改稿)

^{*} 国家自然科学基金(批准号 50125258 和 60377040)和上海市科委纳米专项(批准号 10352nm042)资助的课题.

[†] 通信联系人.E-mail:ndanju@mail.siom.ac.cn

61.5%SiO₂-27.0%B₂O₃-3.0%Al₂O₃-8.5%Na₂O的碱 硼硅酸盐玻璃.将分析纯的 SiO₂,H₃BO₃,AI(OH),和 Na, CO, 的试剂,根据组成要求按比例称取混合料 50g 混合均匀 放入铂金坩埚 在 1400℃温度下熔融 3-4h后,将玻璃熔液浇注在室温的石墨板上,然 后 将浇注出的碱硼硅酸盐玻璃置于马弗炉中在 570℃下热处理 40h,使玻璃产生分相.接着将分相 后的碱硼硅酸盐玻璃放入浓度为 3mol/L 的硝酸溶 液中,在90℃的温度下进行24h的酸处理,以溶去分 相玻璃中的富硼相,之后,将剩余的部分用去离子 水多次清洗 就可以得到具有连通结构的多孔高硅 氧玻璃.经化学分析得到该高硅氧玻璃的组成为: 97.0% SiO₂-2.1% B₂O₃-0.9% Al₂O₃-0.04% Na₂O. 微孔 占玻璃的体积约为 25% ,孔径分布在 1.0-5.0nm. 随后这种经过干燥后的多孔玻璃浸入硝酸铒浓度为 0.015-0.15mol/L的硝酸溶液中 0.5h,然后在室温 下进行干燥 最后在 1100℃下对掺入铒离子的多孔 玻璃烧结 2h,以消除微孔和微孔中的大部分羟基, 形成密实透明的高硅氧玻璃,所得样品的离子摩尔 浓度百分比为 0.34%. (6.67 × 10¹⁹ 离子/cm³). 烧结 后的玻璃被加工成 10.0mm × 10.0mm × 1.2mm 大小 的样品用于光谱测试.掺铒高硅氧玻璃的折射率 n_a 测试在 V 棱镜折射仪上进行,用氢灯(486.1nm),钠 灯(589.3nm)、氦氖灯(632.8nm)作为标准光源,分别 测定玻璃样品的 N_{e} 、 N_{d} 和 N_{f} 三线的折射率. 然后 利用 Cauchy 色散公式来估算其他波长的折射率,采 用排水失重法测得玻璃的密度为 1.98g/cm³,采用 PERKIN-ELMER LANBDA 900UV/VIS/NIR 型分光光 谱仪测量样品的吸收光谱,光谱仪测量范围为 190—1700nm, 荧光光谱采用近红外波段 ZOLIX SBP300型荧光光谱仪测试,用 808nm 半导体激光器

作为抽运源. Er³⁺的⁴I_{13/2}能级的荧光寿命用 808nm 激光二极管作为抽运源,寿命大小由示波器 (Tektronix TDS3052)直接读出.所有测试均在室温下 进行.

3. 结果与讨论

3.1. 吸收光谱

图 1 为多孔高硅氧玻璃中 Er³⁺ 的吸收光谱,在 300—700nm 可见光区域可观察到 7 个吸收峰,它们 分别对应从 Er³⁺ 基态到⁴F_{9/2}, ⁴S_{3/2}, ⁴H_{11/2}, ⁴F_{7/2}, ⁴F_{5/2}, ⁴H_{9/2}, ⁴G_{11/2}的吸收跃迁,吸收中心波长分别为 654, 545 *522 4*88 *4*49 *4*07 *3*79nm.

图 1 掺铒高硅氧玻璃的吸收光谱

根据吸收光谱计算了 Er^{3+} 各个峰值的吸收截面 Σ_{abs} ,如表 1 所示.其中 f_{abs} 是电偶极跃迁振子强度理论值; f_{ad} 是磁偶极跃迁振子强度理论值; f_{ed} 是电偶极跃迁振子强度与磁偶极跃迁振子强度之和; Refractive index 是计算值.

