新型激光晶体 Yb :KY(WO4) 的结构与光谱

王英伟¹^{*} 王自东¹ 程灏波²

1 (北京科技大学材料科学与工程学院,北京 100083)
2 (北京理工大学信息科学技术学院,北京 100081)
(2006年2月25日收到,2006年3月9日收到修改稿)

采用顶部籽晶提拉法,以 K₂W₂O₇为助溶剂,生长了 Yb:KY(WO₄),新型激光晶体.经热重-差热分析,确定晶体熔点为 1045 ° 相变温度为 1010 °C.X 射线粉末衍射测试,验证所生长的晶体为 β-Yb KY(WO₄).晶体结构分析确定 Yb KY(WO₄) 晶体由 WO₆ 八面体连接而成 WO₆ 八面体是由双氧桥(WOOW)及单氧桥(WOW)构成.晶体粉末样品室温下的红外及拉曼光谱测试,确定 WO₆ 原子基团、双氧桥及单氧桥的振动频率.晶体的吸收峰位于 940nm, 980nm,发射峰位于 989nm—1030nm.

关键词:晶体结构,光谱,晶体生长 PACC:6150C,6110

1.引 言

随着激光二极管作为惯性约束核聚变择优抽运 源的出现^[1]和掺 Yb³⁺激光材料在通信、军事上的应 用和开发,掺 Yb³⁺激光材料的研究成为新的热 点^[2-4].人们在对 Yb³⁺:Y₃Al₅O₁₂^[5]、掺 Yb³⁺ 磷灰石 结构晶体和掺 Yb³⁺激光自倍频晶体^[6-8]进行深入 研究的同时,又发现一些新的掺 Yb³⁺的激光晶体, 如 Yb³⁺:KGd(WO₄)^[9],Yb³⁺:KY(WO₄)^[10],Yb³⁺: Lu₃Al₅O₁₂^[11]及 Yb³⁺:Ca₄GdB₃O₁₀^[12]等.

KY(WO₄), 晶体是一种极具前景的激光基质晶体 属于单斜晶系.在其中掺入Yb³⁺离子后,它将取代Y³⁺离子而成为一种新型激光晶体Yb³⁺:KY(WO₄)(Yb:KYW).Yb:KYW晶体能级结构简单,无激发态吸收、上转换及浓度猝灭等不必要的过程, 量子缺陷低、吸收带宽、发射截面大、光-光转换效率高、荧光寿命长,这些特点使其成为高效、高能量激光器的首选^[13,14].本文以Yb:KYW晶体生长为实验基础, 对晶体结构及光谱特性进行研究.

2.实验

晶体生长设备为改装的 TDK-36AZ 型单晶炉 控

温装置为 AI 人工智能工业调节器.采用上底 ϕ 60mm, 下底 ϕ 50mm,高度为 45mm 的锥形铂坩埚.以 K₂W₂O₇ 为助溶剂 采用顶部籽晶提拉法生长 Yb :KYW 晶体. 其中, Yb³⁺的掺杂浓度为 5at.%,溶质与助溶剂之比 为 1:4(摩尔比),所使用的原料为 K₂CO₃(99.9%), Y₂O₄(99.99%),Yb₂O₄(99.9%) WO₄(99.99%).

在 900℃的马弗炉中固相反应合成 Yb :KYW 原料,烧结时间为 24h;K₂W₂O₇固相反应温度为 600℃ 烧结时间为 18h.冷却后将两种原料分别在 玛瑙研钵中研细,用电光分析天平准确称量,充分混 合均匀.

将原料置于铂坩埚中,在饱和温度以上 100℃ 恒温 24h,使其充分熔化,然后以 0.1℃/h 的降温速 率进行缓慢降温生长.生长结束后,用水清洗,分离 出晶体,定向、切割作为籽晶.

采用顶部籽晶提拉法生长晶体:当原料充分熔 化后,用尝试籽晶法测定熔体的饱和温度,在饱和温 度以上5—10℃开始引晶,经2h后降至饱和温度.晶 体生长初期若降温速率过快,则易产生大量包裹物, 所以在开始生长的48—72h内不降温,进行恒温生 长,以后再以0.05℃/h的速率降温生长.籽晶转动 速率为10—15r/min,生长周期约为20天,将晶体提 离液面,然后以15—20℃/h的速率降至室温,得到 20mm×15mm×10mm的Yb:KYW晶体,如图1.

