溴乙烷分子的质量分辨阈值光谱*

唐碧峰^{1)2)*} 熊平凡¹) 张 秀¹) 张 冰²)

1)(孝感学院物理系,孝感 432100)
 2)(中国科学院武汉物理与数学研究所,武汉 430071)
 (2005年11月26日收到2006年2月19日收到修改稿)

利用单色双光子(1C2P)技术得到了高精度的溴乙烷分子的质量分辨阈值(MATI)光谱 精确给出了溴乙烷分子 的绝热电离势和离子振动频率.从中性基态到离子基态两个自旋-轨道分量 X₁²E_{1/2}和 X₂²E_{1/2}的绝热电离势分别为 83097±3 cm⁻¹和 85452±3 cm⁻¹,离子基态两个自旋-轨道分量的间隔为 2355±6 cm⁻¹,这些值与文献报道值符合得 较好,且精度更高.溴乙烷分子的单色双光子质量分辨阈值光谱展现出丰富的振动结构,这是在溴乙烷分子相继吸 收两个光子的过程中波包在解离态势能面上演化的结果.以已有的离子振动谱标识为参考,以中性分子的振动频 率为基础,标识了溴乙烷分子的质量分辨阈值光谱,发现观测到的振动模几乎都和溴乙烷分子的解离运动有关,其 中还包括一些非全对称模.

关键词:质量分辨阈值光谱,振动模,单色双光子零动能光谱技术,溴乙烷 PACC:3000,3220,3365C

1.引 言

20 年来,零动能光谱(ZEKE)技术已成为研究离 子振转谱的最重要的方法之一.该光谱技术的核心 是分子长寿命的高里德伯态(Rydbergs,n ≈ 200)的延 时脉冲场电离,该技术可以提供极高精度的电离势 和离子光谱;其光谱分辨率极高,可解析小分子的转 动结构、大分子的振动结构¹⁻⁵1.

零动能光谱技术已被广泛地应用于自由基,团 蔟,负离子以及化学反应过渡态的研究中,在产生许 多优秀结果的同时,该技术本身也在不断发展^[6—9]. Bondybey等^[10—13]利用单色双光子(1C2P)ZEKE技术 开辟了探测 Franck-Condon 原理禁阻的离子振动能 级的新途径.从他们得到的 CH₃I 的单色双光子零动 能光谱中,可以获取关于分子在解离中间态的势能 面上运动的信息.由此看来,他们实验中的单色双光 子电离过程是相继的两光子吸收过程.吸收第一个 光子后,CH₃I 分子被激发到解离中间态(Ã state),开 始朝向解离并产生 I (²P_{3/2 J/2})和 CH₃ 的方向运动, 这时,第二个光子的吸收把分子从解离中间态的势 能面上激发到离子的振动能级.由于分子此时正沿 解离坐标运动,Franck-Condon原理使得与解离坐标 有较多重叠的离子振动模被激发.

质量分辨阈值光谱(MATI)技术和零动能光谱 技术是相伴的,也利用了分子长寿命的高里德伯态 的延时脉冲场电离,不同的是 MATI技术探测的是 离子,ZEKE技术探测的是电子^[14—17].这里,我们应 用单色双光子 MATI技术研究溴乙烷分子的离子振 动光谱.

溴乙烷的解离中间态(Ã state)源于局域在 C— Br 上的 $\sigma^* \leftarrow n$ 跃迁. 根据 Mülliken 的分子轨道理 论^[18] Ã 态由三个互有重叠的态³Q₁, ³Q₀和 ¹Q₁ 组 成.自基态 X 到³Q₁, ³Q₀和 ¹Q₁三个态的跃迁表现为 紫外光区 180—313 nm^[19—21]无结构的连续吸收带(A Band). A 带吸收会导致 C—Br 键的快速断裂. Ã 态 是排斥态 ,刚好位于大约电离能的一半的位置. Giulliani 等^[20]测定了溴乙烷离子基态的两个自旋-轨道分量的电离能 ,分别为 10.294 ± 0.005 eV 和 10.602 ± 0.005 eV. 他们把溴乙烷分子近似看作 C_{3v} 对称,故将离子基态的两个自旋-轨道分量标识为 ²E₃₂和 ²E_{1/2}. 他们还根据溴乙烷的 HeI 光电子谱得

^{*}湖北省教育厅科学技术研究项目(批准号:D200526001)资助的课题.

