Y 共掺对掺 Er 硅酸盐玻璃光致荧光及 荧光寿命的影响*

苗 壮 李善锋 张庆瑜†

(大连理工大学三束材料改性国家重点实验室,大连 116023) (2006年1月23日收到;2006年3月20日收到修改稿)

采用固相反应方法制备了 Er/Y 共掺激光玻璃,其中 Er³⁺浓度分别为 0.5at%和 1.0at%,所对应的 Y³⁺浓度的变 化范围分别为 0.0at%—2.5at%和 0.0at%—5.0at%.通过吸收光谱、瞬态和稳态光致发光光谱测量,研究了 Y 共掺 对 Er³⁺ 吸收截面、发射截面、荧光寿命和光致荧光特征的影响,研究结果表明 :Y 共掺杂导致 1530 nm 附近的吸收峰 宽化 对 Er³⁺ 的吸收起到了一定的增强作用,并且这种宽化作用随着 Er³⁺浓度的增加而更为显著.同时,Y 共掺杂 可以显著改善 Er³⁺ 的荧光寿命.但是,在 980 nm 激光抽运下,Er/Y 共掺激光玻璃在 1530 nm 处的光致荧光强度随 Y 的掺入增加并不十分显著.

关键词:Er/Y 共掺玻璃,光致荧光,荧光寿命 PACC:7855,4270C,7830

1.引 言

1530 nm 是标准硅基光通信的重要波长. 自从 1983 年 Ennen 等^{12]}提出了 Er³⁺ 在 1530 nm 的光致 荧光在光通信领域具有广泛应用前景以来,有关掺 Er 材料的研究一直受到各国学者的普遍重视. 目 前 尽管光纤通信中的掺 Er 光纤放大器已经成功地 商品化^[34],为了满足全光通信对集成光子器件的需 求,掺 Er 材料仍然是人们发展光波导放大器的研 究重点^[56].

目前,掺 Er 光波导器件的研究方式主要有两种.一种方式是在 Si 基片表面沉积掺 Er 光波导薄膜,再通过光刻蚀技术制备光波导放大器⁷⁻⁹¹;另一种方式是制备掺 Er 激光玻璃,再通过离子交换、离子注入等方式制备光波导及相关集成器件¹⁰⁻¹³¹.硅酸盐玻璃具有很好的热稳定性和化学稳定性,具有 广泛的应用前景,成为这类器件的首选基质材 料^[14,15].提高 Er³⁺浓度可以提高掺 Er 材料的光致荧 光强度,但是过高的掺杂浓度会使 Er³⁺发生团聚现 象,导致浓度猝灭效应¹⁶⁻¹⁹¹.降低光学活性,使 Er³⁺ 的荧光效率降低.有报道指出,Er³⁺与其他一些三价 离子(如Al³⁺,Yb³⁺,Y³⁺等)的共掺杂可以有效分散 Er³⁺在基质中的分布,从而减弱浓度猝灭效应的负 面影响^[20-25].

本文采用固相反应方法制备了 Er³⁺ 浓度分别 为 0.5at%和 1.0at%的不同 Y³⁺ 浓度掺杂的 Er/Y 共 掺激光玻璃.通过吸收光谱、光致发光光谱和荧光寿 命的测量,并根据 McCumber 理论分析,探讨了共掺 Y 对 Er 的光致荧光光谱特征和荧光寿命的影响.

2.Er/Y 共掺激光玻璃的制备

根据此前相关工作的结果显示^[14,15],当 Er^{3+} 的 原子百分比浓度为 0.5at% 时,掺 Er 硅酸盐玻璃的 光致发光强度最大,继续提高 Er^{3+} 的浓度则有团聚 现象出现,影响 Er^{3+} 的发光效率.因此,实验设计 Er^{3+} 浓度为 0.5at% 和 1.0at% 的两组样品, Y^{3+} 的掺 杂浓度分别为 Er^{3+} 浓度的 0—5 倍.其中 Y_2O_3 和 Er_2O_3 的纯度为 99.99%,其他组分均采用分析纯化 学原料. Er^{3+} 浓度为 1.0at% 时基本配料如表 1 所列.

