不同 Yb 掺杂量的 Yb :Y₃Al₅O₁₂晶体的光谱分析*

王晓丹¹²) 赵志伟^{1);} 徐晓东¹) 宋平新¹²⁾

姜本学¹²) 徐 军¹⁾ 邓佩珍¹⁾

1)(中国科学院上海光学精密机械研究所,上海 201800)

2)(中国科学院研究生院,北京 100049)

(2005年6月28日收到2006年4月3日收到修改稿)

采用提拉法生长了 Yb³⁺ 掺杂量分别为 5.4at%, 16.3at%, 27.1at%, 53.6at%和 100at%的 Yb :Y₃ Al₅ O₁₂晶体.系 统地表征和分析了 Yb³⁺ 掺杂量对晶体吸收光谱和荧光光谱的影响.随着 Yb³⁺ 掺杂量的增加, 各峰值吸收系数呈线 性增加的趋势.应用 Smakula 公式计算了各吸收峰对应的振荡强度,并分析了 Yb³⁺ 掺杂量对振荡强度的影响.当 Yb³⁺ 掺杂量增加到 27.1at%时观察到了荧光猝灭现象;当 Yb³⁺ 掺杂量增加到 53.6at%时,荧光光谱的线形发生了很大的变化.

关键词:吸收光谱,荧光光谱,自吸收,浓度猝灭 PACC:8140,3250F,4255R

1.引 言

近年来 随着高性能 InGaAs 激光二极管(发射 波长在 900-1100 nm 之间)的发展及其成本的降 低 兴起了掺 Yb^{3+} 激光晶体的研究热潮¹¹. Yb^{3+} 的 电子构型为[Xe]4f¹³,仅有两个电子态,基态²F_{7/2}和 激发态² F_{5/2} 相隔大约 10000 cm⁻¹;更高的激发态在 5 d 构型内,与² F₅₀相距约 100000 cm⁻¹,位于紫外波 段,在晶场作用下 基态能级和激发态能级分别分裂 为 4 个和 3 个 Stark 子能级 从而形成准三能级的激 光运行机制^[2].正是由于 Yb^{3+} 简单的电子层结构, Yb^{3+} 作为激光晶体的激活离子具有如下优点[3]: (1)不存在激发态吸收、上转换或者一些其他的减小 有效发射截面的内部机制.由于这些因素,Yb³⁺在 晶体中的掺杂量可以比较高,如在Yb:Y,Al,O, (Yb:YAG)晶体中 Yb³⁺的掺杂量可高达 100at%. (2)Yb³⁺强而宽的吸收谱线非常适合于红外激光二 极管 InGaAs 在 900—980 nm 之间进行抽运.(3)Yb³⁺ 宽的发射波段将可能实现超短脉冲激光.(4)Yb³⁺在 可见光波段没有吸收.(5) Yb^{3+} 的量子缺陷低 (8.6%)从而使材料具有较低的热负荷(11%),而

Nd 掺杂的激光晶体其热负荷高达 30%—40%. (6)Yb³⁺荧光寿命长,为掺 Nd³⁺同种激光材料的三 倍多,长的荧光寿命有利于储能.

Y₃Al₅O₁₂(YAG)晶体具有优异的光学、热力学、 机械性能和化学稳定性,同时能给激活离子提供良 好的晶体场环境,因而 YAG 是理想的激光基质晶 体^[4].Yb³⁺掺杂的 YAG 晶体是最有潜力的激光工作 物质之一^[5].

近年来对于各种掺 Yb³⁺ 晶体的光谱进行了大 量的研究^[6-10],吸收、荧光、上转换等光谱的分析使 我们更好地了解到掺 Yb³⁺ 晶体的性质.本文采用提 拉法生长了不同 Yb³⁺ 掺杂量的 Yb : YAG 晶体,系统 地表征和分析了 Yb³⁺ 掺杂量对晶体吸收光谱和荧 光光谱的影响.

