$(Nd_{1-x}Gd_x)$, Fe_{27.31}Ti_{1.69}化合物的结构和磁性

王文 2^{1}) 徐世 4^{1}) 徐钦英¹) 张文梁²) 陈东风³)

1 (吉林大学物理学院, 长春 130023)
 2 (吉林大学第一临床医院, 长春 130021)
 3 (中国原子能科学研究院, 北京 102413)
 (2005 年 11 月 4 日收到 2006 年 1 月 13 日收到修改稿)

通过 X 射线衍射和磁性测量等手段研究了($Nd_{1-x}Gd_x$), $Fe_{27,31}Ti_{1.69}$ ($0 \le x \le 0.6$)化合物的结构和磁性.X 射线衍 射测量结果表明 Gd 替代后并未改变 Nd₃(Fe, Ti), 化合物的晶体结构,但引起了晶胞体积收缩.随着 Gd 含量的增 加,化合物的居里温度 T_c 和室温磁晶各向异性场 B_a 单调增加,而自旋重取向温度 T_{sr} 和 5K 下饱和磁化强度 M_s 单 调降低 5K 下的饱和磁化强度 M_s 和 Gd 含量的关系与稀释模型所描述的结果相一致.基于磁晶各向异性的研究结 果给出了($Nd_{1-x}Gd_x$), $Fe_{27,31}Ti_{1.69}$ ($0 \le x \le 0.6$)化合物的自旋相图.

关键词:(Nd_{1-x}Gd_x), Fe_{27.31}Ti_{1.09}化合物,磁晶各向异性,自旋重取向,磁相图 PACC: 6110, 7530G, 7530K

1.引 言

在探索新型稀土永磁材料的过程中 ,一种具有 Nd_x(Fe ,Ti)_a型结构的稀土-铁基金属间化合物 R^3 (Fe ,Ti)。和它们的间隙化合物如 Sm3(Fe ,Ti)。N, , Sm₃(Fe Ti)₉C_x 因显示出优异的永磁性能而引起人 们极大的兴趣[1-6].为了进一步提高永磁材料的性 能 加强对母合金磁性的理解是十分必要的.已经发 现,Nd_a(Fe,Ti)。化合物在低温下发生自旋重取 向^[7].一般认为,在稀土(R).过渡族(T)化合物中, 化合物的磁晶各向异性主要由稀土次晶格和过渡族 次晶格的竞争结果决定 当 R 次晶格和 T 次晶格的 贡献符号相反且各自随温度变化的速度不一致时, 在某一温度处就发生该化合物的易磁化方向从一个 晶体方向转向另一方向,从而导致自旋重取向过程. 迄今为止 已经发现了两种不同机理所引起的自旋 重取向.第一种是由于化合物中两套次晶格磁矩的 择优排列方向不一致 ,且各自的磁晶各向异性常数 随温度的依赖关系不一样 随着温度的变化 这两套 次晶格的磁晶各向异性之间的竞争状态发生变化导 致自旋重取向,如 Er, Fe, N, 中的自旋重取向^[8];另 一种是由于某一次晶格本身的不同阶磁晶各向异性 系数之间的竞争随着温度的变化发生改变所导致 的 如 ErFe₁₀ V₂ 中的自旋重取向^[9].为了弄清楚稀土

次晶格和过渡族金属次晶格各自对磁晶各向异性的 贡献以及交换相互作用机理,我们用 Gd 替代 Nd₃ (Fe ,Ti)₉化合物中的 Nd 来研究其结构和磁性的变 化.由于 Gd 对磁晶各向异性没有贡献,所以 Gd 替 代 Nd₃(Fe ,Ti)₉化合物中的 Nd 可以直接研究 Nd 次 晶格对磁晶各向异性的贡献.