^{*} 国家自然科学基金(批准号: 50240420656)资助的课题.

[†] 通讯联系人. E-mail :qyzhang@dlut.edu.cn

Er/Y 共掺激光玻璃的具体制备过程如下:将充 分研磨过的玻璃配料粉末装入 50 ml 的刚玉坩埚, 放入硅钼高温炉中,在1450℃熔融并恒温30 min,然 后将熔融态的玻璃倒入300℃预热的石墨模子中, 成型后放入马弗炉中,在650℃温度下退火3h以 消除玻璃的内部应力,随炉冷却至室温.所制备的 Er/Y共掺激光玻璃为粉色透明玻璃,颜色随着 Er 浓 度的增加粉色变深,相同 Er 浓度不同 Y 浓度的玻璃 其透明度和颜色无明显差异.将得到的玻璃切割打磨成 20 mm × 20 mm × 3 mm的长方体,两大面抛光后进行吸收光谱、光致发光光谱、荧光寿命的测量.吸收光谱和荧光寿命的测量在复旦大学光科学系完成,荧光寿命测量的抽运光源为 514.5 nm 的氩离子激光器.光致荧光光谱采用卓立汉光 SBP500型光谱 仪测量,抽运光源为 980 nm 中心波长的 InGaAs 半导体激光器.

表 1 Er³⁺ 浓度为 1.0at% 时 Er/Y 共掺玻璃的成分配比(wt%)

Y ³⁺ 浓度/at%	$Y_2 O_3$	$\operatorname{Er}_2 O_3$	SiO_2	Na ₂ CO ₃	В(ОН) ₃	BaCO ₃
0.0	0.000	7.348	40.564	26.233	23.636	2.220
1.0	4.254	7.206	38.763	25.068	22.587	2.121
2.0	8.348	7.070	37.030	23.948	21.578	2.027
3.0	12.289	6.939	35.362	22.869	20.605	1.935
4.0	16.088	6.813	33.754	21.829	19.669	1.847
5.0	19.750	6.691	32.204	20.826	18.765	1.762

3. 结果及讨论

3.1. 掺 Y 对 Er 吸收光谱的影响

图 1 为 Er/Y 共掺玻璃中 Er³⁺ 的吸收光谱图 ,测 量波长范围为 350—1700 nm ,此范围共有 11 个吸收 峰 ,分别对应于 Er³⁺ 的基态⁴ $I_{15/2}$ 到⁴ $I_{13/2}$,⁴ $I_{11/2}$,⁴ $I_{9/2}$, ${}^{4}F_{9/2}$,⁴ $S_{3/2}$,² $H_{11/2}$,⁴ $F_{7/2}$,⁴ $F_{5/2}$,⁴ $F_{3/2}$,⁴ $H_{9/2}$ 和⁴ $G_{11/2}$ 各能 级的吸收跃迁. 从图 1 可以看出 吸收光谱具有典型 的 Er³⁺ 的光谱特征 ,在所测量的波长范围内 ,没有 其他元素的吸收峰存在.

根据 McCumber 理论^[26],可以用吸收截面和发 射截面来衡量离子吸收和发射光子的能力^[27]. Er³⁺ 在 1530 nm 处的能级跃迁的发射截面和吸收截面的 关系为

 $\sigma_{emit}(\nu) = \sigma_{abs}(\nu) \exp[(\epsilon - h\nu)/kT],$ (1) 式中, σ_{emit} 是基质中 Er³⁺的发射截面, σ_{abs} 是吸收截面, ν 是光子频率, ϵ 是 Er³⁺的⁴ $I_{13/2}$ 到⁴ $I_{15/2}$ 能级平均 跃迁能量, h 是普朗克常量, k 是玻尔兹曼常数, T 是 温度. 吸收截面可以由测得的吸收光谱中计算得到,

$$\sigma_{abs}(\nu) = \frac{2.303}{Nd} \lg I_0(\nu) I(\nu)], \quad (2)$$

式中, N 是稀土离子数密度, d 是样品厚度.