主 1	正.3+的由	但机好纤提之程度	いいのおる
(XI	rr oye		PX 4X EX III

跃迁态	$f_{ m abs}$	$f_{ m md}$	$f_{ m ed}$	λ/nm	Refractive index	$\Sigma_{\rm abs}/10^{-20}{\rm cm}^2$
⁴ I _{13/2}	1.70×10^{-6}	4.67×10^{-7}	1.23×10^{-6}	1509.7	1.4538	0.7087
⁴ I _{11/2}	6.30×10^{-7}		6.30×10^{-7}	973.4	1.4560	
⁴ I _{9/2}	2.40×10^{-7}		2.40×10^{-7}	797.1	1.4580	1.2886
⁴ F _{9/2}	1.86×10^{-6}		1.86×10^{-6}	653.9	1.4611	1.5562
⁴ S _{3/2}	4.50×10^{-7}		4.5×10^{-7}	542.9	1.4658	1.3270
² H _{11/2}	1.09×10^{-5}		1.09×10^{-5}	522.2	1.4671	4.0517
⁴ F _{7/2}	1.77×10^{-6}		1.77×10^{-6}	488.1	1.4697	1.5375
$^{4}F_{3/2}$ 5/2	8.30×10^{-7}		8.30×10^{-7}	449.5	1.4737	1.3357
² H _{9/2}	6.9×10^{-7}		6.9×10^{-7}	407.6	1.4798	1.4252
⁴ G _{11/2}	1.95×10^{-5}		1.95×10^{-5}	379.0	1.4855	5.1878
$^{2}\mathrm{G}_{7/2}$, $^{2}\mathrm{K}_{15/2}$, $^{2}\mathrm{G}_{9/2}$	1.26×10^{-7}		1.26×10^{-7}	363.7	1.4894	1.9038

3.2. 光谱参量计算

利用 Judd-Ofelt 理论计算铒离子在高硅氧玻璃 中的强度参量,如强度参量 Ω_t (t = 2 A 6)、自发辐 射跃迁概率、辐射寿命、量子效率等.利用强度参量 Ω_t 进一步计算得到了电偶极谱线强度 S_{ed} ,自发辐 射概率 A_{ed} 辐射寿命 τ 等.按照 Judd-Ofelt 理论,稀 土离子 $4f^N$ 电子组态的 SLJ 能级跃迁到 S'L'J'能级 的谱线强度 S 为

$$S_{\text{ed}}(J - J') = \sum_{\iota=2 \not A \not b} \Omega_{\iota} \mid aJ \parallel U_{(\iota)} \parallel bJ' \mid^2,$$
(1)

式中 Ω_t 为谱线强度参量 ,取决于基质材料的配位 特性; *J*, *J* 分别为初态和末态总角动量量子数; $| aJ || U_{(t)} || bJ' || 为约化矩阵元 ,不随玻璃基质变$ 化^[8].根据测得的吸收光谱 ,利用最小二乘法拟合曲 $线 ,计算得到了铒离子谱线强度参量 <math>\Omega_t$ (t = 2 A, 6). 经计算 ,Er³⁺ 在高硅氧玻璃中的强度参量分别 为: $\Omega_2 = 8.15 \times 10^{-20}$, $\Omega_4 = 1.43 \times 10^{-20}$, $\Omega_6 = 1.22$ × 10⁻²⁰. 表 2 列出了各种具有代表性的其他掺铒离 子玻璃基质的强度参量 Ω_t .