[†] E-mail:tangbf@wipm.ac.cn

到一些离子振动特征谱,但分辨率只有 25 meV.现 在,我们应用单色双光子 MATI 技术,希望得到溴乙 烷的更精确的电离势、更高分辨率、更广泛的离子振 动光谱.由于溴乙烷属于 C_s 点群²²¹,本文把溴乙烷 离子基态的两个自旋-轨道分量标识为 $X_1^2 E_{1/2}$ 和 $X_s^2 E_{1/2}^{[13]}$.

2. 实 验

MATI 实验是在一个基本标准的飞行时间质谱 (义(TOF)上完成的.实验装置由真空系统、超声分子 束进样系统、离子透镜、激光光源、信号探测和数据 采集系统等部分组成.

超声分子运动大约 6 cm 后,经孔径为 1.0 mm 的漏勺(skimmer)准直后进入反应作用区与激光束 垂直相交.激光是由 Nd:YAG(Quantel,YG980)激光 器的三倍频激光(355 nm)抽运染料激光器(Lambda Physik,ScanMate 2E OG)产生.染料激光器输出的基 频光再经 BBO 晶体倍频后输出紫外(UV)光,然后经 f = 250 mm 的石英透镜聚焦进入电离室.UV 激光波 长范围大致在 231—245 nm,强度大约为 400—600 µJ 每脉冲,脉宽为 10 ns,倍频前线宽为 0.03 cm⁻¹. 染料 激光输出 波长 经由 Ne 光电池的电流 (optogalvanic,OG)信号校准,也就是经由已知波长 校准,因为 OG 信号反映的是氖(Ne)的吸收谱,而 这些谱线的波长是准确已知的.

实验中使用的离子透镜如图 1 所示,由四块外 径 D = 80 mm,厚度 1 mm、中心带圆孔的圆形极板组 成. P_1 极板中心圆孔的直径为 5 mm,其他三块极板 中心圆孔的直径都为 20 mm. P_1 和 P_2 之间相距 10.16 mm, P_2 和 P_3 , P_3 和 P_0 之间都相距 12.7 mm. 实验过程中四块极板上加脉冲电压,其中 P_0 接地.

图 1 飞行时间质谱仪(TOF)示意图

适当调节加在极板上的脉冲电场的延时、持续时间 和振幅大小可以优化实验中需要的离子信号.

在单色双光子质量分辨阈值光谱(MATI)实验 中 溴乙烷分子吸收两个光子后被激发到电离势之 下几个 cm⁻¹内的高里德伯态. 但是,通常中性的高 里德伯态和非能量选择的直接电离的离子会同时在 激光和超声分子束的作用区内产生,最初它们以分 子束的速度同时飞向板 P₂.激光作用后延时 100 ns 左右,我们在 P_1 上加 – 1.2 V的脉冲电压作为破坏 场 spoiling field) 持续时间为 20 µs. 这时,即激光作 用后延时 20 μs,同时在 P₂,P₃极板分别加上 765 V 和 488 V 的脉冲电压 起电离 ZEKE 态的分子和加速 离子的作用,持续时间为 5 µs.事实上,ZEKE 态分子 此时正处在 P₂ 和 P, 极板之间, 而直接电离和自电 离的离子已被破坏场排走. P2 和 P3 极板上的电压 如此调节(765V/488V)是为了在加速离子的同时使 离子"聚焦"即降低离子沿飞行方向上初始位置的 分布对飞行时间的影响,使相同质量的离子尽可能 同时到达探测器.ZEKE 态的分子电离后得到的离 子(阈值离子)自由飞行 0.5 mm 后到达由两块微通 道板(MCP)组成的探测器.MCP将离子信号倍增后 通过取样电路输送到数字化示波器(Tektronix,TDS 2012)显示离子飞行时间质谱.MCP的输出信号同时 输入到门积分平均器(boxcar).调节门的位置和宽度 (~1 us),使溴乙烷分子母体质谱峰信号输入到门 积分平均器中平均,记录平均后的溴乙烷分子母体 质谱峰信号强弱与激光波长的关系就得到溴乙烷的 质量分辨阈值光谱.激光波长扫描范围从 242 nm 到 231 nm,每个波长处平均30次,如果不加破坏场,用

