BH₂的分子结构和势能函数

阎世英[†]

(青岛大学物理科学学院,青岛 266071) (2005年6月24日收到,2005年12月20日收到修改稿)

采用密度泛函理论 DFT 的 B3P86 方法和相对论有效原子实势理论模型(RECP),对 BH₂,BH₂⁺和 BH₂⁻分子进 行了优化,得到这些分子基态的电子状态分别是² A',³ A',³ A". 计算也得到了 BH₂ 的分子结构和势能函数,它的离 解能是 7.752eV,BH₂ 分子具有 C_{2V} 对称性;由微观可逆性原理,判断了 BH₂ 分子的离解极解;并且导出了 BH₂ 分子 的多体项展式势能函数,其势能面等值图展现了 H-B-H 的结构,这些结果可以用于 BH₂ 分子的微观反应动力学.

关键词:BH₂,分子结构,势能函数 PACC:3420,3520G

1.引 言

硼的离子团簇和富硼材料的理论和实验方面的 研究目前都十分活跃,但是研究成果仍然很有限,这 与硼为元素周期表中化学性质最令人感兴趣元素之 一的地位甚不相称^[1]. 硼和富硼材料在工程上有重 要的应用价值,例如爆炸、材料精炼与提纯、高弹纤 维混合物、化学性质稳定的绝缘体等方面都要涉及 到它们. 它也是一种令人感兴趣的火箭推进剂. 从 理论上看,硼看起来是一个简单体系,实际上对它的 处理却相当困难. 仅仅关于 B_2 分子的基电子态的 多重性是 3 还是 5 ,就争论了很久才确定下来^[2]. 关 于 BH_2 , BH_2^+ 和 BH_2^- 结构的实验数据到目前为止 仍然没有发现,理论计算也极为少见^[3],所以提供 BH_2 , BH_2^+ 和 BH_2^- 结构的数据,对硼的离子团簇和 富硼材料的研究十分必要.

本文采用 Gaussian03 程序^[4],利用 B3P86, BP86,B3LYP,BLYP,UHF,HF及 LSDA 等方法,分别 对 BH_2 分子、 BH_2 ⁺和 BH_2 ⁻离子进行了优化, BH_2 分子、 BH_2 ⁺和 BH_2 ⁻离子的电子状态分别是²A',³A', ³A" 其构型如图 1,2和 3 所示,分别对应最低能量. 密度泛函方法处理分子结构已经有不少成功的例 子^[5-7].本文用密度泛函方法计算了 BH,分子、 $BH_2^+ 和 BH_2^-$ 离子.

图 2 BH₂ + 的几何构型

图 3 BH2⁻的几何构型

2. 理论和计算方法

分别采用 HF 分子轨道理论和密度泛函 DFT 方

[†] E-mail: ysy5954418@163.com

法在 6 – 311 + + C(d,p)基组水平上对 BH₂ 分子、 BH₂ + 和 BH₂ 一离子进行全构型能量梯度优化.HF 分子轨道理论与密度泛函理论(density functional theory ,DFT)的区别在于前者优化波函数,而后者优 化电荷密度.密度泛函理论方法就是通过构造电荷 密度的泛函来模拟电子相关的一种近似方法,将电 子能量分成动能、电子-核吸引能和 Coulomb 排斥能 以及交换-相关项几部分分别计算,即电子的能量可 分成

 $E = E^{T} + E^{V} + E^{J} + E^{xc}$, (1) 其中, E^{T} 为电子运动的动能, E^{V} 包括核与电子的吸 引势和核与核的排斥势, E^{J} 为电子与电子的排斥 势, E^{xc} 为交换相关能和电子与电子相互作用的其 余部分.除了核与核的排斥势外,每一项均可表示 为电荷密度 ρ 的函数,如 E^{J} 可表示为

$$E^{\mathrm{J}} = \frac{1}{2} \iint \rho(\mathbf{r}_{1}) \Delta \mathbf{r}_{12} \int \rho(\mathbf{r}_{2}) \mathrm{d}\mathbf{r}_{1} \mathrm{d}\mathbf{r}_{2}. \quad (2)$$