图 1 Yb :KYW 晶体

利用 NET-ZSCHSTA449C 测试仪,对晶体粉末样 品进行 TG-DTA 测试.用日本理学 D/max-II B 型 X 射线衍射仪,辐射源为 Cu-Ka 线($\lambda = 0.15405$ nm), 测试 Yb :KYW 晶体的 XRD 图谱.使用 BIO-RAD 公 司 FTS135 傅里叶变换红外光谱仪测试晶体红外吸 收光谱,分辨率为 4cm⁻¹.晶体粉末样品的室温拉曼 光谱使用美国 Renishaw 公司的配有电荷耦合器件 (CCD)探测器的 DILORXY 组合式激光 Raman 谱仪, 由波长为 488nm、功率为 500mW 的 Ar 激光器所激 发,谱分辨率为 1cm⁻¹.采用 Perkin-Elmer UV-VIS-NIR 型分光仪测试晶体吸收光谱.

3. 实验结果与分析

3.1.TG-DTA 分析

Yb:KYW 晶体 TG-DTA 曲线如图 2. 在室温到 800℃间晶体的 TG-DTA 曲线无变化.由 DTA 曲线分 析表明,晶体在 1010℃,1045℃有两个明显的吸收 峰,1045℃ 较 宽峰是 Yb:KYW 晶体熔点峰,在 1010℃处的吸收峰是 Yb:KYW 从四方晶系向单斜晶

图 2 Yb :KYW 晶体 TG-DTA 曲线

系的相转变峰.TG曲线没有明显变化.由图可知,在 1100℃以下,除熔化及相变外无其他变化,故适于用 顶部籽晶提拉法在相变温度下生长低温相 Yb :KYW 晶体.

3.2. 晶体结构

Yb:KYW 晶体属于单斜晶系,空间群为 $C_{2h}^{6} = C2/c$ (*Z*=4),晶胞参数 *a*=1.064nm,*b*=1.035nm, *c*=0.754nm, β =130.5^{d:15]}.Yb:KYW 晶体的空间群 还有一种表述方式 *a*=8.05nm,*b*=1.035nm,*c*= 0.754nm, β =94^{d:16]},*Z*=4,空间群为 *I2/a*.这会导致 在一些文献中晶体的物理性质特别是光学性质和结 构产生混乱,两种结构对应关系如图 3^[10].由图可 知,第二种结构就是取第一种结构的[101]方向为 *a* 方向.

图 3 两种表示 KYW 晶体结构的关系

Yb :KYW 晶体结构投影见图 4.W 原子与六个 O 原子配位构成 WO₆ 畸变八面体 ,W 原子占据 C₁ 对称位置.W 原子间的分子内相互作用导致聚合体 结构形成 ,二聚体 W₂O₁₀包含两个 WO₆ 多面体 ,这两

聚体又通过单氧桥 w^{···}w (wow)彼此相连形成 (W_2O_8)_n 的双链结构 K 和 Y 原子以统计分布的方 式共占据 C_2 对称位置 Y^{3+} 与八个 O 原子相连 ,组 成一个四方反棱镜结构 ,如图 5(a) ,K 与十二个 O

图 4 KYW 晶体结构在 ac 和 bc 方向的投影

图 5 YO₈ 和 KO₁₂多面体配位图

原子连接 组成一个扭曲的二十面体,如图 5(b).八 配位的 YO₈ 多面体和十二配位的 KO₁₂ 多面体沿晶 体 *c* 轴方向共角顶点相连形成一个沿[101]方向延伸的链.

我们对 Yb: KYW 晶体粉末样品进行了 XRD 分析,如图 6 将其结果与 JCPDS 卡片(73-0057)对照表明,测得的 Yb: KYW 晶体的衍射谱与 KYW 衍射谱相比,其衍射峰的分布和相对强度基本一致.所以 Yb: KYW 晶体与 KYW 晶体一样,也属单斜晶系, *C2/c*空间群.

图 6 Yb: KYW 晶体 X 射线粉末衍射图

3.3. 振动光谱

Yb:KYW 晶体的红外及拉曼光谱如图 7(a), (b)所示.

从红外及拉曼光谱图中可以看出,样品在 931cm⁻¹ 925cm⁻¹ 891cm⁻¹ 840cm⁻¹ 处出现的吸收 峰,是WO₆ 原子基团伸缩振动的表现.在 395cm⁻¹, 369cm⁻¹ 346cm⁻¹ 312cm⁻¹处所出现的吸收峰,反映 了WO₆ 原子基团的弯曲振动.83cm⁻¹处是WO₆ 原子 基团的平动.对于Yb:KYW 晶体,两个WO₆ 多面体 通过双氧桥(WOOW)相连形成W₂O₁₀的二聚体,二 聚体又通过单氧桥(WOW)彼此相连形成(W₂O₈), 的双链结构.双氧桥(WOOW)及单氧桥(WOW)的这 个振动模式可以用桥的相互作用的特殊模型来表

Yb:KYW 晶体中双氧桥(WOOW)的振动有六个 模式,四个平面内的振动和两个平面外的振动,可以 用下面特定的图形表示(如图 8).