2. 实验过程

2.1. 晶体生长和样品的制备

晶体生长所用的原料为 Y_2O_3 , Al_2O_3 , Yb_2O_3 (纯 度均为 99.999%) 整个固相反应的方程式如下: $5Al_2O_3 + \mathfrak{X} 1 - x \mathcal{Y}_2O_3 + 3x Yb_2O_3 = 2Y_{\mathfrak{X}_{1-x}} Yb_{3x} Al_3O_{12}$

^{*}国家高技术研究发展计划(批准号 2002AA311030)资助的课题.

[†] E-mail:zzw8006@sina.com

(x = 0.05, 0.15, 0.25, 0.50, 1.00).

晶体生长采用中频感应提拉法, 铱坩埚加热,选 择 1 1 1 方向的纯 YAG 晶体做为籽晶 ,高纯氮气作 为保护气体.晶体的尺寸为 \$32 mm × 200 mm ,晶体生 长的具体过程可见文献 11 ,12]. 实验所用的样品为 经空气气氛 1600 ℃ *4*8 h 退火后 ,沿 1 1 1 方向切割、 双面抛光的样品,其尺寸为 10 mm × 10 mm × 1.5 mm.

2.2. 吸收光谱、发射光谱、分凝系数和 Yb³⁺ 掺杂浓度的测试

晶体的吸收光谱是在 V-570 型紫外/可见/近红 外光谱仪上测定的 ,测试范围为 800—1100 nm ,分辨 率为 1 nm. 光致发光光谱由 JOBIN-YVON 公司生产 的 TRIAX 550 型光谱仪测得 ,抽运波长为 940 nm ,测 试范围为 950—1100 nm ,分辨率为 1 nm.当样品的光 谱测试结束后 ,将 Yb :YAG 晶体研磨成粉末用于精 确测量晶体中 Yb³⁺ 的掺杂量. Yb³⁺ 在 YAG 晶体中 的浓度测量由电感耦合等离子体原子发射光谱 (ICP-AES)的方法测得.所有测试均在室温下进行.

3. 结果和讨论

利用 ICP-AES 测量结果对晶体的分凝系数进行 了计算. 计算得到不同掺杂量的 Yb :YAG 晶体的 分凝系数值分别为 1.08 ,1.09 ,1.08 和 1.07 (对应 的掺杂量分别为 x = 0.05 ,0.15 ,0.25 和 0.50 ,此浓 度表示的是熔体掺杂量),经光谱分析得到样品 的 Yb³⁺掺杂量分别为 5.4at% , 16.3at% , 27.1at% 和 53.6at%.

3.1. 吸收光谱分析

从图 1 可以观察到四个主要的吸收波段,其峰 值分别位于 916,940,969 和 1029 nm. 它们是由 YAG 基质中的 Yb³⁺ 的² $F_{7/2} \rightarrow^{2} F_{5/2}$ 跃迁引起的^[2]. 随着 Yb³⁺ 掺杂量的增加,这些吸收带的强度明显增加. 在吸收光谱中,减去 1100 nm 处基线的吸收系数后, 我们得到了这些吸收峰实际的吸收强度随着 Yb³⁺ 掺杂量的增加呈线性增加,如图 2 所示.由图 2 结合 图 1 可以看出,Yb : YAG 晶体中在 940 nm 处为最强 的吸收峰,因此通过测量 940 nm 处的实际吸收系数 就可以方便地表征 Yb³⁺ 的掺杂量.

图 1 对应 YAG 基质中的 Yb³⁺ 的² $F_{7/2}$ →² $F_{5/2}$ 跃迁吸收带 曲线 *a*为 5.4at% Yb :YAG,曲线 *b*为 16.3at% Yb :YAG,曲线 *c*为 27.1at% Yb :YAG,曲线 *d*为 53.6at% Yb :YAG,曲线 *e*为 100at% Yb :YAG

图 2 Yb :YAG 晶体中 Yb 掺杂量与吸收系数的关系 (a)为 916 和 1029 nm 处 (b)为 940 和 969 nm 处

对于以上所述的线性关系,我们可以用 Smakula 公式来进行解释.Smakula 公式表达如下^[13]: 高斯吸收带的积分可以表示为

$$\int \alpha(E)(E) = \frac{1}{2}\sqrt{\frac{\pi}{\ln 2}\alpha_{\max}}W, \qquad (2)$$

式中 $_{,\alpha_{max}}$ 为最大的吸收系数 , W 为吸收峰的半高 宽. 所以(1)式可以改写为

$$Nf = 8.74 \times 10^{15} \frac{n}{(n^2 + 2)^2} \alpha_{\text{max}} W$$
, (3)

式中系数 8.74×10¹⁵单位为 cm⁻³.