 $E^{T} + E^{V} + E^{J}$ 与电荷分布的经典能量相对应,其解 析表达式较容易写出,而 E^{xc} 是指反对称波函数的 交换能 和单电子运动的动力学相关. Hohenerg 和 Kohn^[8]认为 E^{xc} 由电荷密度所确定,通常可近似认 为是仅包括电荷密度 ρ 和其可能的梯度 $\nabla \rho$ 的积 分,即

$$E^{XO}[\rho] = \int f(\rho_a(\mathbf{r}), \rho_\beta(\mathbf{r}), \nabla \rho_a(\mathbf{r}), \nabla \rho_\beta(\mathbf{r})) d^3\mathbf{r}.$$
(3)

总的电荷密度 ρ 为 α 自旋的密度 ρ_{α} 和 β 自旋的密 度 ρ_{β} 之和.为了写出其具体的解析表达式 ,将 E^{xc} 分为交换和相关两个独立的部分(分别对应于相同 自旋和混合自旋相互作用)

 $E^{x}[\rho] = E^{x}[\rho] + E^{c}[\rho],$ (4) 式中的三项均为电荷密度的泛函, $E^{x}[\rho] 和 E^{c}[\rho]$ 两项分别为交换泛函和相关泛函, 均由仅与电荷密 度 ρ 有关的局域泛函(local functional)和与电荷密度 ρ 及其梯度 $\nabla \rho$ 有关的梯度修正泛函(gradientcorrected functionals)组成. 1988 年 Becke 给出了基于 局域的交换泛函形式^[9]

$$E_{\text{Beckess}}^{X} = E_{\text{LDA}}^{X} - \gamma \int \frac{\rho^{4/3} x^{2}}{(1 + 6\gamma \text{sh}^{-1} x)} d^{3} \mathbf{r} , \quad (5)$$

$$E_{\text{Beckess}}^{X} = \frac{3}{3} \begin{pmatrix} 3 \\ -3 \end{pmatrix}^{1/3} \int \frac{4/3}{3} x^{2} d^{3} \mathbf{r} , \quad (5)$$

$$E_{\rm LDA}^{\rm X} = -\frac{3}{2} \left(\frac{3}{4\pi}\right)^{1/2} \int \rho^{4/3} d^3 \mathbf{r} , \qquad (6)$$

其中 $\rho \in r$ 的函数 , $x = \rho^{-4/3} |\nabla \rho|$, $\gamma \in \chi$ 是被选择拟合 已知 原 子 的 交 换 能 的 参数 , Becke 定 义 其 值 为 0.0042 Hartree a.u.. 类似地 ,1991 年 Perdew 和 Wang 提出了一种相关泛函的形式

$$E^{C} = \int \rho \varepsilon_{C} (r_{s} (\rho (\mathbf{r})) \zeta) d^{3}\mathbf{r} , \qquad (7)$$

式中 $\varepsilon_{c}(r_{s},\zeta) = \varepsilon_{c}(\rho,\Omega) + a_{c}(r_{s}) \frac{f(\zeta)}{f'(0)} (1 - \zeta^{4}) + [(\varepsilon_{c}(\rho,1) - \varepsilon_{c}(\rho,\Omega))](\zeta)\zeta^{4}$ 其中

$$r_{s} = \left(\frac{1}{4\pi\rho}\right), ,$$

$$\zeta = \frac{\rho_{a} - \rho_{\beta}}{\rho_{a} + \rho_{\beta}}, ,$$

$$f(\zeta) = \frac{\left[\left(1 + \zeta\right)^{4/3} + \left(1 - \zeta\right)^{4/3} - 2\right]}{\left(2^{4/3} - 2\right)}.$$