玻璃	$arOmega_2$	$arOmega_4$	Ω_6
Aluminate ^[9]	5.60	1.60	0.61
Phosphate ^[9]	6.65	1.52	1.11
Germanate ^[9]	5.81	0.85	0.28
Fluorophosphates ^[9]	2.91	1.63	1.26
Silicate ^[9]	4.23	1.04	0.61
Tellurite ^[10]	4.74	1.62	0.64
Aluminosilicate ^[11]	8.20	1.56	1.25
Porous silica(this work)	8.15	1.43	1.22

表 2 铒离子在各种玻璃基质的强度参量 $\Omega_{\rm c}$ (10^{-20} cm²)

铒离子在高硅氧玻璃中的强度参量值与在铝硅酸盐玻璃(61.9SiO₂-20.6Al₂O₃-17.2Na₂O-0.34Er₂O₃)中的强度参数值比较接近^[11],这也许反映了在这种高硅氧玻璃中,铒离子周围的近邻结构类似于铝硅酸盐玻璃中铒离子周围的结构.如上所述稀土离子在石英玻璃中容易自发形成团簇⁶¹,反映了稀土离子与石英玻璃的结构单元 SiO₄的亲和性比较差.在稀土掺杂的石英玻璃中添加氧化铝,可以明显增加稀土离子在石英玻璃中的分散性^[12-14],这反映了稀土离子与玻璃中的 AlO₄和 AlO₆结构单元的亲和性比较好,说明稀土离子易与铝氧多面体相结合;另一

方面,也可能是邻接铝氧多面体的铒离子的化学性 质产生了变化 增加了铒离子与 SiO₄ 结构单元的亲 和性,化学分析的结果显示在这种多孔高硅氢玻璃 中 还含有 0.9% 的氧化铝 这些少量的铝离子在这 种多孔高硅氧玻璃中的分布 ,会对铒离子的发光有 着重要影响 在制备多孔高硅氢玻璃的工艺中 其中 一个重要的步骤就是使碱硼硅酸盐玻璃产生分相, 分成富硅相和富硼相,实验显示151,碱金属离子完 全富积在富硼相 铝离子分布在分相界面附近 因此 酸处理过程中 90%以上的硼和钠离子被溶解掉了, 但铝离子仅被酸溶掉 70% 左右 ,未被溶掉的铝离子 可能主要分布在高活性的多孔高硅氢玻璃的表面附 近 加上稀土离子亲铝氧多面体而不亲硅氧多面体 , 以溶液形式进入到多孔高硅氢玻璃中的铒离子将优 先与铝氧多面体中的氧离子相结合 所以 尽管这种 多孔高硅氧玻璃中的铝离子的含量不高,但也可能 与高铝离子的含量玻璃中的铝离子发挥同样的作 用.因而表现在它们的铒离子谱线强度参量 Ω 值 比较接近.

根据稀土光谱理论^[16],Ω, 与稀土离子的超敏 跃迁有关,玻璃结构中稀土离子的极化和不对称环 境对超敏跃迁有显著的影响 :玻璃结构的不对称性 和稀土离子的极化性越高 相应的超敏跃迁也越强 , Ω_2 也越大,同时 Ω_2 越大,玻璃基质的共价性越强. 由表 2 可以看出高硅氧玻璃有较大的 $\Omega_{2,4}$ 值,与铝 硅酸盐玻璃中比较接近 ,表明高硅氧玻璃中的铒离 子周围可能存在有 AlO_4 和 AlO_6 多面体以及 SiO_4 多 面体.但是相比于AIO4 多面体,AIO6 多面体的离子 性比较强 因此,可以推测铒离子近邻周围,AlO。多 面体不会多,主要是共价性较强的 AlO4 和 SiO4 多面 体.另一方面,铒离子的 Ω_6 值随着玻璃结构中Er-O或者是 Er-F 的离子性的增大而增大¹¹¹,由表 2 可以 看到氟化物玻璃的 $arOmega_{
m c}$ 值明显较大 ,这是因为氟离 子的电负性高于氧离子 ,与金属离子形成的化合键 中离子性成分比较高,在氧化物玻璃中 通常玻璃形 成体的阳离子与氧离子形成的化合键中共价性成分 比较高,例如 Si-O, P-O, B-O 以及 AlO4 的 Al-O 玻璃形修饰体的阳离子与氧离子形成的化合键 中离子性成分比较高,例如 Na-O ,K-O 和 Ca-O 等.在这种高硅氧玻璃中,几乎不存在有碱金属和碱 土金属离子,但如果铝离子是以 AlO4 的形式存在, 就必然有阳离子作为电荷补偿离子分布在 AlO₄ 的