根据 Smakula 公式,我们可以计算各吸收峰 对应的振荡强度 f. 对不同掺杂量的 Yb: YAG 晶体 各个吸收峰的振荡强度进行了计算,所得结果如图 3

图 3 Yb:YAG 晶体中吸收峰的振荡强度(a)和在 940 nm 处 Yb³⁺ 掺杂量与振荡强度之间的关系(b) 曲线 a 为 5.4at% Yb:YAG, 曲线 b 为 16.3at% Yb:YAG,曲线 c 为 27.1at% Yb:YAG,曲线 d 为 53.6at% Yb:YAG,曲线 e 为 100at% Yb:YAG

所示.

对于五种不同掺杂量的 Yb :YAG 晶体 ,它们的 各个吸收峰的振荡强度出现了如图 3(a)所示的变 化 ,我们认为这是与 Yb³⁺ 进入 YAG 基质后晶格的 失配有关 .Yb³⁺ 掺杂量越高 ,Yb³⁺ 进入晶体越多 ,晶 格的失配度也越高 .又因为振荡强度体现为晶格的 振动 ,高的失配度会影响晶格的振动 ,所以掺杂量越 高 ,吸收峰的振荡强度越低 .表 1 列出了不同掺杂量 的 Yb :YAG 晶体的晶格常数¹⁴¹.由图 2 可以看出 , 在 Yb :YAG 晶体中吸收峰的吸收系数随着 Yb³⁺ 掺 杂量的增加呈线性增加 .结合上述掺杂量与吸收峰 振荡强度的关系可以得出 ,随着吸收系数的增加吸 收峰的振荡强度减小 .对上述各种掺杂量的晶体研 究再结合文献 13 可知 ,这种关系具有普适性.

表1 (Yb_xY_{1-x})₃Al₅O₁₂晶体的晶格常数^[14]

Yb ³⁺ 掺杂量/at%	晶格常数/ nm	
0	1.201159 ± 0.000034	
5.4	1.200424 ± 0.000063	
16.3	1.199765 ± 0.000058	
27.1	1.199214 ± 0.000038	
53.6	1.197364 ± 0.000065	
100	1.193799 ± 0.000054	

3.2. 荧光光谱分析

在 940 nm 激光的抽运下,得到 Yb :YAG 晶体的 荧光光谱如图 4(a)所示.我们还计算了 Yb :YAG 晶 体的积分发射强度,其结果如图 4(b)所示.我们发 现,当 Yb³⁺ 掺杂量为 16.3at%时 Yb :YAG 晶体的积 分发射强度最强,同时还发现此掺杂量的荧光寿命 最长,如图 4(c)所示.通过以上实验结果可知,当 Yb :YAG晶体中 Yb³⁺ 掺杂量达到 27.1at%时,会发 生浓度猝灭现象.

当 Yb³⁺ 掺杂量达到 27.1at%时发生浓度猝灭这 一结论仅考虑了本文所用的五种样品,真正发生猝 灭的 Yb³⁺ 掺杂量可能介于 16.3at%—27.1at%,这 有待于实验的进一步确认.

Yang 等¹⁵¹具体确定了 Yb:YAG 晶体中 Yb³⁺的 理想掺杂量为 10at%,此掺杂量的荧光寿命达到 1.5 ms,高于本文中掺杂量为 16.3at%时的 1.3 ms. 所以我们认为,对于氧气氛退火后的 Yb:YAG,其荧 光寿命可以分为两个区域.当掺杂量在 5at%— 10at%之间,荧光寿命随着掺杂量的增加而增加,而