2. 实验方法

按名义成分($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$) 配料 利用电弧炉在高纯氩气保护下将组成元素熔 炼成合金 将熔炼好的合金锭子用钽片包裹并在高 纯氩气保护下分别于 1353K 温度下退火 72h,然后 水淬 热处理后的样品失重不超过 1%.利用 X 射线 衍射和热磁曲线测量(磁场约为 0.05T)来研究样品 的单相性并确定晶格常数,用振动样品磁强计 (VSM)测量单相样品在低场(0.05T)下的磁化强度 M 与温度 T 的关系,作出 M^2 -T 曲线并将 M^2 外推到 零,用以得到样品的居里温度 T_c.根据 M-T 曲线上 出现峰值的位置来确定自旋重取向温度 T_a,5K 下 的磁化曲线用超导量子磁强计(SQUID)测得 ,饱和 磁化强度 M_{\circ} 可以从 $M-H^{-1/2}$ 曲线中把 $H^{-1/2}$ 外推到 零而得到,为了测量室温磁晶各向异性场 对于室温 下为面磁晶各向异性的化合物 将研磨好的粉末与 环氧树脂均匀混合放在直径为 \$3mm × 10mm 聚四氟

3. 结果与讨论

X射线衍射和热磁曲线测量结果表明,用 Gd 部

分替代 Nd₃(FeTi)₂,中的 Nd 所形成的(Nd_{1-x} Gd_x)₃Fe_{27.31}Ti_{1.69}化合物在 $0 \le x \le 0.6$ 范围内均未改 变其晶体结构,所有化合物仍属于单斜晶系和 A2/m空间群.X 射线衍射和热磁曲线测量表明,所有样品 均为单相.各化合物的晶格常数 a,b,c, β 和 V列于 表 1中.由表 1 可见,用 Gd 替代 Nd₃(FeTi)₂9化合物 中的 Nd 导致晶格常数减小和晶胞体积收缩,这是 由于 Gd 的原子半径比 Nd 的原子半径小的缘故.

表1 ($Nd_{1-x}Gd_x$), $Fe_{27,31}Ti_{1.69}$ ($0 \le x \le 0.6$) 化合物的结构和磁性参数

_									
	x	a/nm	b/nm	c/nm	V/nm ³	$T_{\rm C}/{\rm K}$	$T_{\rm sr}/{ m K}$	$M_{\rm s}$ ($\mu_{\rm B}$ /f.u.)	$B_{\rm a}/{\rm T}$
	0.0	1.0702	0.8603	0.9759	0.8916	420	232	59.1	3.01
	0.1	1.0688	0.8596	0.9765	0.8902	439	206	55	3.10
	0.2	1.0688	0.8563	0.9714	0.8844	455	185	52.2	3.17
	0.3	1.0658	0.8858	0.9709	0.8839	467	174	49.2	3.25
	0.4	1.0652	0.8569	0.9731	0.8815	479	152	47.1	3.34
	0.5	1.0648	0.8558	0.9717	0.8804	489	131	44.8	3.42
	0.6	1.0636	0.8556	0.9712	0.8772	498	120	42.6	3.51

为了研究室温下化合物的磁晶各向异性方式, 我们对($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}(0 \le x \le 0.6$)化合物 在室温下进行了常规取向和旋转取向,图1是化合 物粉末样品的 X 射线衍射谱(a)以及常规取向(b) 和旋转取向(c)的 X 射线衍射谱.由图1可以看到,

常规取向样品 X 射线衍射峰(402)峰和(422)峰十 分突出.由于 Nd₃(Fe,Ti)_9结构源于 CaCu₅结构,基 于 CaCu₅结构和 Nd₃(Fe,Ti)_9结构的对应关系^[11], 晶面指数可以表示为

$$\begin{pmatrix} h \\ k \\ l \end{pmatrix}_{3:29} = \begin{pmatrix} -2 & -2 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix} \begin{pmatrix} h \\ k \\ l \end{pmatrix}_{1:5} .$$
 (1)

因而 3:29 型的(402)峰和(422)峰分别对应 1:5 型的(110)峰和(020)峰.另外,旋转取向样品排列的 是难轴方向,所以(402)峰和(422)峰突出,而旋转 取向样品的 X 射线(204)峰对应 1:5 型(002)峰增 强结果表明样品在室温下具有易面各向异性,其易 面垂直(204)方向.