同样的方法扫描激光波长,记录平均后的溴乙烷分 子母体质谱峰信号强弱与激光波长的关系就得到溴 乙烷的电离效率曲线(E).

3. 结果和讨论

在 C,H,Br 的 TOF 质谱中,除了有母体离子 $C_2H_5Br^+$ 外,还有一些其他离子.其中, $C_2H_5^+$ 和 Br^+ 是 C, H, Br 单光子光解产物中性的 C, H, 和 Br 多光 子电离的结果 而 Br⁺ 很有可能源自超声分子束中 形成的(C_2H_4Br)。团簇的解离碎片^[23 24].我们知道 C,H,Br在能量约为单光子能量的位置有几个解离 态 ; O, ; O, 和 O, 尽管存在单光子快解离通道 ,还 是有相当一部分 C, H, Br 分子被双光子电离. 在单色 双光子 MATI 实验中,确保母体离子 C,H,Br*源于处 于基态的中性 C, H, Br 分子的双光子电离是至关重 要的.除了这一通道外,母体离子 C,H,Br*还有可能 来自中性的(C,H,Br),团簇的先电离后解离.所以, 为了获得明确的、信噪比良好的溴乙烷的质量分辨 阈值光谱 ,尽可能地排除(C, H, Br)。 团簇是十分重 要的.和其他作者一样^{11,25},我们用 Br⁺ 的强度来 判断(C,H,Br), 团簇的浓度,发现使用超声分子束 的前端时可以有效减少(C,H,Br),团簇的影响,通 过调节分子束脉冲和激光脉冲之间的延时,我们基 本消除了 Br_2^+ 峰.为了核查母体离子 $C_2H_5Br^+$ 的来 源 我们记录了溴乙烷的电离效率曲线 如图 2)发 现与 Person 等的结果^[26]完全一致,这说明母体离子 C,H,Br⁺ 完全源于处于基态的中性 C,H,Br 分子的双 光子电离,以此为依据,我们优化了实验条件,后面 的实验就在此条件下完成。

图 3 是溴乙烷的单色双光子 MATI 光谱与传统 的 VUV 光电子谱²⁰¹的比较. VUV 光电子谱含有两 个较强的离子基态自旋-轨道分量的 0-0 带,和一些 较弱的振动特征谱.这反映电离的是非键电子,离子 基态的几何构形相对中性分子基态的几何构形无多 大变化.

溴乙烷的单色双光子 MATI 光谱的振动结构则 丰富得多.能观察到丰富的振动结构是由于两个方 面的原因:一是因为 MATI 光谱的分辨率比 VUV 光 电子谱的分辨率高很多;另一方面是因为电离经历 了解离中间态.吸收第一个光子后,溴乙烷分子被激 发到解离中间态(Ã state),开始在解离态势能面上

图 2 溴乙烷的电离效率曲线

图 3 溴乙烷的单色双光子 MATI 光谱与传统的 VUV 光电子谱 的比较(光电子谱引自文献 20])

运动.第二个光子的吸收使几何构形已发生变化的 分子从解离中间态的势能面上被激发到离子的振动 能级.溴乙烷的单色双光子 MATI 光谱丰富的振动 结构就反映这种几何构形的变化.