r_s 是密度参数, ζ 是相关自旋极化.DFT 方法就是 将交换泛函和相关泛函联合起来进行计算,本文所 用的 B3LYP 方法即是将包含梯度修正的 Becke 交换 泛函和包含梯度修正的 Lee, Yang 和 Parr 相关泛函 联系在一起,局域相关泛函按常规采用 Vosko, Wilk 和 Nusaid VWN)局域自旋密度处理,得到 Becke 三参 数的泛函

$$E_{\rm XC}^{\rm B3LYP} = E_{\rm XC}^{\rm LDA} + c_0 (E_{\rm X}^{\rm HF} - E_{\rm X}^{\rm LDA}) + c_{\rm X} \Delta E_{\rm X}^{\rm B88} + (1 - c_{\rm C}) E_{\rm C}^{\rm VWN} + c_{\rm C} E_{\rm C}^{\rm LYP}.$$
(8)

通过调节参数 c_0 , c_x 和 c_c 的值,可以优化控制交换 能和相关能修正, Becke 通过在 G1 理论基础上对第 一周期原子的原子化能、电离势、质子亲和能和原子 能量进行拟合,得到参数的值分别为 $c_0 = 0.20$, $c_x = 0.72$ 和 $c_c = 0.81$. 用类似于自洽场方法(SCF)的迭 代方式进行自洽的 DFT 计算.为了提供较好的相关 轨道,计算体系的总的相关能(即包括原子内层电子 的相关能),对 B 和 H 采用了极化函数加上扩散函 数后的 3 – ζ 分裂价扩展基组 6 – 311 + + Q(D,P). 所谓 G1 理论是 Gaussian 程序里非常精确的计算分 子能量的一种方法,它是通过观察某些从头计算方 法系统误差的趋势产生的,用于预测某些分子基态 的能量,建立修正方程,使用了从几个不同的从头计 算得到的能量,用来外推非常高精度的结果.此外, 还有 G2, G3 方法.

3. 结果与讨论

3.1.BH, 分子的结构与光谱数据

采用 Gaussian03 程序中 B3P86, BP86, B3LYP, BLYP, UHF, HF及 LSDA 等方法, 分别对 BH₂ 分子、 BH₂⁺和 BH₂⁻离子进行了优化,表1分别是对 BH₂ 分子、 BH_2^+ 和 BH_2^- 离子能量的优化结果, BH_2 分子、 BH_3^+ 和 BH_3^- 离子的电子状态分别是²A', ³A',

³ A" 同时 表 1 分别也列出了文献 3 对 BH₂ 分子、 BH₂⁺ 和 BH₂⁻ 离子能量的部分优化结果.利用

表 1 BH_2 分子、 BH_2^+ 和 BH_2^- 离子能量优化结果/H.a.u.

	多重性	HF	UHF	LSDA	BLYP	B3LYP	BP86	B3P86
本文 BH ₂	2	- 25.7576	- 25.7576	- 25.7365	- 25.9179	- 25.9437	- 25.9292	- 26.0604
文献 3]BH2					- 25.9186	- 25.9446	- 25.9299	- 26.0613
本文 BH ₂ ⁺	3	- 25.3389	- 25.3389	- 25.2742	- 25.4716	- 25.4892	- 25.4795	- 25.5892
文献 3]BH2 +					- 25.6170	- 25.6210	- 25.6203	- 25.7344
本文 BH_2^-	3	- 25.7420	- 25.7420	- 25.7741	- 25.9266	- 25.9544	- 25.9489	- 26.0931
文献 3]BH2-					- 25.9045	- 25.9342	- 25.9241	- 26.0704

B3P86 方法,它们的其他结构参数的优化结果和文献3]的资料见表2,其中BH₂分子的离解能是7.752eV.

