厄尔尼诺-南方涛动时滞海-气振子耦合模型*

莫嘉琪^{1 ½);} 王 辉^{3)} 林万涛^{4)}

1 (安徽师范大学,芜湖 241000)

2 (上海高校计算科学 E-研究院上海交通大学研究所,上海 200240)

3 (中国气象科学研究院,北京 100081)

4)(中国科学院大气物理研究所,北京 100029)

(2005年10月24日收到2005年12月7日收到修改稿)

研究了一个时滞海-气振子模型.利用摄动理论和方法 得到了海-气振子模型解的渐近展开式.

关键词:非线性,时滞,厄尔尼诺-南方涛动,海-气振子

PACC: 0230, 0200

1. 引 言

上世纪以来,关于厄尔尼诺-南方涛动(ENSO)年际变化方面已经有许多研究,对赤道海-气耦合系统的认识和模拟有了较大的进展^[1]. McCreary 提出了一个关于 ENSO 振荡性的机理^[2],它是基于赤道副热带在西海岸海水上涌 Rossby 波的影响提出来的. Suarez 和 Schopf 引入了一个 ENSO 时滞振荡机理^[3]. 它是由具有正和负反馈的时滞微分方程来表示的. 由赤道东太平洋局部海-气耦合形成的正反馈和在东太平洋耦合区域内的由自由 Rossby 波产生的传播并从西海岸返回的负反馈而形成的.

厄尔尼诺-南方涛动是涉及到赤道太平洋海-气交互的自然现象. ENSO 现象在国际学术界中是非常值得关注的研究对象^[4—10]. 莫嘉琪等人在大气物理,海洋气候,动力系统等方面也研究了一些有关的非线性问题^[11—20]. 近来许多学者已经研究了许多非线性问题的近似求解理论^[21—25]. 本文是利用一个简单而有效的非线性摄动方法来研究 ENSO 时滞海-气振子的模型.

2. 赤道太平洋 SST 模型

ENSO时滞振荡模型是假设在西太平洋信风作

用影响到东太平洋的海表温度(SST)异常.这里假设在 Niño-4 区域(5° S— 5° N , 160° E— 150° W)信风强度异常是线性地影响到 Niño-3 区域(5° S— 5° N , 150° E— 90° W)的 SST 异常. 我们能够建立如下赤道太平洋的非线性时滞模型[10]:

$$\frac{\mathrm{d}T}{\mathrm{d}t} = a\tau_1 - b_1\tau_1(t-\eta) - \varepsilon T^3, \qquad (1)$$

$$\frac{\mathrm{d}\tau_1}{\mathrm{d}t} = dT - R_{\tau_1}\tau_1 , \qquad (2)$$

其中 T 为区域 $Ni\tilde{n}o$ -3 的 SST 异常 $,\tau_1$ 为在区域 $Ni\tilde{n}o$ -4 的信风强度异常 $,\eta$ 为西太平洋转到东太平洋信风传播波的时间 ,a 为关于 T 的正反馈系数 $,b_1$ 为由于在西海岸反射波的负反馈系数 ,d 为联系到 $Ni\tilde{n}o$ -3 区域的 SST 异常到 $Ni\tilde{n}o$ -4 区域的信风强度异常的系数 $,R_{\tau_1}$ 为信风衰减系数 $,\varepsilon$ 为 SST 的立方衰减系数 $,\varepsilon$ 为正的常数 ,m ε 为正的小参数 .

3. SST 的摄动解

现来求解非线性时滞耦合系统 (1),(2).令 $T(t) = T_0(t) + T_1(t) + T_2(t) + T_2(t$

^{*} 国家自然科学基金(批准号 90111011 和 10471039) 国家重点基础研究发展计划项目(批准号 2003CB415101-03 和 2004CB418304) 中国科学院创新方向性项目(批准号: KZCX3-SW-221) 和上海市教育委员会 E-研究院建设计划项目(批准号: N. E03004).