图 4 Yb: YAG 晶体的荧光光谱和 Yb³⁺ 掺杂量与积分发射 强度、荧光寿命的关系 (a)在 940 nm 抽运下的荧光光谱, 曲线 a 为 5.4at% Yb: YAG,曲线 b 为 16.3at% Yb: YAG,曲线 c 为 27.1at% Yb: YAG,曲线 d 为 53.6at% Yb: YAG,曲线 e 为 100at% Yb: YAG (b)掺杂量与在 940 nm 激发下的积分发射 强度的关系 (c)掺杂量与荧光寿命的关系

当掺杂量大于 10at%,荧光寿命则随着掺杂量的 增加而降低,出现浓度猝灭现象.在 Yb:YAG 和 Yb:Y₂O₃晶体光纤中也观察到同样的现象^[16,17].第 一个区域表明晶体中存在辐射能量转移,第二个区 域表明非辐射能量转移到基质中的缺陷和杂质离子 而引起浓度猝灭.

在 Yb :YAG 晶体中随着 Yb³⁺ 掺杂量的变化使 得荧光光谱发生了变化 ,图 5 给出了 Yb :YAG 晶体 归一化的荧光光谱.

图 5 在 940 nm 激光抽运下 Yb :YAG 晶体的归一化荧光光谱 曲线 *a* 为 5.4at% Yb :YAG ,曲线 *b* 为 16.3at% Yb :YAG ,曲线 *c* 为 27.1at% Yb :YAG ,曲线 *d* 为 53.6at% Yb :YAG ,曲线 *e* 为 100at% Yb :YAG

从图 5 可以看出,掺杂量为 5.4at%,16.3at%和 27.1at%的 Yb:YAG 晶体的荧光光谱的形状大致相 同,而掺杂量为 53.6at%和 100at%的 Yb:YAG 晶体 的荧光光谱的形状发生了很大的变化.当 Yb³⁺掺杂 量从 27.1at%增加到 100at%时,荧光光谱发生了如 下的变化 掺杂量为 100at%时,荧光光谱发生了如 下的变化 掺杂量为 100at%的 Yb:YAG 晶体在 969 nm 处的发射峰消失,出现一个凹穴;掺杂量为 27.1at%的 Yb:YAG 晶体在 1030 nm 处出现发射峰, 而掺杂量为 100at%的 Yb:YAG 晶体的发射峰转移 到1036 nm处,在 1030 nm 处出现了凹穴,在 1048 nm 处归一化发射强度增加.我们分析认为,这些变化是 由 Yb:YAG 晶体在 969 和 1030 nm 处的自吸收效应 引起的.类似的变化在图 1 中也能观察到.依据图 1

图 6 Yb³⁺的能级示意图

根据图 6 所示,在波长为 940 nm 的激光抽运下 969,1030 和 1048 nm 处的发射峰是希望得到的, 但同时在 969 和 1030 nm 处还存在着自吸收效应.因此,在 969 和 1030 nm 处的发射有一部分被再吸收, 发射强度在一定程度上有所减弱,而在 1048 nm 处 的发射强度增加,如图 5 所示.当 Yb³⁺ 掺杂量为 27.1at%,自吸收效应的影响不是很明显.然而,当 Yb³⁺ 掺杂量为 53.6at% 以上时,由于在 969 和 1030 nm处较强的自吸收,很大程度上改变了荧光光 谱的形状.

发射光谱能够用倒易法计算得到,这种方法得 到的光谱反映的是没有自吸收效应影响的本征 线形^[2].

$$\sigma_{\rm em}(\nu) = \sigma_{\rm abs}(\nu) \frac{Z_1}{Z_u} \exp[(E_{\rm al} - h\nu)/kT], (4)$$

$$\sigma_{\rm c}(\nu) = \sigma/C$$
(5)