附近,这种阳离子在玻璃中与碱金属和碱土金属离 子作用相似,是玻璃形修饰体,与周围的氧离子以离 子键相结合的成分比较大.显然,在这个高硅氧玻璃 中,铒离子担负着这种阳离子的作用,因而表现在它 的强度参量 Ω₆ 值比较大.因此,我们可以认为,不 同于一般的方法直接由原料制备的掺铒氧化物玻 璃,在多孔玻璃中浸入铒离子,然后进行烧结处理, 这种情况下,铒离子与周围氧离子的共价性要比传 统制备的掺铒玻璃弱.

$$A_{\rm ed}(J - J') = \frac{64\pi^4 e^2}{3\hbar(2J + 1)\lambda^3} \frac{n(n^2 + 2)^2}{9} \times S_{\rm ed}(J - J'), \qquad (2)$$

$$\tau_{\rm ir} = \frac{1}{\sum_{i} A(i,j)}, \qquad (3)$$

式中 \hbar 为普朗克常数 , λ 为发射波长 ,e 为电子电量 ,n 是样品的折射率.表 3 为计算得到的 Er^{3+} 在高

表 3 Er³⁺ 在高硅氧玻璃中的电偶极谱线强度、自发辐射跃迁概率及辐射寿命

跃迁	λ/nm	[<i>U</i> ⁽²⁾] ²	[U ⁽⁴⁾] ²	[U ⁽⁶⁾] ²	$S_{\rm ed}/10^{-20}{\rm cm}^2$	$A_{\rm ed}/{\rm s}^{-1}$	$A_{\rm md}/{\rm s}^{-1}$	$ au_{ m rad}/ m ms$
${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$	1511	0.0188	0.1176	1.4617	2.1114	77	32.95	9.1
${}^{4}I_{11/2} \rightarrow {}^{4}I_{15/2}$	976	0.0259	0.0001	0.3994	0.7002	95		10.5
\rightarrow ⁴ I _{13/2}	2754	0.021	0.11	1.04	1.6021	10	8.38	
${}^{4}I_{9/2} \rightarrow {}^{4}I_{15/2}$	802	0	0.1452	0.0064	0.2158	53		
\rightarrow ⁴ I _{13/2}	1707	0.0003	0.0081	0.64	0.7977	20		
\rightarrow ⁴ I _{11/2}	4490	0	0	0	0	0	1.74	
${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$	654	0	0.5655	0.4651	1.3794	619		1.6
\rightarrow ⁴ I _{13/2}	1154	0.0096	0.1576	0.087	0.4105	34		
\rightarrow ⁴ I _{11/2}	1985	0.0671	0.0088	1.2611	2.1035	34		
\rightarrow ⁴ I _{9/2}	3559	0.096	0.0061	0.012	0.8056	2		
${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$	545	0	0	0.2285	0.2798	217		
\rightarrow ⁴ I _{13/2}	852	0	0	0.3481	0.4262	87		
\rightarrow ⁴ I _{11/2}	1233	0	0.0037	0.0789	0.1019	7		
\rightarrow ⁴ I _{9/2}	1700	0	0.0729	0.256	0.4179	11		
${}^{4}\mathrm{H}_{11/2} \rightarrow {}^{4}\mathrm{I}_{15/2}$	522	0.7056	0.4109	0.087	6.4441	5690		0.17
${}^{4}F_{7/2} \rightarrow {}^{4}I_{15/2}$	488	0	0.1467	0.6273	0.9782	1057		0.85
${}^{4}F_{5/2} \rightarrow {}^{4}I_{15/2}$	449	0	0	0.2237	0.2739	380		
${}^{4}F_{3/2} \rightarrow {}^{4}I_{15/2}$	449	0	0	0.1204	0.1474	205		
${}^{4}\text{H}_{9/2} \rightarrow {}^{4}\text{I}_{15/2}$	407	0	0.078	0.17	0.3199	596		
\rightarrow ⁴ I _{13/2}	557	0.073	0.12	0.41	1.2687	922		
\rightarrow ⁴ I _{11/2}	669	0.077	0.11	0.096	0.9025	379		
\rightarrow ⁴ I _{9/2}	828	0.0076	0.005	0.0028	0.0725	16		
\rightarrow ⁴ F _{9/2}	3770	0.01	0.03	0.059	0.1967	0		
${}^{4}G_{11/2} \rightarrow {}^{4}I_{15/2}$	379	0.9178	0.5271	0.1197	8.3795	19330		
\rightarrow ⁴ I _{13/2}	506	0.1011	0.2642	0.255	1.5143	1468		
\rightarrow ⁴ I _{11/2}	620	0.0002	0.493	0.0144	0.7253	382		
\rightarrow ⁴ I _{9/2}	719	0.0645	0.0117	0.0467	0.5995	203		
\rightarrow ⁴ F _{9/2}	901	0.4436	0.0388	0.0104	3.6827	632		
$\rightarrow^2 H_{11/2}$	1383	0.0006	0.16	0.11	0.3687	18		
${}^{4}G_{9/2} \rightarrow {}^{4}I_{15/2}$	363	0	0.0511	0.0002	0.0734	193		
${}^{2}K_{15/2} \rightarrow {}^{4}I_{15/2}$	363	0.0219	0.0041	0.0758	0.2771	728		
${}^{2}G_{7/2} \rightarrow {}^{4}I_{15/2}$	363	0	0.0174	0.1163	0.1673	439		