值得注意的是,溴乙烷的单色双光子 MATI 光 谱中谱带的相对强度与 VUV 光电子谱中谱带的相 对强度不同.在 VUV 光电子谱中两个 0-0 带的离子 信号最强,而在单色双光子 MATI 光谱中它们则相 对较弱.一些在单色双光子 MATI 光谱中较强的谱 带又与 VUV 光电子谱中较弱的谱带相对应.影响 MATI 信号强度的因素有 ZEKE 态的布居条件和 Franck-Condon 原理等.考虑到如后所述 观测到的振 动模几乎都和溴乙烷分子在解离过程中的运动有 关,我们推测单色双光子 MATI 光谱与传统的 VUV 光谱的强度差别可能是由 Franck-Condon 原理引起 的.由于在吸收第一和第二个光子的时间间隔内溴 乙烷分子在解离态势能面上运动,原子发生位移,使 得溴乙烷分子的几何构形远离基态平衡位置的几何 构形.这样,Franck-Condon 原理使得与解离坐标有重 叠的振动模的激发信号更强^[27 28].

在能量较高的区域,溴乙烷的单色双光子 MATI 光谱的结构更丰富,与 VUV 光电子谱的差别更大. 为了搞清楚单色双光子 MATI 光谱在能量较低的区 域和能量较高的区域有区别的原因,我们考察溴乙 烷的解离态.溴乙烷的 A 带中心位于 200 nm 左 右^[20,21,29] 吸收一个波长在 242—231 nm 区域的光 子可能把分子激发到³Q₁和 ³Q₀态,不太可能把分子 激发到¹Q₁态.第一个光子的吸收产生随时间演化 的波包 $\phi(t)^{30,31]}$.在能量较低的区域, $\phi(t)$ 在 ³Q₀ 态的势能面上传播,在能量较高的区域, $\phi(t)$ 在 ³Q₀ 态的势能面上传播.第二个光子的吸收将 $\phi(t)$ 没射 到 $C_2H_sBr^+$ 的基态.我们假定³Q₀态的势能面比³Q₁ 态的势能面宽,则在 ³Q₀态势能面上传播的 $\phi(t)$ 与 $C_2H_sBr^+$ 基态的振动波函数的重叠较多,因此有更 多的振动模被激发.

图 4 是溴乙烷的单色双光子 MATI 光谱.图中 横坐标是两光子的能量,纵坐标是谱带强度.两个 0-0 带的宽度都是大约 5 cm⁻¹(FWHM),这是由长寿 命的 ZEKE 态和转动包络造成的.两个弱 0-0 带出现 在 83094.7 cm⁻¹和 85449.9 cm⁻¹处,分别对应从中性 基态到离子的 $X_1^2 E_{1/2}$ 和 $X_2^2 E_{1/2}$ 态的绝热电离势 (AIE).要确定无电场条件下的绝热电离势,必须考 虑被破坏场电离掉的高里德伯态和脉冲电离场电离 的长寿命的里德伯态.由公式 $\Delta E = 4.0\sqrt{F}$ cm^{-1[32]} 估计破坏场使电离势降低了约 2.4 cm⁻¹.根据 Boogaarts 等^[33]的结论,转动谱带宽度对绝热电离势 测量的影响可以忽略.我们得到修正后的从中性基 态到离子的 $X_1^2 E_{1/2}$ 和 $X_2^2 E_{1/2}$ 态的绝热电离势分别为 83097±3 cm⁻¹和 85452±3 cm⁻¹ 给出两个态的间隔 为 2355±6 cm⁻¹,这些值与文献 20 34 35]报道的 值符合得较好.

在标识振动谱之前,考察溴乙烷在解离过程中 结构的变化是有用的.我们把 Pacansky 等³⁶¹用 GAUSSIAN 86 计算的乙烷自由基(C_2H_5)的结构与实 验测得的溴乙烷(C_2H_5Br)分子结构^{[371}作比较,如表 1所示.我们发现在溴乙烷(C_2H_5Br)在解离过程中 除 C—Br 键长、C-C-Br 角度会变化外,亚甲基(CH_2) 中的 HCH 角、CCH 角和 C—H 键长,甲基(CH_3)中 CCH 角,还有 C—C 键长等也会变化.