在 (4) (5)式中各参数的物理意义如下: $\sigma_{em}(\gamma)$ 和 $\sigma_{abs}(\gamma)分别代表某一频率 γ 的发射截面和吸收截$ $面;<math>Z_1$ 和 Z_a 分别代表下能级和上能级的配分函数; E_a 为零线能量,对于 Yb³⁺,它表示激发态² F_{5/2}和基 态² F_{7/2}的最低晶场子能级的能量差; C 为样品中 Yb³⁺的数量.表 2 列出了计算掺 Yb³⁺ 晶体的发射截 面所需要的有关参数值^[2].从表 2 中可以查到,对于 Yb :YAG 晶体 $\frac{Z_1}{Z_a}$ = 0.8,零线波长 λ_a = 968.3 nm. 我 们计算了 Yb :YAG 晶体样品的发射截面积,发现它 们的线形非常相近.掺杂量为 27.1at%和 100at% 的 Yb :YAG 晶体的发射截面积曲线如图 7 所示,我们 可以看到这两种掺杂量的晶体的发射截面积线形很 相似.掺杂量为 27.1at% 的 Yb :YAG 晶体的荧光光 谱和发射截面积曲线在线形上很相似,而掺杂量为 100at%晶体的两种曲线在线形上有很大的差别.上述结果说明,当Yb³⁺掺杂量大于27.1at%时,Yb³⁺掺杂量的增加对Yb:YAG晶体计算的发射截面的线形影响不大,同时,969和1030 nm处的自吸收对其荧光光谱形状有影响.

图 7 由倒易法计算的掺杂量为 27.1at%(曲线 c)和 100at%(曲 线 e)的 Yb :YAG 晶体的发射截面积变化曲线

基质	零线波长	配分率	平均折射
	$\lambda_{zl}/$ nm	$Z_{\rm l}/Z_{\rm u}$	率 $n_{\rm ave}$
LiYF ₄	972.0	0.88	1.455
LaF ₃	974.7	1.41	1.597
SrF_2	966.5	(0.97)	1.438
BaF_2	966.7	(0.97)	1.473
KCaF3	(972.0)	(0.73)	1.378
KY_3F_{10}	974.2	1.24	1.500
$\mathrm{Rb}_2\mathrm{NaYF}_6$	(968.0)	(1.0)	1.403
${ m BaY_2F_8}$	(972.6)	(1.0)	1.521
$Y_2 SiO_5$	(979.0)	(1.0)	1.790
$\mathrm{Y}_{3}\mathrm{Al}_{5}\mathrm{O}_{12}$	968.3	0.80	1.820
YAlO ₃	978.5	1.09	1.956
Ca5(PO4)3F	981.5	1.1	1.630
$LuPO_4$	976.1	0.96	1.83 (est)
LiYO ₂	(972.6)	(1.0)	1.82 (est)
$ScBO_3$	(974.6)	(1.0)	1.84

表 2 计算掺 Yb³⁺ 晶体的发射截面所需要的 有关参数值^[2]

注 :est 为估计值.圆括号内的数值表示不确定.

4.结 论

用提拉法生长了 Yb³⁺ 掺杂量为 5.4at%,

16.3at% 27.1at% 53.6at%和 100at%的 Yb :YAG 晶体.Yb :YAG 晶体中 940 nm 处吸收峰的吸收强度最强,而且随着 Yb³⁺掺杂量的增加呈线性增加.因此,通过测量 940 nm 处的吸收系数可以方便地得到 Yb³⁺的掺杂量.用 Smakula 公式计算了各吸收峰对应的振荡强度,随着 Yb³⁺掺杂量的增加,吸收系数增加,振荡强度减小.在实验所用的 Yb :YAG 晶体样品中,在波长为 940 nm 的激光抽运下,掺杂量为 16.3at% 晶体的发射强度最强,当掺杂量达到 27.1at%时发生浓度猝灭.结合文献和我们的测试

- [1] Lacovara P, Choi H K, Wang C A et al 1991 Opt. Lett. 16 1089
- [2] Deloach L D , Payne S A , Chase L L et al 1993 IEEE J. Quantum Electron. 29 1179
- [3] Yoshikawa A, Boulon G, Laversenne L et al 2003 J. Appl. Phys. 94 5479
- [4] Qiu H W , Yang P Z , Dong J et al 2002 Mater. Lett. 55 1
- [5] Yang P Z , Deng P Z , Xu J et al 2000 J. Cryst. Growth 216 348
- [6] Song F, Tan H, Shang M R et al 2002 Acta Phys. Sin. 51 2375 (in Chinese)[宋 峰、谭 浩、商美茹等 2002 物理学报 51 2375]
- [7] Tan H, Song F Su J 2004 Acta Phys. Sin. 53 631 (in Chinese)
 [谭浩、宋峰、苏静 2004 物理学报 53 631]
- [8] Zeng X H, Zhao G J, Xu J 2004 Acta Phys. Sin. 53 1935 (in Chinese)[曾雄辉、赵广军、徐 军 2004 物理学报 53 1935]
- [9] Song F, Tan H, Su J et al 2004 Acta Phys. Sin. 53 3591 (in Chinese) [宋 峰、谭 浩、苏 静等 2004 物理学报 53 3591]
- [10] Liu Y H , Chen D D , Hou Z Y et al 2005 Acta Phys. Sin. 54 422