硅氧玻璃中的电偶极谱线强度、自发辐射跃迁概率 及辐射寿命,计算得到⁴I_{13/2}→⁴I_{15/2}辐射寿命为 9.1ms.量子效率 η 是衡量一种掺活性离子玻璃发光 特性的重要参数,可由(4)式计算得到

$$\eta = \tau_{\rm ir} / \tau_{\rm rad} , \qquad (4)$$

其中 τ_{ir} 为实验测得荧光寿命, τ_{rad} 为计算得到的 Er³⁺的⁴I_{13/2}→⁴I_{15/2}辐射寿命.实验测得 τ_{ir} 为 6.0ms, 计算得到 τ_{rad} = 9.1ms, 根据(4)式计算,量子效率为 66.0%.具有同样大小的谱线强度参量 Ω_i 值的铝硅 酸盐玻璃的量子效率约为 80%^[11],显然,这种铒离 子掺杂的高硅氧玻璃的量子效率偏低.原因是理论 计算得到的 τ_{rad} 与基质的折射率有关,折射率越大, τ_{rad} 越小,而实验测得的高硅氧玻璃的折射率主要是 整个基质的平均折射率,事实上,铒离子周围由于含 有较多的铝氧多面体,其局域折射率可能会较高,这 样,按计算平均折射率计算得到的 τ_{rad} 偏大,使得量 子效率较铝硅酸盐玻璃低.

3.3. 荧光光谱

图 2 是 Er³⁺ 的荧光光谱.最高峰对应于⁴I₁₃₂→ ⁴I₁₅₂跃迁.中心波长在 1530nm,荧光半高宽(FWHM) 为 45nm,如表 4 所示,低于重金属玻璃,但比其他氧 化物玻璃的荧光半高宽要高.

图 2 掺铒高硅氧玻璃的荧光光谱

表 4 不同基质玻璃中 Er^{3+} 离子 $^{4}I_{13/2} \rightarrow ^{4}I_{15/2}$ 跃迁的 FWHM σ_{c} 和 FWHM × σ_{c} 比较

玻璃	铋酸盐	碲酸盐	锗酸盐	磷酸盐	硅酸盐	高硅氧玻璃
FWHM/nm	79	65	42	37	40	45
$\sigma_{\rm c}/10^{-20}{\rm cm}^2$	0.70	0.75	0.57	0.64	0.55	0.51
FWHM × $\sigma_{\rm c}$	55.4	48.8	23.9	23.7	22.0	23.0