图 2 显示了($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$) 化合物的热磁曲线. 从图 2 可以看出随着 Gd 含量的 增加,样品的居里温度从 x = 0.0的 420K 增加到 498K, 增加速率为 130K/Gd. 我们知道, 在稀土(R)-过渡族(T)金属间化合物中存在三种相互作用: R-

R, R-T和T-T交换作用.根据分子场理论,在 R-T化

图 2 (Nd_{1-x}Gd_x),Fe_{27.31}Ti_{1.69}(0≤x≤0.6)化合物的热磁曲线

合物中,居里温度可以表示为^[12]:

 $T_{\rm C} = \frac{1}{2} \left[T_{\rm R} + T_{\rm T} + \sqrt{(T_{\rm T} - T_{\rm R})^2 + 4T_{\rm RT}^2} \right] (2)$

 T_T , T_R , T_{RT} 为 T-T, R-R和 R-T的交换作用常数,并 且 $T_T > T_{RT} > T_R$. 对($Y_{1-x} Gd_x$), $Fe_{27.5} Ti_{1.5}$ 化合物的研 究结果表明¹³¹, Gd 替代导致($Y_{1-x} Gd_x$), $Fe_{27.5} Ti_{1.5}$ 化 合物居里温度明显提高的原因来源于 Gd-Gd 之间的 交换作用,因此 Gd 替代会直接导致化合物居里温 度的升高.我们认为在($Nd_{1-x} Gd_x$), $Fe_{27.31} Ti_{1.69}$ ($0 \le x \le 0.6$)化合物中也是这样,由于 Gd-Gd 之间的交换 作用比 Nd-Nd 之间交换作用大,所以 Gd 替代也会 直接导致化合物居里温度的升高.

($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$) 化合物的室 温磁晶各向异性场 B_a 用 SPD 方法^[8]得到. 作为例 子 图 3 给出了 $Nd_{2.7}Gd_{0.3}Fe_{27.31}Ti_{1.69}$ 化合物的难磁化 方向磁化曲线(HMD)和 SPD(d^2M/dt^2-H)曲线, SPD 曲线上的峰值对应的是磁晶各向异性场 B_a .(Nd_{1-x} Gd_x), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$)化合物的磁晶各向异 性场 B_a 和 Gd 含量的关系示于图 5(b)中,从中可以 看到($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$)化合物的 磁晶各向异性场 B_a 随 Gd 含量的增加单调增加.

为了观察在居里温度 T_c 以下发生的自旋重取 向 ,用振动样品磁强计(VSM)测量单相样品在低场 (0.05T)下的磁化强度 M 与温度 T 的关系 (Nd_{1-x} Gd_x), Fe_{27.31} Ti_{1.69}(0 $\leq x \leq$ 0.6)化合物的 *M-T* 曲线示 于图 2. 从图 2 中可以看到 (Nd_{1-x} Gd_x), Fe_{27.31} Ti_{1.69}

图 3 Nd_{2.7} Gd_{0.3} Fe_{27.31} Ti_{1.69} 化合物的难磁化方向磁化曲线和 SPD 曲线

图 4 在 293 K(a)和 77 K(b)温度下测出的转动样品在不同角度 的 *M*-φ 曲线

($0 \le x \le 0.6$)化合物象 Nd₃(Fe,Ti)₂,化合物一样⁴¹, 在某一温度处发生了自旋重取向.自旋重取向温度 T_{sr} 值由 *M-T* 曲线的峰值位置来确定,其值列于表 1 中.从表 1 中可以看到,自旋重取向温度 T_{sr} 随着 Gd 含量的增加单调降低.在 Nd₃(Fe,Ti)₂,化合物自旋 重取向有过报道,认为自旋重取向是稀土 *R* 磁晶各 向异性 K_{1R} 和 Fe 磁晶各向异性 K_{1Fe} 相互竞争的结 果.根据单离子模型,稀土点阵的各向异性在最低级 近似下可由下式给出:

$$K_1^R = -\frac{3}{2}\alpha_J r^2 o_2^0 A_2^0 , \qquad (3)$$

其中 α_J 为二级 Stevens 系数 ,其符号与稀土 4f 电子 云的形状相关. r^2 为稀土离子半径平方的平均值 ,

图 5 (Nd_{1-x}Gd_x)₃Fe_{27.31}Ti_{1.69}(0≤ x≤0.6) 化合物的磁相图(a), 磁晶各向异性场(b) 和饱和磁化强度(c) 与 Gd 含量的关系