结果,分析确定了Yb:YAG 晶体中Yb³⁺的最佳掺杂 量为10at%左右.在波长为940 nm的激光抽运下, 当Yb³⁺掺杂量为27.1at%时,在969和1029 nm处的 自吸收效应对荧光光谱的影响不是很明显,然而当 掺杂量大于27.1at%时,自吸收对光谱产生一定的 影响,当Yb³⁺掺杂量达到53.6at%时,969和1029 nm处的自吸收效应使荧光光谱有了很大的变化.考 虑到本文所用的五种样品,使得荧光光谱发生很大 变化的Yb³⁺掺杂量应该是在27.1at%—53.6at%, 具体的掺杂量有待于实验的进一步确认.

- (in Chinese)[刘粤惠、陈东丹、侯志远等 2005 物理学报 54 422]
- [11] Xu X D , Zhao Z W , Xu J et al 2003 J. Cryst. Growth 257 272
- [12] Xu X D , Zhao Z W , Song P X et al 2004 J. Aolloys Compd. 364 311
- [13] Cooke D W, Bennett B L, McClellan K J et al 2000 Phys. Rev. B 61 11973
- [14] Xu X D, Zhao Z W, Song P X et al 2004 Acta Photon Sin. 33 567 (in Chinese)[徐晓东、赵志伟、宋平新等 2004 光子学报 33 567]
- [15] Yang P Z, Jeng P Z, Yin Z W 1999 Chin. J. Lumin. 20 325 (in Chinese) [杨培志、邓佩珍、殷之文 1999 发光学报 20 325]
- [16] Boulon G , Laversenne L , Goutaudier C et al 2003 J. Lumin. 102-103 417
- [17] Auzel F , Baldacchini G , Laversenne L et al 2003 Opt . Mater . 24 103

Spectra analysis of Yb :Y₃Al₅O₁₂ crystals with different Yb doping concentration *

Wang Xiao-Dan^{1,2}) Zhao Zhi-Wei^{1,} Xu Xiao-Dong¹) Song Ping-Xin^{1,2})

Jiang Ben-Xue¹⁽²⁾ Xu Jun¹) Deng Pei-Zhen¹

1 X Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

2) Graduate School of the Chinese Academy of Sciences , Beijing -100049 , China)

(Received 28 June 2005 ; revised manuscript received 3 April 2006)

Abstract

Yb Υ_3 Al₅O₁₂(Yb :YAG) single crystals with Yb³⁺ doping level of 5.4at%, 16.3at%, 27.1at%, 53.6at%, and 100at% were grown by the Czochralski method. The effects of different Yb³⁺ doping level on the absorption spectra and fluorescence spectra were studied. The results showed that the real absorption coefficient of the absorption peaks increases linearly with the increasing of Yb³⁺ doping level in Yb Υ AG crystals. Absorption band oscillator strengths of Yb Υ AG crystals were calculated with Smakula formula and the effects of different Yb³⁺ doping level on the oscillator strengths were also studied. The concentration quenching of fluorescence was observed when the Yb³⁺ doping level reached 27.1at% in Yb Υ AG crystals. The shape of fluorescence spectra of Yb Υ AG could be significantly influenced when the Yb³⁺ doping level is higher than 53.6at%.

 $\label{eq:keywords:absorption spectra , fluorescence spectra , self-absorption , concentration quenching PACC: $8140 , 3250F , 4255R$

^{*} Project supported by the Notional High Technology Development Program of China (Grant No. 2002AA311030).

[†] E-mail:zzw8006@sina.com