表 2 BH_2 分子、 BH_2 + 和 BH_2 - 结构参数

电子状态	键角((°)	键长/nm		
本文 BH ₂ ² A'	∠HBH = 129.4	$R_{\rm BH} = 0.11899$	$R_{\rm HH} = 0.21514$	
文献 3 BH2		∠HBH = 129.3	$R_{\rm BH} = 0.11860$	
R _{HH} 本文4223 BH ₂ ⁺	³ A′	∠HBH = 66.9	$R_{\rm BH} = 0.12896$	
文献 3]BH⁺		∠HBH = 180.0	$R_{\rm BH} = 0.1173$	
R _{HH} 本政21874 BH ₂ 一	³ A"	∠HBH = 130.6	$R_{\rm BH} = 0.12037$	
文献 3]BH		∠HBH = 98.2	$R_{\rm BH} = 0.12630$	

从表1可以看出我们对能量的计算结果与文献 [3]的结果几乎没有差别,同时,从表2可以发现对 键长的计算结果与文献[3]的结果也没有差别,但 是,对键角的计算却不一样.由于没有实验资料可 作对比,无法判断其正确性,只能作为参考.

利用 B3P86 方法 ,BH₂ 分子、BH₂⁺和 BH₂⁻离子 的力常数列于表 3.

表 3 BH_2 分子、 BH_2 + 和 BH_2 一的力常数

	f_{11}	f_{22}	f_{33}	f_{12}	f_{13}	f ₂₃
BH ₂	0.24819	0.24819	0.08094	0.00238	0.01237	0.01237
BH ₂ ⁺	0.13384	0.13384	0.082370	0.02349	-0.00881	-0.00885
BH_2^-	0.22386	0.22386	0.07055	0.00052	0.01512	0.01510

3.2.BH 分子和 H₂ 分子的势能函数和光谱数据

采用 Murrell-Sorbie 势能函数形式^[10,11]:

$$E(\rho) = -De(1 + a_1\rho + a_2\rho^2 + a_3\rho^3)\exp(-a_1\rho),$$

式中 $\rho = R - R_e$, *R* 为核间距, *R*_e 为平衡核间距, *De* 为离解能, *a*₁, *a*₂, *a*₃ 为一、二、三次项系数, 它 们可以被拟合得到, BH 和 H₂ 的双体项参数和光谱 数据见表 4 和表 5.

表 4 BH 和 H₂ 的双体项参数

分子	De/eV	$R_{\rm e}/{\rm nm}$	$a_1/0.1$ nm ⁻¹	$a_2/0.1$ nm ⁻²	$a_3/0.1$ nm ⁻³
BH	5.8054	1.2401	1.8497	- 0.1773	0.7625
H_2	7.9297	0.7453	2.4248	- 0.0414	1.8760

表 5 BH 和 H₂ 分子的光谱数据及力常数

分子	f_2/a J·nm ⁻²	f_3/a J·nm ⁻³	$f_4/a \mathbf{J} \cdot nm^{-4}$	$\alpha_{\rm e}/{\rm cm}^{-1}\cdot 10^{-1}$	$\omega_{\rm e} \chi_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e}/{\rm cm}^{-1}$
BH	3.5123	- 17.8587	70.9200	3.6752	52.3318	11.8892	2542.74
H_2	7.5752	- 51.2924	274.1788	29.3825	168.1514	60.2149	5050.76

3.3. 基态 BH, 分子的多体项分析势能函数

三原子分子的分析势能函数(势能面)是研究原子分子碰撞反应动力学的基础,它是三维空间的一个曲面,基态 BH₂分子属于 C2v 构型,由原子分子静力学原理,其离解极限为

$$BHH(^{2}A') \rightarrow \begin{cases} H(^{2}P_{u}) + 2H(^{2}S_{g}), \\ H(^{2}P_{u}) + H_{2}(^{1}\sum_{g}^{+}), \\ BH(^{1}\sum_{g}^{+}) + H(^{2}S_{g}). \end{cases}$$
(10)

设原子基态能量为零,满足离解极限(10)式的 多体项分析势能函数为^[10]

$$V(R_1, R_2, R_3) = V_{\rm HH}^{(2)}(R_1) + V_{\rm BH}^{(2)}(R_2) + V_{\rm BH}^{(2)}(R_3) + V_{\rm BHH}^{(3)}(R_1, R_2, R_3),$$
(11)

(9)