图 2 分别给出了 Er 浓度为 0.5at% 和 1.0at% 时,不同 Y 浓度样品在 1530 nm 附近的吸收截面图.

图 1 Er/Y 共掺玻璃的吸收光谱

Er³⁺在共掺玻璃中的主吸收峰位于 1536 nm 处,次吸收峰位于 1490 nm 处,吸收峰范围为 1400—1650 nm 左右.为了了解 Y 掺杂对 Er³⁺离子周围局部环境的 影响,我们对 Er/Y 共掺玻璃的 1490 与 1536 nm 处的 峰强比值 β 随 Y 浓度的变化进行了分析,如图 2 内 插图所示.从图中可以看出,对于两种掺 Er 浓度的 玻璃,Er/Y 共掺的样品相比于单掺 Er 的样品,主吸 收峰的峰值均略有下降.但是,随着 Y³⁺浓度的增加 1490 nm 处的次吸收峰强度明显增加.当 Y 的浓度 为 Er 浓度的 5 倍时,次吸收峰强度增加到主吸收峰 的 50% 以上,从而导致 Er 的吸收峰宽化和吸收截面 积分面积的增加.这一结果意味着共掺高浓度的 Y 有可能改善掺 Er 玻璃的频带宽度,而且,这种宽化 作用随着 Er 浓度的增加而更为显著. 同时,我们注意到 Y 共掺杂使得 Er 的主吸收峰峰位向短波方向

略有移动,说明 Y 的掺入不仅改变了 Er³⁺ 的局域环 境,而且影响了 Er³⁺ 各 Stark 能级的分裂.

图 2 不同 Y 浓度样品在 1530 nm 附近的吸收截面 内插图为 1490 nm 与 1536 nm 处的峰强比值 β 随 Y 浓度的变化.(a)Er 浓度为 0.5at% (b)Er 浓度为 1.0at%

吸收截面的变化可以导致发射截面的变化.图 3 是根据所测定的吸收截面按照(1)式计算得到的 发射截面.从图 3 可以看到,不同 Er 浓度条件下, Er/Y 共掺样品较单掺 Er 样品的发射截面峰值有 所下降,但由于两侧肩峰强度的增加,使得发射截 面的面积依然随着 Y 浓度的增加而增加.此外, 发射截面的半峰宽也随着 Y 浓度的增加而单调展 宽,而且发射截面半峰宽随 Y 浓度增加而展宽的 趋势与吸收截面 1490 nm 吸收峰的增长是基本一 致的.

图 3 不同 Y 浓度样品在 1530 nm 附近的发射截面 内插图为发射截面的半峰宽随 Y 浓度的变化.(a)Er 浓度为 0.5at% (b)Er 浓 度为 1.0at%

3.2. 掺 Y 对 Er³⁺发光寿命的影响

光致荧光寿命决定着掺 Er 材料的荧光光子 效率 ,是判断 Y 共掺效果的有效手段.图 4 是 Er 浓度为 1.0at% 不同 Y 浓度的 Er/Y 共掺玻璃样品 的 1.54 μm 光致荧光强度衰减曲线 ,图中纵坐标 h(*I*/*I*₀)为荧光强度的对数值.从图 4 可以看出 ,光 致荧光强度的衰减呈现明显的指数下降趋势,具有 典型的光致荧光特征.通过拟合光致荧光强度衰减 曲线,可以计算出不同 Er 浓度玻璃的荧光寿命 τ 随 Y 浓度的变化,如图 5 所示.从图 5 可以看到,Y 的 掺入使得 Er^{3+} 的荧光寿命明显增加.当 Er 浓度为 0.5at%时,1 倍 Er 浓度的 Y 掺杂使得荧光寿命增加 近 1 倍,此后随 Y 浓度的增加反而略有降低.当 Er 浓度为 1.0at%时,由于 Er 浓度的增加出现了明显 的浓度猝灭效应,Er 含量为 1.0at%的未掺 Y 激光 玻璃的荧光寿命约为 Er 含量是 0.5at% 的未掺 Y 激 光玻璃荧光寿命的 1/2.但是,Y 共掺使得其荧光寿 命随 Y 浓度的增加而线性增加.当 Y 浓度为 Er 浓 度的 3 倍时(3.0at%),玻璃的荧光寿命达到最大, 与 Er 含量为 0.5at%的 Er/Y 共掺玻璃的最大荧光寿 命一样.这一结果说明,共掺 Y 可以有效地阻止 Er^{3+} 发生团聚现象,而且 Y 的弥散作用在 Er 浓度较 高时更为显著.我们认为,高 Y^{3+} 浓度所导致的荧光 寿命下降可能是由于 Y^{3+} 的大量存在降低了 Er^{3+} 之 间的能量传递效率的结果.