通过对振动光谱的研究,可以将它们归为以下 频率的振动: ν_A ,901cm⁻¹; ν_B ,759cm⁻¹; ν_c ,686cm⁻¹;

图 7 Yb :KYW 振动光谱 (a)红外光谱 (b)拉曼光谱

 $\nu_D \ A35 \text{cm}^{-1} \ ; \nu_E \ A96 \text{cm}^{-1} \ ; \nu_F \ 298 \text{cm}^{-1}$.

单氧桥(WOW)的振动可以用三个振动模式来 描述:两个平面内振动和一个平面外振动,可以用图 9表示.

它们可以归为以下振动频率: ν_a ,809cm⁻¹; ν_b , 525cm⁻¹; ν_c ,235cm⁻¹.

图 8 Yb: KYW 晶体中双氧桥振动模式 (a)平面内振动 (b)平 面外振动

根据以上对 Yb:KYW 晶体红外及拉曼光谱分析,可将红外及拉曼活性做如下归属,见表1.

图 9 Yb :KYW 晶体中单氧桥振动模式 (a)平面内振动 (b)平面外振动

表1 振动光谱归属

归属	RS/cm ⁻¹	IR/cm ⁻¹
T'(WO ₆)	83	
	109	
T'(Y ³⁺)	149	
	181	
	203	
ð(WOW)弯曲振动	235	
ð(WOOW)平面外弯曲振动	298	
δ_s (WO ₆)	312	
	346	
	369	
δ_{as} (WO ₆)	395	
ð(WOOW)平面内弯曲振动	435	441
৶ (WOOW)平面外摆动	496	480
ν _s (WOW)	525	
(WOOW)伸缩振动	686	638
く WOOW)伸缩振动	759	749
		777
ν_{as} (WO ₆) + ν_{as} (WOW)	809	840
ν_s (WO ₆) + ν (WOOW)	901	891
ν_s (WO ₆)	931	925

3.4. 吸收及发射光谱

测试 Yb: KYW 晶体在 900nm—1100nm 范围内 室温下的吸收光谱,见图 10(a),在 925nm—960nm 处有一较宽的吸收峰,峰值波长 940nm,而位于 980nm的吸收峰强度较强,通常会采用这个波长的 光源作为固体激光器的抽运源.

由于 Yb³⁺离子的掺杂浓度为 5at.%,可以利用 吸收峰值截面计算公式 $\sigma_{abs} = \alpha/N_0$ 计算出其在 980nm 处吸收峰值截面 $\sigma_{abs} = 1.33 \times 10^{-19} \text{ cm}^2$.

采用发射光波长为 980nm 的 InGaAs 激光器作 为抽运源,测试晶体的激发光谱.图 10(b)为 Yb: KYW 晶体发射光谱,其荧光发射峰有三个,分别位 于 989nm,1006nm 和 1030nm,对应于电子²F_{5/2}→²F_{7/2} 能级的跃迁.

图 10 Yb :KYW 晶体吸收与发射光谱 (a)吸收光谱 (b)发射 光谱

4.结 论

以 K₂W₂O₇ 为助溶剂,采用顶部籽晶提拉法生

- [1] Payne S A , Powell H T ,Krupke W F 1995 SPIE 2633 256
- [2] Zhang L, Lin FY, Hu H F 2001 Acta Phys. Sin. 50 1378 (in Chinese) [张 龙、林凤英、胡和方 2001 物理学报 50 1378]
- [3] Mao Y L, Zhao Z W, Deng P Z, Gan F X 2004 Acta Phys. Sin. 53 1524 (in Chinese)[毛艳丽、赵志伟、邓佩珍、干福熹 2004 物理 学报 53 1524]
- [4] Wang G N, Dai S X, Zhang J J, Hu L L, Jiang Z H 2005 Acta Phys. Sin. 54 1855 (in Chinese)[汪国年、戴世勋、张军杰、胡 丽丽、姜中宏 2005 物理学报 54 1855]
- [5] Fan T Y 1994 Opt. Lett. 19 554
- [6] Bayramian A J, Marshall C D, Schaffers K I 1999 IEEE J. Quantum Electron 35 665
- [7] Tian L L, Wang J Y, Wei J Q. 1998 Journal of Synthetic Crystals 27 225(in Chinese)[田丽莉、王继扬、魏景谦 1998 人工晶体学报 27 225]
- [8] Chai B H , Lasing 1998 OSA Topical Conference on Advanced Solid