中性的溴乙烷($C_2 H_5 Br$)分子,包括阳离子,是 *C_s* 对称的,有 11 个对称的(*a'*)振动模和 7 个反对称的(*a''*)振动模.由于溴乙烷($C_2 H_5 Br$)的阳离子和 中性分子同属 *C_s* 对称类,所以对称的(*a'*)振动模 会被优先激发.基于以上分析,溴乙烷的单色双光子 MATI光谱中会出现 v_{10}^+ —C-Br 伸展振动、 v_{11}^+ —C-C-Br 弯曲振动、 v_7^+ —CH₂ 对称摇摆振动、和 v_5^+ —CH₂ 剪刀振动,还可能出现较弱的 v_9^+ —C-C 伸展振动、

图 4 溴乙烷的单色双光子 MATI 光谱(标有 U 的峰属于自旋-轨道激发态 $X_2{}^2E_{1/2}$,其他的峰属于自旋-轨道基态 $X_1{}^2E_{1/2}$)

 v_8^+ —CH₃面内摇摆振动、 v_3^+ —CH₃对称伸展振动、

 v_2^+ —CH, 对称伸展振动.

表 1 CH₃CH₂Br 和 CH₃CH₂的结构比较

					亚甲基(CH2)				甲基(CH ₃	甲基(CH ₃)	
	CC	CCBr	CBr	HCBr	СН	HCH	CCH	СН	HCH	CCH	
$CH_3 CH_2 Br^{a}$	1.518	111.0	1.95	106.5	1.087	109.1	112.2	1.091	108.9	110.2	
$\rm CH_3CH_2^{~b}$)	1.492				1.082	117.6	120.5	1.099	108.2	111.7	

a)文献 37] b)文献 36].

表 2 由单色双光子 MATI 光谱得出的溴乙烷离子($C_2H_5Br^+$)的谱带位置、振动频率和标识.能量是两光子的能量,修正了破坏场造成的红移 (2.4 cm⁻¹).标有 U 的峰属于自旋-轨道激发态 $X_2^2E_{1/2}$,其他的峰属于自旋-轨道基态 $X_1^2E_{1/2}$.试探性的标识标有 T

双光子能量(已校准)/cm ⁻¹	频率/ cm^{-1}	标识	双光子能量(已校准)/cm ⁻¹	频率/ cm^{-1}	标识
83097(83026 ± 40) ^a)		X1 ² E1/2带源	85298	2201	7 ¹ 9 ¹ T
83252	155	18 ¹ T	85378	2281	11^25^1
83407	310	11 ¹	85452(85510 ± 40) ^a)		X ₂ ² E _{1/2} 带源
83599(83574 ± 40) ^a)	502	10 ¹	85494	2397	5 ¹ 17 ¹
83841	744	17 ¹	85614	161	U18 ¹
84217	1120	8 ¹	85822	2725	$7^2 11^1$ T
84708	1611	$10^{1}8^{1}$	85843	390	U11 ¹
84781	1684	5 ¹	85890	2792	8 ¹ 5 ¹
84835	1738	$10^2 17^1$	85977	525	U10 ¹
84923	1826	$11^2 7^1 \text{ T}$	86125	3028	12 ¹
85057	1959	$5^{1}11^{1}$	86245	793	U17 ¹
85116	2019	$18^{1}17^{1}8^{1}$ T	86286	3189	11 ¹ 3 ¹
85191	2094	9 ¹ 8 ¹ T			

a)文献 20].