图 4 Er/Y 共掺玻璃样品的 1.54 µm 荧光衰减曲线 曲线 a 为 Er 1.0at%, Y 2.0at%;曲线 b 为 Er 1.0at%, Y 1.0at%;曲线 c 为 Er 1.0at%, Y 0.0at%

图 5 玻璃样品的 1.54 µm 荧光寿命随 Y/Er 浓度比的变化

3.3. 掺 Y 对 Er³⁺ 光致发光光谱的影响

图 6 给出了在 980 nm 激光抽运下不同 Y 浓度的 Er/Y 共掺玻璃样品的光致发光光谱,波长范围为

1400—1700 nm.从图 6 可以看到,Y 共掺并没有使得 激光玻璃的荧光强度发生明显的增强.同时我们也 注意到,与 Er³⁺浓度为 0.5at% 的激光玻璃相比, Er³⁺浓度为 1.0at% 的激光玻璃的光致荧光强度也 没有明显增加.考虑到 Y 共掺后不仅增加了掺 Er 激 光玻璃的吸收截面,而且显著地增加了玻璃的荧光 寿命,原则上 Er/Y 共掺后的光致荧光强度应有明显 增加,因此需要在今后的工作中研究导致 Er/Y 共掺 后的光致荧光强度没有显著增加的原因.另外,从图 6 的内插图可以看出,随着 Y 浓度的增加,光致发光 光谱的半峰宽都是均匀展宽的,这与发射截面的半 峰宽变化趋势一致,说明 Y 共掺确实可以改善玻璃 的频带特性.

图 6 不同 Y 浓度的 Er/Y 共掺玻璃的光致发光光谱 内插图为 半峰宽随 Y/Er 浓度比的变化 (a)Er 浓度为 0.5at% (b)Er 浓度 为 1.0at%

4.结 论

通过对 Er/Y 共掺硅酸盐玻璃的 Er³⁺ 吸收截面、

发射截面、荧光寿命和光致荧光特征的研究我们得 到以下结论.

1)Y 共掺杂导致 1530 nm 附近的吸收峰宽化, 对 Er³⁺的吸收起到了一定的增强作用,并且这种宽 化作用随着 Er 浓度的增加而更为显著.

2)Y 共掺杂可以显著阻止 Er³⁺ 离子团聚现象

- [1] Ennen H, Schneider J, Pomrenke G et al 1983 Appl. Phys. Lett. 43 943
- [2] Ennen H, Pomrenke G, Axmann A et al 1985 Appl. Phys. Lett. 46 381
- [3] Desurvire E, Simpson R, Becklker P 1987 Opt. Lett. 12 888
- [4] Chen C Y, Chen W D, Song S F et al 2003 J. Appl. Phys. 94 5599
- [5] Slooff L, Blaaderen A, Polman A et al 2002 J. Appl. Phys. 91 3955
- [6] Wan J, Sheng C, Lu F et al 1998 Acta Phys. Sin. 47 1741 (in Chinese)[万 钧、盛 篪、陆 肪等 1998 物理学报 47 1741]
- [7] Duan S Q , Tan N Zhang Q Y 2005 Chin . Phys. 14 615
- [8] Yang J H , Dai S X , Zhou Y F et al 2003 J. Appl. Phys. 93 977
- [9] Snoeks E, Hoven G, Polman A 1993 J. Appl. Phys. 73 8179
- [10] Li S F ,Zhang Q Y 2005 Acta Phys. Sin. 54 5462 (in Chinese) [李善锋、张庆瑜 2005 物理学报 54 5462]
- [11] Chen B Y, Liu Y H, Chen D D et al 2005 Acta Phys. Sin. 54 2374 (in Chinese) [陈炳炎、刘粤惠、陈东丹等 2005 物理学报 54 2374]
- [12] Dai S X, Yang J H, Liu Z P *et al* 2003 Acta Phys. Sin. **52** 729 (in Chinese)[戴世勋、杨建虎、柳祝平等 2003 物理学报 **52** 729]