[†] E-mail: mojiagi@mail.ahnu.edu.cn

项 合并同次幂项的系数 $\mathbf{d} \mathbf{e}^0$ 项 可得

$$\frac{\mathrm{d}T_0}{\mathrm{d}t} = a\tau_{10} , \qquad (5)$$

$$\frac{\mathrm{d}\tau_{10}}{\mathrm{d}t} = dT_0 - R_{\tau_1} \tau_{10}. \tag{6}$$

不难得到系统(5),(6)的解为

$$T_{0}(t) = C_{01} \exp(\lambda_{1} t) + C_{02} \exp(\lambda_{2} t), \quad (7)$$

$$\tau_{10}(t) = \frac{C_{01} \lambda_{1}}{2} \exp(\lambda_{1} t) + \frac{C_{02} \lambda_{2}}{2} \exp(\lambda_{2} t), \quad (8)$$

其中 C_{01} , C_{02} 为任意常数 ,而

$$\lambda_i = \frac{1}{2} [-R_{\tau_1} \mp \sqrt{R_{\tau_1}^2 + 4ad}], i = 1 2.$$

由展开式 对于 ε¹ 的系数 ,有

$$\frac{\mathrm{d}T_1}{\mathrm{d}t} = a\tau_{11} + c\tau_{10}(t - \eta) - T_0^3, \qquad (9)$$

$$\frac{\mathrm{d}\tau_{11}}{\mathrm{d}t} = dT_1 - R_{\tau_1}\tau_{11}. \tag{10}$$

由(7)-(9)武,可得

$$\frac{\mathrm{d}T_1}{\mathrm{d}t} = a\tau_{11} + c \sum_{i=1}^{2} C_{0i}\lambda_i \exp \lambda_i (t - \eta)$$
$$- \left[\sum_{i=1}^{2} C_{0i} \exp(\lambda_i t) \right]^3.$$

于是可以求得系统(9),(10)的解为

$$T_{1}(t) = C_{11} \exp(\lambda_{1} t) + C_{12} \exp(\lambda_{2} t) - \frac{acdt}{\lambda_{1} - \lambda_{2}} \sum_{i=1}^{2} (-1)^{i} C_{0i} \exp \lambda_{i}(t - \eta)$$

$$+ \frac{c}{(\lambda_{1} - \lambda_{2})^{i}} \left[\exp(\lambda_{1} t) - \exp(\lambda_{2} t) \right] \sum_{i=1}^{2} (-1)^{i} C_{0i} \lambda_{i}^{2} \exp(-\lambda_{i} \eta)$$

$$- \frac{ad}{\lambda_{1} - \lambda_{2}} \sum_{i,j,k,r=1}^{2} (-1)^{i} \frac{C_{0i} C_{0j} C_{0k} \left[\exp(\lambda_{i} + \lambda_{j} + \lambda_{k}) t - \exp(\lambda_{r} t) \right]}{(\lambda_{i} + \lambda_{j} + \lambda_{k} - \lambda_{r}) \lambda_{r}}, \qquad (11)$$

$$\tau_{11}(t) = \frac{C_{11} \lambda_{1}}{a} \exp(\lambda_{1} t) + \frac{C_{12} \lambda_{2}}{a} \exp(\lambda_{2} t) - \frac{cdt}{\lambda_{1} - \lambda_{2}} \sum_{i=1}^{2} (-1)^{i} C_{0i} \lambda_{i} \exp \lambda_{i}(t - \eta)$$

$$- \frac{cd}{(\lambda_{1} - \lambda_{2})^{i}} \left[\exp(\lambda_{1} t) - \exp(\lambda_{2} t) \right] \sum_{i=1}^{2} (-1)^{i} C_{0i} \lambda_{i} \exp(-\lambda_{i} \eta)$$

$$- \frac{d}{\lambda_{1} - \lambda_{2}} \sum_{i=1}^{2} (-1)^{i} \frac{C_{0i} C_{0j} C_{0k} \left[\exp(\lambda_{i} + \lambda_{j} + \lambda_{k}) t - \exp(\lambda_{r} t) \right]}{\lambda_{i} + \lambda_{i} + \lambda_{k} - \lambda_{r}}, \qquad (12)$$

其中 C_1 , C_2 , 为任意常数

将(7),(8),(11),(12)式代入(3),(4)式,便得到耦合模型(1),(2)的一次近似的渐近解

$$T = T_{0} + T_{1}\varepsilon + \dots = \sum_{i=1}^{2} C_{i} \exp(\lambda_{i}t) + \left[-\frac{acdt}{\lambda_{1} - \lambda_{2}} \sum_{i=1}^{2} (-1)^{i} C_{0i} \exp(\lambda_{i}(t - \eta)) + \frac{c}{(\lambda_{1} - \lambda_{2})^{2}} \left[\exp(\lambda_{1}t) - \exp(\lambda_{2}t) \right] \sum_{i=1}^{2} (-1)^{i} C_{0i} \lambda_{i}^{2} \exp(-\lambda_{i}\eta) + \frac{ad}{\lambda_{1} - \lambda_{2}} \sum_{i,j,k,r=1}^{2} (-1)^{i} \frac{C_{0i} C_{0j} C_{0k} \left[\exp(\lambda_{i} + \lambda_{j} + \lambda_{k}) t - \exp(\lambda_{i}t) \right]}{(\lambda_{i} + \lambda_{j} + \lambda_{k} - \lambda_{r}) \lambda_{r}} \right] \varepsilon + O(\varepsilon^{2}) 0 < \varepsilon \ll 1,$$