根据 McCumber 理论^[17],跃迁⁴ $I_{13/2} \rightarrow {}^{4}I_{15/2}$ 的发射 截面可由跃迁⁴ $I_{15/2} \rightarrow {}^{4}I_{13/2}$ 的吸收截面得到(5)式:

 $\sigma_{e}(\lambda) = \sigma_{a}(\lambda) \exp[(\epsilon - \kappa v)kT],$ (5) 式中 ϵ 是与温度有关的激发能量,其物理意义是: 保持温度不变,把 Er^{3+} 离子从基态⁴ $I_{15/2}$ 激发到⁴ $I_{13/2}$ 所需的自由能. ϵ 确定的近似公式为

 $\exp(\epsilon/kT) = 1.12\exp(E_0/kT)$, (6) E_0 为上能级对应的能量,求得 $\epsilon = 6552 \text{ cm}^{-1}$, k 为 玻尔茲曼常数, T 为样品温度. 计算得跃迁⁴I_{13/2} → ⁴I_{15/2}的发射截面 $\sigma_e(\lambda) = 5.10 \times 10^{-21} \text{ cm}^2$ 根据 Judd-Ofelt 理论,受激发射截面 σ_e 与折射率成正比¹¹¹. σ_e 和 FWHM 对于光纤放大器实现带宽宽和高增益放 大非常重要. 光纤放大器的带宽特性可用 FWHM × σ_e 的乘积来衡量,乘积越大,带宽特性越好¹⁸¹. 不同 基质玻璃中 Er^{3+} 离子⁴I_{13/2} → ⁴I_{15/2}跃迁发射的 FWHM, σ_e 和 FWHM × σ_e 值如表 4 所示. 由表 4 可知高硅氧 玻璃受激发射截面比其他基质小,这是由于样品的 折射率较小. 尽管掺铒高硅氧玻璃的 FWHM × σ_e 的 乘积与碲酸盐和铋酸盐玻璃相比较小,但与磷酸盐、 锗酸盐和硅酸盐玻璃相当,由于高硅氧玻璃的玻璃 转变温度超过1100℃,并且有着良好的机械强度和 化学稳定性,耐热冲击,它将可能成为一种新的光学 放大和微片激光材料.

4.结 论

应用 Judd-Ofelt 理论计算得到高硅氧玻璃的强 度参量 $\Omega_2 = 8.15 \times 10^{-20}$, $\Omega_4 = 1.43 \times 10^{-20}$, $\Omega_6 = 1.22 \times 10^{-20}$.分析计算结果显示,在高硅氧玻璃中铒 离子近邻结构的不对称环境较大,Er-O 键的共价性 较其他基质弱.该高硅氧玻璃中铒离子浓度达到 3400ppm,高于掺铒石英光纤10倍左右,其荧光寿命 和量子效率仍然分别为 6.0ms 和 66.0%,没有产生 一般石英玻璃基质中容易出现的严重的浓度淬灭现 象.由于计算得到的强度参量 Ω_2 与文献报道的铝 硅酸盐玻璃的值比较接近,可以认为在这种玻璃中, 铒离子周围的近邻结构类似于铝硅酸盐玻璃中铒离 子周围的结构, 铝离子的存在对铒离子的发光有着 重要的作用, 改变玻璃中铝离子的含量有可能得到 高量子效率的掺稀土离子高硅氧玻璃. 这种掺铒高 硅氧玻璃在 1530nm 处有较大的受激发射截面(σ_e = 0.51pm² 和荧光半高宽(FWHM = 45nm),这些性质 显示这种玻璃有可能成为一种新型的光纤放大器和 微片激光基质材料.