的发生,从而改善 Er³⁺的荧光寿命;适当的 Y 掺杂 浓度可以使 Er 浓度为 0.5at%和 1.0at%的 Er/Y 共 掺硅酸盐玻璃具有相同的荧光寿命.

3)在 980 nm 激光抽运下, Er/Y 共掺激光玻璃 在 1530 nm 处的光致发光强度随 Y 的掺入增加并不 十分显著,导致荧光猝灭的原因有待进一步研究.

- [13] Polman A 1997 J. Appl. Phys. 82 1
- [14] Li S F ,Zhang Q Y 2002 J. Dalian Univ. Technol. 42 640 (in Chinese)[李善锋、张庆瑜 2002 大连理工大学学报 42 640]
- [15] Li S F , Zhang Q Y ,Lee Y P 2004 J. Appl. Phys. 96 4746
- [16] Lumholt O, Rasmissen T, Bjarklev A 1993 Electron. Lett. 29 495
- [17] Blixt P, Nilsson J, Carlnas T et al 1991 IEEE Photonic Tech. Lett. 3 996
- [18] Yan Y, Faber A, de Waal H 1995 J. Non-Cryst. Solids 181 283
- [19] Yu C L, Dai S X, Zhou G et al 2005 Acta Phys. Sin. 54 3894 (in Chinese)[于春雷、戴世勋、周 刚等 2005 物理学报 54 3894]
- [20] Ting C C , Chen S Y , Hsieh W F et al 2001 J. Appl. Phys. 90 5564
- [21] Aria K , Namikawa H , Kumata K et al 1986 J. Appl. Phys. 59 3430
- [22] Zhou Y , Lam Y L , Wang S S et al 1997 Appl . Phys . Lett . 71 587
- [23] Ryu C K , Choi H , Kim K 1995 Appl . Phys . Lett . 66 2496
- [24] Ainslie B , Craig S ,Davey S 1987 Mater . Lett . 5 143
- [25] Zhang X X, Cheah K W, Shi J X *et al* 2003 Acta Chem. Sin. **61** 1430 (in Chinese)[张晓霞、谢国伟、石建新等 2003 化学学报 **61** 1430]
- $\left[\begin{array}{ccc} 26 \end{array}\right] \ \ McCumber \ D \ E \ 1964 \ \ Phys \ . \ Rev \ . \ A \ 134 \ 299$
- [27] Miniscalw W , Quimby R 1991 Opt . Lett . 16 258

Effect of Y co-doping on the photoluminescence and lifetime of Er³⁺ in silicate glasses *

Miao Zhuang Li Shan-Feng Zhang Qing-Yu[†]

(State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116023, China) (Received 23 January 2006; revised manuscript received 20 March 2006)

Abstract

0.5at% and 1.0at% Er/Y co-doped silicate glasses with different Y₂O₃ concentrations were fabricated by means of hightemperature solid-state reaction, with the Y concentration varying from 0.0at%—2.5at% and 0.0at%—5.0at%, respectively. By measuring the absorption spectra, the photoluminescence (PL) and PL decay, we studied the dependence of absorption and emission cross-section at 1530 nm and the lifetime and PL features on Y concentration. The results showed that Y co-doping enabled the absorption peak to widen and enhanced the absorption. The lifetime was prolonged considerably, especially for the highly Er-doped silicate glasses. However, considerable enhancement of PL intensity was not detected when the glasses were excited by a 980 nm laser.

Keywords : Er/Y co-doped glass , photoluminescence , lifetime **PACC** : 7855 , 4270C , 7830

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50240420656).

 $[\]dagger$ Corresponding author. E-mail :qyzhang@dlut.edu.cn