$$\tau = \tau_{10} + \tau_{11}\varepsilon + \dots = \sum_{i=1}^{2} \frac{C_{i}}{a} \lambda_{i} \exp(\lambda_{i}t) + \left[-\frac{cdt}{\lambda_{1} - \lambda_{2}} \sum_{i=1}^{2} (-1)^{i} C_{0i} \lambda_{i} \exp(\lambda_{i}(t - \eta)) - \frac{cd}{(\lambda_{1} - \lambda_{2})^{2}} \left[\exp(\lambda_{1}t) - \exp(\lambda_{2}t) \right] \sum_{i=1}^{2} (-1)^{i} C_{0i} \lambda_{i} \exp(-\lambda_{i}\eta) - \frac{d}{\lambda_{1} - \lambda_{2}} \sum_{i,j,k,r=1}^{2} (-1)^{i} \frac{C_{0i} C_{0j} C_{0k} \left[\exp(\lambda_{i} + \lambda_{j} + \lambda_{k}) t - \exp(\lambda_{i}t) \right]}{\lambda_{i} + \lambda_{j} + \lambda_{k} - \lambda_{r}} + O(\varepsilon^{2}) 0 < \varepsilon \ll 1,$$

$$(13)$$

(2)解的更高次的渐近展开式,

4. 解的精度比较

为了说明耦合系统(1),(2)解的渐近式(13),(14)的精度 现在我们选取模型的几个特殊的实际 参数 $^{[13]}$: $a=1.5\times10^2$ $^{\circ}$ $^$

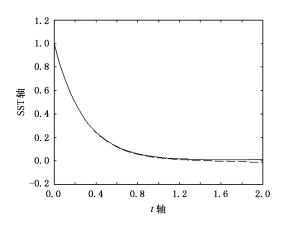


图 1 SST 曲线 实线为 T_{asp} ; 虚线为 T_{num})

 $^{\circ}$ Cm $^{-2}$ Nyr $^{-1}$, R=2.0yr $^{-1}$, $\eta=0.4$ yr , c=0 , $\varepsilon=0.1\times10^{-2}$, $C_{01}=1$, $C_{02}=C_{11}=C_{12}=0$,再用数值模拟的方法和展开式 (13),(14)进行比较.

现在我们来比较对耦合系统模型用数值方法计算出的 T_{num} , τ_{1num} 的图形和间断点数值以及用摄动方法计算出的 T_{asp} , τ_{1asp} 的图形和间断点数值 ,如图 1 图 2 和表 1.

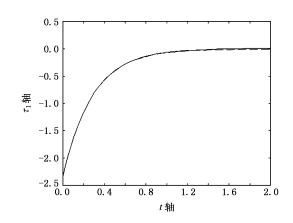


图 2 τ_1 曲线 实线为 τ_{1asp} ; 虚线为 τ_{1num})

表 1	T_{num} 与	$T_{\rm asp}$	$\tau_{1\text{num}}$ 5	$ au_{ m lasp}$ 的间断点的数值对照表

T	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00
T_{num}	1.000	0.413	0.170	0.069	0.027	0.018	- 0.007	-0.006	- 0.011
$T_{ m asp}$	1.000	0.415	0.173	0.073	0.032	0.016	- 0.010	0.010	0.014
$\tau_{1\mathrm{num}}$	-2.353	- 0.974	- 0.404	-0.169	- 0/072	-0.033	- 0.018	- 0.013	-0.015
$\tau_{\rm 1asp}$	- 2.353	- 0.973	- 0.402	-0.165	-0.066	- 0.025	- 0.006	0.004	0.011

5. 结 论

1. 从 T_{asp} 与 τ_{lasp} 和 T_{num} 与 τ_{lnum} 精度比较的曲线图和间断点的数值可以看出,本文用摄动方法来构造赤道太平洋 ENSO 的非线性时滞耦合模型(1),(2)的渐近解(13),(14)具有良好的近似度.这种方

法简单可行、有效.

2. 用摄动方法得到的渐近解 (13),(14)是一个解析式 因此还可以通过(13),(14)式进行有关的解析运算 从而可以继续通过它们来得到相关的物理量.然而用数值理论得到的数值解和模拟解就不能直接进行这样的运算.