 A_2^0 为二级晶场参数,它反映了 4f 壳层的球电荷分 布.由于稀土 Nd 的 $\alpha_1 < 0$,而 Gd 的 $\alpha_1 = 0$,这就导致 Gd 替代 Nd 后 稀土次晶格的各向异性减弱,过渡族 次晶格的各向异性增强,所以随着 Gd 含量的增加 自旋重 取 向 温 度 降 低.图 5(a)所示是(Nd_{1-x} Gd_x),Fe_{27.31}Ti_{1.60}(0 $\leq x \leq 0.6$)化合物的磁相图,从中 可以看到(Nd_{1-x}Gd_x),Fe_{27.31}Ti_{1.60}(0 $\leq x \leq 0.6$)化合 物的自旋重取向温度 T_{sr} 随 Gd 含量的增加单调下 降.为了测量在不同温度下磁晶各向异性方式,我们 用 VSM 测量了室温(293K)和 77K 下的磁化强度 *M* 同外场和取向之间夹角 φ 的关系(外场强度为 0.5T).我们认为,如果化合物是易轴或易面,在 0°— 180°之间 $M-\varphi$ 曲线上会出现一个极大值,而对于易 锥则会出现两个极大值.图 4(a)和(b)分别是在 293K和 77K温度下测出的转动样品在不同角度的 $M-\varphi$ 曲线,从图中可以看出,在 293K时, $\varphi = 0^{\circ}$ 即样 品取向与外磁场垂直时磁矩出现极小,当 $\varphi = 90^{\circ}$, 即样品取向与外磁场平行时磁矩出现极大,进一步 说明了室温下样品为易面磁晶各向异性;在 77K 时,在 0°—180°之间于 $\varphi_{maxl} = 50^{\circ}$ 和 $\varphi_{max2} = 130^{\circ}$ 附近 出现两个极大值,这说明在自旋重取向温度以下,样 品从易面转变到 77K 时的 40°易锥.

饱和磁化强度 M_s 和 Gd 含量的依赖关系示于 表 1 和图 5(c)中.可以看出随着 Gd 含量的增加饱 和磁化强度 M_s 单调下降.我们假设在低温是 Gd 和 Nd 磁矩严格平行排列 则有

 $M_{\rm S} = M_{\rm S}^{0} - 3x(\mu_{\rm Nd} + \mu_{\rm Gd}), \qquad (4)$ 其中 $M_{\rm S}^{0}, \mu_{\rm Nd}, \mu_{\rm Gd}$ 分别 Nd₃Fe_{27.31}Ti_{1.69}, Nd 和 Gd 的磁 矩.(Nd_{1-x}Gd_x)₃Fe_{27.31}Ti_{1.69}($0 \le x \le 0.6$)化合物的饱 和磁化强度 $M_{\rm s}$ 计算结果在图 5(c)中用虚线表示, 可以看出,实验与理论计算结果符合得很好.

4.结 论

通过 X 射线衍射和磁性测量等手段研究了 ($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$)化合物的结构和 磁性.XRD 测量结果表明 Gd 替代后并未改变 Nd₃ (Fe,Ti)₂)化合物的晶体结构,但引起了晶胞体积收 缩.所有化合物仍属于单斜晶系,A2/m 空间群.随 着 Gd 含量的增加,化合物的居里温度 T_c 和室温磁 晶各向异性场 B_a 单调增加,而自旋重取向温度 T_{sr} 和 5K 下饱和磁化强度 M_s 单调降低,5K 下的饱和 磁化强度 M_s 和 Gd 含量的关系与稀释模型所描述 的结果相一致.基于磁晶各向异性的研究结果给出 了($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ ($0 \le x \le 0.6$)化合物的自旋 相图.