式中 $V_{BH}^{(2)}(R_2)$ 和 $V_{HH}^{(2)}(R_3)$ 为基态双原子分子的双体 项势能函数 本文采用 Murrell-Sorbie 势能函数形式, 势能函数参数见表 4. $V_{BHH}^{(3)}(R_1, R_2, R_3)$ 为三体项势 能函数,采用形式为^[10]

 $V_{BHH}^{(3)}(R_1, R_2, R_3) = P \cdot T$, (12) 式中 P 为优化内坐标 S 的多项式, T 为量程函数, 其形式分别为

$$P = C_0 + C_1 S_1 + C_2 S_2 + C_3 S_2^2 + C_4 S_3^2 + C_5 S_1 S_2 + C_6 S_3^4 + C_7 S_1^2 + C_8 S_1 \cdot (S_2^2 + S_3^2) + C_9 S_2 S_3^2 , (13)$$

 $T = [1 - \tanh(\gamma_1 S_1/2)] \cdot [1 - \tanh(\gamma_2 S_2/2)] \cdot [1 - \tanh(\gamma_3 S_3/2)].$ (14)

为了方便地研究势能函数,根据势能面的结构 特征,采用优化内坐标.对于三体项,取 BHH(²A')

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}$$
(15)

的两个平衡键长为参考结构, $R_1^0 = R_{HH}^0 = 0.21514$ nm, $R_2^0 = R_3^0 = R_{BH}^0 = 0.11899$ nm, 故内坐标 ρ_i 经上述变换而成为优化内坐标 S_i , 式中 $\rho_i = R_i - R_i^0$ (*i*=123).

(13)和(14)式中共有 10 个线性系数 C_i 和三个 非线性系数 γ_i 线性系数 C_i 由 10 个已知条件(BH₂ 的离解能、三个一阶力常数和六个二阶力常数)确 定 对于非线性系数 γ_i 通过对全势能表面进行非线 性优化确定,计算得到的分析势能函数参数见表 6.

	-	
$C_0 = 10.0141$	$C_1 = 5.0357$	$C_2 = 5.5151$
$C_3 = -5.9497$	$C_4 = 4.7830$	$C_5 = 4.2976$
$C_6 = 8.1330$	$C_7 = 5.9680$	$C_8 = 1.4472$
$C_9 = -7.3655$		

 $\gamma_3 = 0$

±ζ	DII	ムマムに払 むる数 会都	÷h
衣の	BH ₂	7 十 7 机 9 能 凶 奴 豕 6	х

根据分析势能函数参数绘制的 BH₂ 分子的等 值势能图如图 4 和图 5 ,图 4 是固定 \angle HBH = 129.4° 时 表现的 H—B 键对称伸缩振动势能图 ,在平衡点 ($R_2 = R_3 = 0.11899$ nm),准确地再现了 BH₂ 分子的 离解能是 7.752eV ,构型是 C_{2V} 结构 ,与优化结果 一致.

 $\gamma_2 = 2.1$

 $\gamma_1 = 1.7$

图 5 是固定 H—B 键在横轴上,让 H 绕 H—B 键 旋转的等值势能图,从图中可以看出,第一个极小点 对应于 \angle HBH = 129.4°, $R_{\rm BH}$ = 0.11899nm, $R_{\rm HH}$ =

图 4 BH₂ 分子的伸缩振动等值势能图(曲线 1—6 分别为 7.75, 7.1 6.5 6.0 5.8 5.5eV)

0.21514nm ,BH₂ 分子的离解能是 7.752eV. 第二个 极小点对应于 \angle HBH = 179.9°, R_{BH} = 0.12409nm , R_{HH} = 0.22771nm ,BH₂ 分子的离解能是 5.357eV. 两 个极小点之间存在一个鞍点 ,其能量是 4.4eV ,即 H 要发生内迁移需要翻越能垒为 0.957 eV ,形成次稳 定的 BH₂ 分子 ,与优化结果一致 ,说明我们得到的 分析势能函数式 ,正确地反映了 BH₂ 分子的结构 特征.