长了 Yb KYW 新型激光晶体,设计了合理的工艺参 数 转速 10—15r/min ,降温速率 0.05℃/h ,生长周期 20天 晶体尺寸为 20mm × 15mm × 10mm. 通过热分 析确定晶体熔点为 1045℃,1021℃为晶体从四方晶 系向单斜晶系的相转变温度, XRD 图谱的测试分析 确定所生长的晶体为 β-Yb :KYW. 根据晶体结构 ,通 过红外及拉曼光谱分析,确定晶体中 WO。及双氧桥 (WOOW), 单氧桥(WOW)的存在. 晶体粉末样品在 931cm⁻¹ 925cm⁻¹ ,891cm⁻¹ ,840cm⁻¹ 处出现的吸收 峰 是 WO₆ 原子基团伸缩振动的表现.在 395 cm⁻¹, 369cm⁻¹ 346cm⁻¹ 312cm⁻¹ 处出现的吸收峰 反映了 WO6 原子基团的弯曲振动. Yb: KYW 晶体位于 901 cm⁻¹ ,759 cm⁻¹ ,686 cm⁻¹ ,435 cm⁻¹ 频率的振动为 双氧桥(WOOW)在平面内振动.496cm⁻¹,298cm⁻¹的 振动为平面外振动.809cm⁻¹,525cm⁻¹为单氧桥 (WOW)在平面内的振动,而 235cm⁻¹ 处为单氧桥 (WOW)在平面外的振动.Yb:KYW 晶体在 940nm, 980nm 有两个很强的吸收峰,能与 InGaAs 半导体激 光器有效耦合、其发射峰位于 989nm-1030nm 的范 围内.

State Lasers Postdeadline 11 2

- [9] Kuleshov N V , Lagatsky A A , Shcherbitsky A G 1997 Appl. Phys. B 64 409
- [10] Metrat G , Boudeulle M , Muhlstein N 1999 J. Crystal Growth 197 883
- [11] Sumida D S , Fan T Y ,Grutcheson R 1995 OSA Proceedings on Advanced Solid State Lasers 2384
- [12] Auge F, Mougel F, Balembois F 1999 Boston USA Paper TuC4-1
- [13] Brunner F , Südmeyer T ,Innerhofer E 2002 Optics Letters 27 1162
- [14] Demidovich A A, Kuzmin A N, Ryabtsev G I 2000 Journal of Alloys and Compounds 300 238
- [15] Wang G , Luo Z 1990 Crystal Growth 102 765
- [16] Klevtsov PV, Kozeeva L P Klevtsova R F 1968 Isv. Ak. Nauk. Neorg. Mat. 4 1147
- [17] Jezowska, Trzebiatowska, Hanuza J 1973 J. J. Mol. Struct 19 109

Structure and spectrum of the novel laser crystal Yb $KY(WO_4)_2$

Wang Ying-Wei¹[†] Wang Zi-Dong¹ Cheng Hao-Bo²

1) Materials Science and Engineering School, University of Science and Technology Beijing, Beijing 100083, China)

2) Beijing Institute of Technology, School of Information Science & Technology, Beijing 100081, China)

(Received 25 February 2006; revised manuscript received 9 March 2006)

Abstract

The selection of the flux and the design of the proper process are the key factors for the growth of Yb :KY(WO₄)₂ laser crystal. Yb :KY(WO₄)₂ crystal is grown by top seeded solvent growth (TSSG) method using K₂ W₂O₇ as a suitable flux. On the basis of TG-DTA , which has two obvious absorption peaks at 1045 °C and 1010 °C , the Yb :KY(WO₄)₂ crystal 's melting point is 1045 °C , phase transition point from tetragonal system to monoclinic system is at 1040 °C. Analyzing the X-ray diffraction spectrum of Yb :KY(WO₄)₂ crystal powder sample , we can conclude that the β-Yb :KY(WO₄)₂ crystal is of monoclinic system , and *C*2/c space group. The Yb :KY(WO₄)₂ crystals structure forms from the WO₆ octahedra joined by WOOW double oxygen bridges and WOW single bridges. The IR and Raman spectra showed , the atom group WO₆ has flex vibrations at 931 cm⁻¹ , 925 cm⁻¹ , 891 cm⁻¹ and 840 cm⁻¹ , and bend vibrations at 395 cm⁻¹ ,369 cm⁻¹ ,346 cm⁻¹ and 312 cm⁻¹ , the WOOW double oxygen bridge has vibrations at 901 cm⁻¹ , 759 cm⁻¹ , 686 cm⁻¹ , 435 cm⁻¹ ,496 cm⁻¹ and 298 cm⁻¹ , and the WOW single bridges has vibrations at 809 cm⁻¹ ,525 cm⁻¹ and 235 cm⁻¹ . At room temperature , the absorption peaks are at 940 nm and 980 nm the emission peaks are at 989 nm—1030 nm.

Keywords : crystal structure , spectra , crystal growth PACC : 6150C , 6110

[†] E-mail :wangywei@yahoo.com.cn