- [1] Arai K, Namikawa H, Kumata K 1986 J. Apply. Phys. 59 3430
- [2] Sun K , Lee W H ,Risen W M JR 1987 J. Non-Cryst. Solids. 92 145
- [3] Chen D, Hiroshi M, Akai T, Yazawa T 2005 Appl. Phys. Lett. 86 231908
- [4] Xia J , Chen D , Qiu J , Zhu C 2005 Optical Letter . 30 47
- [5] Judd B R 1962 Phys. Rev. 127 750
- [6] Ofelt G S 1962 J. Chen. Phys. 37 511
- [7] Northwest Light Industry Academy 2004 Class Technology Methods (in Chinese) Beijing China Light Industry Press)p494[西北轻工 业学院 2004 玻璃工艺学(北京:中国轻工业出版社)第 494 页]
- [8] Carnalll W T, Fields P R, Wybourne B G 1965 J. Chem. Phys. 42 3997
- [9] Zou X, lzumitani T 1993 J. Non-Cryst. Solid. 162 68

- [10] Yang Jianhu, Dai Shixun, Hu Lili 2003 Acta Optica Sinica 23 210
 (in Chinese)[杨建虎 2003 光学学报 23 210]
- [11] Tanaba S 1999 J. Non-Cryst. Solids 259 1
- [12] Mack H et al 1983 Chem. Phys. Lett. 99 238
- [13] McGahay V, Tomozawa M 1993 J. Non-Cryst. Solids 159 246
- [14] Sen S , Stebbins J F 1995 J. Non-Cryst. Solids 188 54
- [15] Chen D , Masui H , Akai T , Yazawa T 2003 Ceramic Transactions . 143 23
- [16] Zhang S Y, Bi X Z 1991 Theory of Rare-earth Spectrum (in Chinese & Changchun: Jilin Science and Technology Press)p155 张 思远、毕宪章 1991 稀土光谱理论(长春:吉林科技出版社)第 155页]
- [17] McCumber D E 1964 Phys. Rev. 134 A299
- [18] Ma Hong-Ping, Xu Shi-Qing, Jiang Zhong-Hong 2004 Acta. Phys. Sin. 53 378 (in Chinese] 马红萍 2004 物理学报 53 378]

Specital properties of Er³⁺ doped high silica glass *

Da Ning^{1 \mathcal{D}}) Yang Lü-Yun^{1 \mathcal{D}}) Peng Ming-Ying^{1 \mathcal{D}}) Meng Xian-Geng^{1 \mathcal{D}})

Zhou Qing-Ling¹) Chen Dan-Ping¹[†] Tomoko Akai³) Kohei Kadono³

1 X Photo Craft Project , Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

2 & Graduate School of the Chinese Academy of Sciences, Beijing 100080, China)

3 X National Institute of Advanced Industrial Science and Technology, Osaka 563-8577, Japan)

(Received 8 July 2005; revised manuscript received 17 November 2005)

Abstract

The Judd-Ofelt intensity parameter Ω_t of a novel Er^{3^+} doped high silica glass was calculated. The large values of $\Omega_{2.6}(\Omega_2 = 8.15 \times 10^{-20} \ \Omega_6 = 1.22 \times 10^{-20}$) indicate that the local structure of Er^{3^+} has higher asymmetry and lower covalency than other oxide glasses. McCumber theory was used to calculate the stimulated emission cross section of ${}^4\mathrm{I}_{13/2} \rightarrow {}^4\mathrm{I}_{15/2}$ transition, the result was $0.51\,\mathrm{pm}^2$. Despite the Er^{3^+} -doped concentration in high silica glass being about ten times greater than that in silica fiber, its fluorescence lifetime and quantum efficiency were 6.0ms and 66.0%, respectively. This novel Er^{3^+} -doped glass can be used in optical amplification and microchip laser.

 $Keywords: {\rm Er}^{3\,+}$ doped high silica glass , Judd-Oflet theory , quantum efficiency PACC: 4270C , 4279 , 6146

^{*} Project supported by the National Natural Scince Foundation of China (Grant Nos. 50125258,60377040) and the Shanghai Nano-tech Promote Center (Grant No.0352nm042)

[†] Corresponding author. E-mail : ndanju@mail.siom.ac.cn