中性溴乙烷 C_2H_5Br)分子的振动频率已由振动 红外谱(IR)和拉曼谱(Raman)测出^[20,38,39],是已知 的.利用中性分子的振动频率和已有的离子振动谱 带标识^[20]作参考,我们标识了图4中的谱带.有些 标识是试探性的.标有U的峰属于自旋-轨道激发态 $X_2^2E_{1/2}$,其他的峰属于自旋-轨道基态 $X_1^2E_{1/2}$.溴乙 烷离子($C_2H_5Br^+$)的谱带位置、振动频率和标识,以 及和其他实验结果的比较列在表2中.表3列出了 溴乙烷离子($C_2H_5Br^+$)基态两个自旋-轨道分量的振 动模的基频频率、标识和简要描述,并和溴乙烷分子 (C_2H_5Br)的振动模^[20,38,39]作了比较.

基于以上讨论的预期基本上都被观测到的光谱 证实,只是没有出现振动模 v_7^+ —CH₂对称摇摆振动,而观察到一个很强的未预料到的振动模 v_{17}^+ — CH₂左右摇摆振动.这可能是在溴乙烷分子(C₂H₅Br) 解离的过程中 CH₂的运动出现混乱所致. $v_{10}(a')$ 频 率从中性分子的 574.9 cm^{-1} 减小到离子 $X_1^2 E_{1/2}$ 态的 502 cm⁻¹和离子 X₂²E_{1/2}态的 525 cm⁻¹.这意味着离 子 C—Br 键的键能减小了,说明被电离的非键电子 有部分成键的特点,要解释所有振动模频率的变化 是非常困难的,如振动模 v_(a')—CH, 剪刀振动,从 中性分子的 1450.7 cm⁻¹ 增加到离子 X₁²E_{1/2} 态的 1684 cm^{-1} .这使得振动模 $v_{s}(a')$ 的标识看起来值得 怀疑,但是,考虑到亚甲基(CH,)中的HCH角在溴乙 烷(C,H,Br)解离过程中发生显著变化,振动模 $v_{s}(a')$ 的标识还是合理的.在离子 $X_{1}^{2}E_{1/2}$ 态带源之 上 155 cm⁻¹处有一弱的谱带被试探性地标识为离子 $X_1^2 E_{1/2}$ 态的振动模 v_{18}^+ —CH。扭转振动 这个振动模 在中性分子振动谱中没有被观察到.另外一个谱带 的出现支持这一标识,它是在离子 X,²E₁₀态带源之 上161 cm⁻¹ 处的一个峰,我们把它标识为离子 $X_2^2 E_{1/2}$ 态的振动模 v_{18}^+ .

表 3 「「「「「」」 「「」」 「「」」 「」」 「」 「」 和 离子 ($C_2H_5Br^+$) 的振动模的基频 频率、标识和简要描述

标识 简要描述	离子频	「鄆/cm ⁻¹
- 初次 間安通処 - 频率/cm ^{-1a)} 2	$X_1^2 E_{1/2}$	$X_2 \ ^2E_{1/2}$
v ₁ (a') CH ₃ 反对称伸展振动 2990.9		
v ₂ (a') CH ₂ 对称伸展振动 2936.7		2968 ^b)
v ₃ (a') CH ₃ 对称伸展振动 2880.0	2879	
v ₄ (a') CH ₃ 反对称变形振动 1456		
v ₅ (a') CH ₂ 剪刀振动 1450.7	1684	
v ₆ (a') CH ₃ 对称变形振动 1385.2		
v ₇ (a') CH ₂ 对称摇摆振动 1257.9	1206	
v ₈ (a') CH3 面内摇摆振动 1061	1120	
v ₉ (a') C-C 伸展振动 964.3	974	951 ^{b)}
v ₁₀ (a') C-Br 伸展振动 574.9	502	525
v ₁₁ (a') C-C-Br 弯曲振动 294	310	390
v12(a") CH2 反对称伸展振动 3023.7	3028	
v13(a") CH3 反对称伸展振动 2990.9		
v14(a") CH3 反对称变形振动 1446		
v ₁₅ (a") CH ₂ 扭曲振动 1240		
v ₁₆ (a") CH3 面外摇摆振动 1009		
v17(a") CH2 左右摇摆振动 769.7	744	793
v18(a") CH3 扭转振动 未观测到	155	161

a)文献 38,39],b)文献 20].