- [1] Collocott S J, Day R K, Dunlop J B, Davis R L 1992 Proc 7th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare-Earth-Transition Metal Alloys (Canberra, 1992), pp.437—444
- [2] Yang F M, Nasunjilegal B, Wang J L 1994 J. Appl. Phys. 76 1973
- [3] Hu B P, Liu G C, Wang Y Z et al 1994 J. Phys. Condens. Matter 6 L595
- [4] Yang D, Wang JL, Tang N, Yang FM 1999 Acta Phys. Sin. 48
 80(in Chinese)[阳东、王建立、唐宁、杨伏明、吴光恒
 1999 物理学报 48 80]
- [5] Wang W Q, Wang J L, Tang N, Yang F M, Wu G H 2001 Acta Phys. Sin. 48 752(in Chinese)[王文全、王建立、唐 宁、杨伏 明、吴光恒 2001 物理学报 48 752]
- [6] Luo H Z , Jia L , Li Y X , Meng F B , Shen J , Chen N X , Wu G H ,

Yang F M 2005 *Acta Phys*. *Sin*. **54** 5246 (in Chinese)[罗鸿志、 贾 琳、李养贤、孟凡斌、申 江、陈难先、吴光恒、杨伏明 2005 物理学报 **54** 5264]

- [7] Pareti L, Paoluzi A, Alebertin F 1994 J. Appl. Phys. 76 7473
- [8] Yang F M , Tang N , Wang J L 1994 J. Appl. Phys. 75 6241
- [9] Hu B P, Li H S, Gavigan J P, Coey J M D 1989 J. Phys. Condens. Matter. 1 75
- [10] Asti G, Rinaldi S 1972 Phys. Rev. Lett. 28 1584
- [11] Han X F , Liu H L , Yang F M 1997 Phys. Rev. B 56 8867
- [12] Belorizky E, Fremy M A, Gavigan J P et al 1987 J. Appl. Phys. 61 3971
- [13] Shah V R, Markandeyulu G, Rama Rao K V S et al 1999 Solid State Communications 112 161

Structure and magnetic properties of ($Nd_{1-x}Gd_x$), $Fe_{27.31}Ti_{1.69}$ compounds

Wang Wen-Quan¹) Xu Shi-Feng¹) Xu Qin-Ying¹) Zhang Wen-Liang²) Chen Dong-Feng³)

 $1\$) Department of Physics , Jilin University , Changchun 130023 , China)

2 X First Hospital of Jilin University, Changchun 130021, China)

3 X China Institute of Atomic Energy, Beijing 102413, China)

(Received 4 November 2005; revised manuscript received 13 January 2006)

Abstract

The structure and magnetic properties of $(Nd_{1-x} Gd_x)_3 Fe_{27.31} Ti_{1.69}$ compounds have been investigated by means of X-ray diffraction and magnetic measurements. All compounds with x in the range of $x \leq 0.6$ crystallize in Nd₃(Fe, Ti)₂₉-type structure. Substitution of Gd for Nd leads to a contraction of unit-cell volume. The Curie temperature T_c and anisotropy field B_a of the $(Nd_{1-x} Gd_x)_3 Fe_{27.31} Ti_{1.69}$ compounds increases monotonically with increasing Gd content. Saturation magnetization M_s of the $(Nd_{1-x} Gd_x)_3 Fe_{27.31} Ti_{1.69}$ compounds decreases with increasing x. As temperature lowers from room temperature to 5K, a spin reorientation from the easy plane to the easy cone occurs for $(Nd_{1-x} Gd_x)_3 Fe_{27.31} Ti_{1.69}$ compounds. Spin phase diagrams have been constructed for $(Nd_{1-x} Gd_x)_3 Fe_{27.31} Ti_{1.69}$ compounds.

Keywords : ($Nd_{1-x}Gd_x$)₃ Fe_{27.31} Ti_{1.69} compounds , magnetocrystalline anisotropy , spin reorientation , spin-phase diagram **PACC** : 6110 , 7530G , 7530K