图 5 BH₂ 分子的旋转等值势能图(曲线 1—6 分别为 7.75,7.6, 7.2 6.6 5.5 和 4.4eV)

4. 结 论

用 B3P86 密度泛函方法计算了 BH₂ 分子的结构和势能函数,结果表明 BH₂ 分子的电子状态 是²A' 离解能是 7.752eV,该分子具有 C_{2V} 结构,对应于 \angle HBH = 129.4°, R_{BH} = 0.11899nm, R_{BH} = 0.21514nm ,是它的基态 ,还存在另外一个次稳定的 结构 ,极 小 点 对 应 于 \angle HBH = 179.9°, $R_{\rm BH}$ = 0.12409nm , $R_{\rm HH}$ = 0.22771nm ,对 应 的 离 解 能 是 5.357eV. 两个极小点之间存在一个鞍点 ,其能量是 4.4eV 即 H 要发生内迁移需要翻越能垒为 0.957 eV 形成次稳定的 BH₂ 分子,与优化结果一致,说明 我们得到的分析势能函数式,正确地反映了 BH₂ 分 子的结构特征.这些计算结果可以进一步用于 BH₂ 分子的微观反应动力学研究.对硼的离子团簇和富 硼材料的研究十分必要.

- [1] Niu J, Rao B K, Jena P 1997 J. Chem. Phys. 107 132
- [2] Bruna P J , Wright J S 1990 J. Phys. Chem. 94 1774
- [3] Jursic B S 2000 Journal of Molecular Structure(Theochem) 505 67
- [4] Frisch M J, Trucks G W, Schlegel H B et al 1998 Gaussian 98 Revision A.9 (Pittsburgh PA : Gaussian Inc)
- [5] Yan S Y , Zhu Z H 2004 Chin . Phys . 13 2053
- [6] Wang H Y, Zhu Z H 2003 Chin. Phys. 12 154
- [7] Yan S Y, Ma M Z, Zhu Z H 2005 Acta Phys. Sin. 54 37 (in

Chinese] 阎世英、马美仲、朱正和 2005 物理学报 54 37]

- [8] Hohenberg P, Kohn W 1964 Phys. Rev. 136 B 864
- [9] Becke A D 1988 Phys. Rev. A 38 3098
- [10] Zhu Z H, Yu H G 1997 Molecular Structure, Molecular Potential Energy Function(Beijing: Science Press)[朱正和、俞华根 1997 分子结构与分子势能函数(北京:科学出版社)]
- [11] Murrell J N, Carter S, Farantos S C et al 1984 Molecular Potential Energy Function(John Wiley : Sons Ltd. M)

The molecular structure and potential energy function of the ground state of BH₂ molecule

Yan Shi-Ying[†]

(College of Physical Science, Qingdao University, Qingdao 266071, China)
 (Received 24 June 2005; revised manuscript received 20 December 2005)

Abstract

The density function (B3P86) method with relativistic effective core potential has been used to optimize the structure of the ground state of BH₂ ,BH₂ ⁺ and BH₂⁻⁻ molecules or ions ,which are angular H-B-H , whose equilibrium nuclear distance and dissociation energy respectively are $R_{\rm BH} = R_{\rm BH} = 0.11899$ nm , $R_{\rm HH} = 0.21514$ nm ,and 7.752eV ; $R_{\rm BH} = R_{\rm BH} = 0.12896$ nm , $R_{\rm HH} = 0.14223$ nm ; $R_{\rm BH} = R_{\rm BH} = 0.12037$ nm , $R_{\rm HH} = 0.21087$ nm. The analytic potential energy function of the ground state of BH₂(²A') has been derived by the many-body expansion theory using the equilibrium geometry structure parameters dissociation energy and force constants ,which is successfully used for describing the equilibrium geometry of BH₂(²A').

Keywords : BH_2 , potential energy functional , molecular structure PACC : 3420 , 3520G

[†] E-mail: ysy5954418@163.com