- [1] Neelin J D , Battisti D S , Hirst A C et al 1998 J . Geophys . Res . 103 262
- [2] McCreary J P 1983 Mon. Wea. Rev. 111 370
- [3] Suarez M J , Schopf P S 1988 J . Atmos . Sci . **45** 3283
- [4] McPhaden M J, Zhang D 2002 Nature 415 603
- [5] Kushnir Y , Robinson W A 2002 J. Climate 15 2233
- 6] Feng G L, Dong W J, Jia X J et al 2002 Acta Phys. Sin. **51** 1181 (in Chinese)[封国林、董文杰、贾晓静等 2002 物理学报 **51** 1181]
- [7] Han X L 2005 Acta Phys. Sin. **54** 259 (in Chinese] 韩祥临 2005 物理学报 **54** 259]
- [8] Liu S K, Fu Z T, Liu S D et al 2002 Acta Phys. Sin. 51 10 (in

- Chinese)[刘式适、傅遵涛、刘式达 2002 物理学报 51 10]
- [9] Biondi F, Gershunov A, Cayan DR 2001 J. Climate 145
- [10] Wang C Z 2001 J. Climate 14 98
- [11] Mo J Q , Zhu J , Wang H 2003 Progress in Natural Sci . 13 768
- [12] Mo J Q , Lin W T , Zhu J 2004 Progress in Natural Sci . 14 550
- [13] Mo J Q , Lin W T 2004 Acta Phys . Sin . 53 996 (in Chinese)[莫嘉琪、林万涛 2004 物理学报 53 996]
- [14] Mo J Q, Lin W T, Zhu J 2004 Acta Phys. Sin. **53** 3245 (in Chinese)[莫嘉琪、林万涛、朱 江 2004 物理学报 **53** 3245]
- [15] Mo J Q , Lin W T 2005 Acta Phys . Sin . **54** 993 (in Chinese)[莫嘉琪、林万涛 2005 物理学报 **54** 993]
- [16] Mo J Q , Lin W T 2005 Acta Phys . Sin . **54** 1081(in Chinese)[莫嘉琪、林万涛 2005 物理学报 **54** 1081]

- [17] Mo J Q, Lin W T, Wang H 2005 Acta Phys. Sin. **54** 3967 (in Chinese)[莫嘉琪、林万涛、王 辉 2005 物理学报 **54** 3967]
- [18] MoJQ, Lin YH, Lin WT 2005 Acta Phys. Sin. **54** 3971 (in Chinese)[莫嘉琪、林一骅、林万涛 2005 物理学报 **54** 3971]
- [19] Mo J Q , Lin W T 2005 Chin . Phys . 14 875
- [20] Lin W T, Mo J Q 2004 Chinese Science Bulletin 48 II 5
- [21] de Jager E M , Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam : North-Holland Publishing Co)
- [22] Ammari H , Kang H , Touibi K 2005 Asymptotic Anal . 41 119
- [23] Khasminskii R Z , Yin G 2005 J. Diff. Eqns. 212 85
- [24] Marques I 2005 Nonlinear Anal . 61 21
- [25] Wu Q K 2005 Acta Phys. Sin. **54** 2510 (in Chinese) 吴钦宽 2005 物理学报 **54** 2510]

A delayed sea-air oscillator coupling model for the ENSO*

Mo Jia-Qi^{1 ½)†} Wang Hui^{3)} Lin Wan-Tao^{4)}

1 X Anhui Normal University , Wuhu 241000 , China)

2 X Division of Computational Science , E-Institutes of Shanghai Universities , at SJTU , Shanghai 200240 , China)

3 X Chinese Academy of Meteorological Sciences , Beijing 100081 , China)

4 J. Institute of Atmospheric Physics , Chinese Academy of Sciences , Beijing 100029 , China)

(Received 24 October 2005; revised manuscript received 7 December 2005)

Abstract

A time delay sea-air oscillator model is studied. Using the perturbation theory and corresponding method, the asymptotic expansion of the solution for the sea-air oscillator model is obtained.

Keywords: nonlinearity, time delay, El Niño-Southern Oscillator, sea-air oscillator

PACC: 0230, 0200

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 90111011 and 10471039), the National Key Project for Basics Research (Grant Nos. 2003CB415101-03 and 2004CB418304), the Key Project of the Chinese Academy of Sciences (Grant No. KZCX3-SW-221) and in Part by E-Institutes of Shanghai Municipal Education Commission (Grant No. N. E03004).

[†] E-mail: mojiaqi@mail.ahnu.edu.cn