- [1] Müller-Dethlefs K, Sander M, Schlag E W 1984 Chem Phys. Lett.
 112 291
- [2] Müller-Dethlefs K, Schlag E W 1991 Annu. Rev. Phys. Chem. 42 109
- [3] Merkt F , Softley T P 1993 Int. Rev. Phys. Chem. 12 205
- [4] Müller-Dethlefs K, Dopfer O, Wright T G 1994 Chem. Rev. 94 1845
- [5] Rieser G , Müller-Dethlefs K 1992 J. Phys. Chem. 96 9
- [6] Liu H T , Li J M 2005 Chin . Phys . 14 1974
- [7] Ding S, Liu Y L, Sin G G 2005 Acta Phys. Sin. 54 4416 (in Chinese)[丁 硕、刘玉龙、萧季驹 2005 物理学报 54 4416]
- [8] Liu Y, Peng CD, Lan XF, Luo XS, Shen ZH, Lu J, Ni XW 2005 Acta Phys. Sin. 54 5455 (in Chinese)[刘 莹、彭长德、兰 秀风、骆晓森、沈中华、陆 建、倪晓武 2005 物理学报 54 5455]
- [9] Kan R F, Liu W Q, Zhang Y J, Liu J G, Dong F Z, Gao S H, Wang M, Chen J 2005 Acta Phys. Sin. 54 1927 (in Chinese)[阚 瑞峰、刘文清、张玉钧、刘建国、董凤忠、高山虎、王 敏、陈 军 2005 物理学报 54 1927]
- [10] Strobel A, Lochschmidt A, Fischer I, Niedner-Schatteburg G, Bondybey V E 1993 J. Chem. Phys. 99 733
- [11] Strobel A, Fischer I, Lochschmidt A, Müller-Dethlefs K, Bondybey V E 1994 J. Phys. Chem. 98 2024
- [12] Knoblauch N, Strobel A, Fischer I, Bondybey V E 1995 J. Chem. Phys. 103 5417
- [13] Urban B, Bondybey V E 2001 J. Chem. Phys. 116 4938
- [14] Dopfer O, Müller-Dethlefs K 1994 J. Chem. Phys. 101 8508

4. 结 论

我们得到了高精度的溴乙烷分子的单色双光子 MATI 光谱 精确给出了溴乙烷分子的绝热电离势. 从中性基态到离子基态两个自旋-轨道分量 $X_1^2 E_{1/2}$ 和 $X_2^2 E_{1/2}$ 的绝热电离势分别为 83097 ± 3 cm⁻¹ 和 85452 ± 3 cm⁻¹ 离子基态两个自旋-轨道分量的间隔 为 2355 ± 6 cm⁻¹.

溴乙烷分子的单色双光子 MATI 光谱展现出丰富的振动结构,这是因为溴乙烷分子在电离过程中 经历了解离中间态,使得与电离运动相应的一些振动模被激发.我们标识了溴乙烷分子的单色双光子 MATI 光谱,发现观测到的振动模几乎都和溴乙烷分子的解离运动有关,其中还包括一些非全对称模.

- [15] Haines S R, Geppert W D, Chapman D M, Watkins M J, Dessent C E H, Cockett M C R, Müller-Dethlefs K 1998 J. Chem. Phys. 109 9244
- [16] Zhang B, Aigner U, Selzle H L, Schlag E W 2003 Chem. Phys. Lett. 380 337
- [17] Zhang B , Li C , Su H , Lin J L , Tzeng W B 2004 Chem. Phys. Lett. 390 65
- [18] Mülliken R S 1935 J. Chem. Phys. 3 513
- [19] Jung K H , Yoo H S , Hwang J S 1983 J. Photochem. 23 289
- [20] Giuliani A, M-Tollet F, Delwiche J, Mason N J, Jones N C, Gingell J M, Walker I C, H-Franskin M -J 2000 J. Chem. Phys. 112 6285
- [21] Kozlov S N , Orkin V L , Huie R E , Kurylo M J 2003 J. Phys. Chem. A 107 1333
- [22] Herzberg G 1991 Electronic Spectra and Electronic Structure of Polyatomic Molecules Malabar, FL 'Krieger
- [23] Vaida V, Donaldson D J, Sapers S P, Naaman R J 1990 J. Chem. Soc. Faraday Trans. 86 2043
- [24] Donaldson D J, Vaida V, Naaman R 1987 J. Chem. Phys. 87 2522
- [25] Ogorzalck L R, Haerri H-P, Hall G E, Houston P L 1989 J. Chem. Phys. 90 4222
- [26] Person J C , Nicole P P 1971 J. Chem. Phys. 55 3390
- [27] Rosenstock H M, Buff R, Ferreira M A A, Lias S G, Parr A C, Stockbauer R L, Holmes J L 1982 J. Am. Chem. Soc. 104 2337
- [28] Boschi R A Salahub D R 1974 Can. J. Chem. 52 1217
- [29] N. Astoin, J. Garnier, Cordier M 1958 J. Phys., 19 507
- [30] Heller E J 1975 J. Chem. Phys. 62 1544

- [31] Heller E J 1981 Acc. Chem. Res. 14 368
- [32] Chupka W A 1993 J. Chem. Phys. 98 4520
- [33] Boogaarts M G H , Holleman I , Jongma R T , Parker D H , Meijer G , Even U 1996 J. Chem. Phys. 104 4357
- [34] Novak I , Klasinc L , Kovac B , Glynn J P M 1993 J. Mol. Struct. 297 383
- [35] Person J C , Nicole P P 1971 J. Chem. Phys. 55 3390
- [36] Pacansky J, Koch W, Miller M D 1991 J. Am. Chem. Soc. 113 317
- [37] Flanagan C, Pierce L 1963 J. Chem. Phys. 38 2963
- [38] Gaufes R, Bejaud-Bianchi M 1970 Spectrochim. Acta A 27 2249
- [39] Wilcox C F , Bauer S H 1996 Spectrochim . Acta A 52 207

Mass analyzed threshold ionization spectra of ethyl bromide *

Tang Bi-Feng^{1)2)†} Xiong Ping-Fan¹⁾ Zhang Xiu¹⁾ Zhang Bing²⁾

1) (Department of Physics , Xiaogan University , Xiaogan 432100 , China)

2) (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China)

(Received 26 November 2005; revised manuscript received 19 February 2006)

Abstract

Using one-color two-photon (1C2P) scheme , high-resolution mass analyzed threshold ionization MATI spectra of ethyl bromide have been recorded. Accurate values for the adiabatic ionization energy have been determined to be $83097 \pm 3 \text{ cm}^{-1}$ and $85452 \pm 3 \text{ cm}^{-1}$ for the $X_1^2 E_{1/2}$ and $X_2^2 E_{1/2}$ states of the cation , respectively , giving a splitting of $2355 \pm 6 \text{ cm}^{-1}$. The ionic vibrational frequencies were also obtained , and the values were in agreement with high accuracy with the literature data. The spectra showed extensive excited vibrational structure as a result of wave packet evolving on the potential energy surface of the dissociative state in the time interval between the absorption of the two photons. The vibrational calibration was done based on the known vibrational frequencies of the neutral ethyl bromide. The spectrum was found to exhibit mainly vibrational modes involving the dissociation of the molecule , including some non-totally symmetric modes.

Keywords : mass analyzed threshold ionization (MATI) spectrum, vibrational mode, one-color two-photon zero kinetic energy (ZEKE) photoelectron spectroscopy, ethyl bromide

PACC: 3000, 3220, 3365C

^{*} Project supported by the Science Foundation of Education Department of Hubei Province, China (Grant No. D200526001).

[†] E-mail :tangbf@wipm.ac.cn