$\mathbf{E}\mathbf{u}_{2-x}\mathbf{P}\mathbf{b}_{x}\mathbf{R}\mathbf{u}_{2}\mathbf{O}_{7}$ 中的金属-绝缘体相变和自旋玻璃态行为 *

邱梅清 方明虎

(浙江大学物理系 杭州 310027) (2006年1月18日收到 2006年3月9日收到修改稿)

通过对 $\operatorname{Eu}_{2-x}\operatorname{Pb}_x\operatorname{Ru}_2\operatorname{O}_7$ (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0 和 1.8)系列样品的结构、电阻和磁化率的观测,结果发现 随着 Pb 替代浓度 x 值的增加 样品的电阻率逐渐减小,系统在 x=0.8 附近发生了金属-绝缘体(M-I)相变; Ru^{4+} 的局域磁矩及其自旋玻璃冻结温度 T_G 也随之降低。在该体系中, Pb^{2+} 对 Eu^{3+} 的部分替代使样品中载流子浓度增加, Pb 的 $\operatorname{6p}$ 能带与 Ru 4d 电子的 T_{2g} 能带混合,能带得以拓宽, Ru 4d 电子的巡游性增强,导致该体系物性的系列变化

关键词:自旋几何受挫, Eu, , Pb, Ru, O, 体系, 金属-绝缘体相变, 自旋玻璃态

PACC: 7550L, 7130

1. 引 言

自高温超导体和巨磁阻材料发现以来,有关强关联电子系统中磁涨落与输运性质之间的关联研究,一直是凝聚态物理学科的重要课题^{1,2]}之一. 焦绿石化合物³⁻⁵(其分子式为 $A_2B_2O_7$, A 为 Pb, Bi, Ca, Ba 或稀土元素, B 为过渡金属元素)中的 B 离子构成共顶点的四面体结构, 其顶点上的局域磁矩呈现强烈的几何受挫效应,无法形成长程序, 而形成短程有序磁结构, 如自旋玻璃^{6]}、自旋液体^[7]、自旋冰^[8]等结构. 该类化合物也呈现许多奇异的物性, 如具有手性的反常 Hall 效应^[9]等. 近几年,有关焦绿石化合物磁结构的研究,大大丰富了磁性物理学的内容.

另一方面 ,通过对 A 位的元素替代 ,引入载流子 改变 BO_6 ,八面体倾角和 B 位自旋态 ,抑制其几何受挫效应 ,B 位的局域磁矩便呈现强烈的自旋涨落效应 . 研究这种自旋涨落对该类化合物输运性质的影响 ,特别是金属-绝缘体(M-I)相变点附近的物性变化 ,对磁涨落效应的理解有重要意义 $^{[10]}$. 更重要的是 $_{A_2}B_2O_7$ 化合物中的这种三维自旋涨落与铜

氧化物超导体中的二维自旋涨落可能存在着某种关联. 如在 $Sm_{2-x}Bi_xRu_2O_7$ 体系中 $^{[11]}$,M-I 相变点附近的 Hall 角 满足 $\cot\theta_H=a+bT^2$ 关系,这与 $YBa_2Cu_3O_{7-x}^{[12]}$ 高温超导体中观测到的结果相类似,而这种 T^2 关系是高温超导体正常态的典型特征. 因此有关焦绿石化合物中的磁涨落效应研究 ,无疑对高温超导电性微观机理的解决有重要帮助.

近几年,有关焦绿石化合物的磁涨落效应研究,主要针对的是 A_2 Ru $_2$ O $_7$ 化合物. 原因是 Ru 4d 电子介于 巡游性和局域性之间,如 Bi_2 Ru $_2$ O $_7$ [10] 和 Pb_2 Ru $_2$ O $_6$.5 [13] 为顺磁性金属,而 RE_2 Ru $_2$ O $_7$ [14] (RE 为稀土元素)和 Y_2 Ru $_2$ O $_7$ [10] 为绝缘体,Ru $_4$ 计局域磁矩在低温下形成长程无序、短程有序的自旋玻璃态. 本文试图通过 Pb 对 Eu 的部分替代,观测 Eu $_2$ - $_4$ Pb $_4$ Ru $_2$ O $_7$ 体系的结构、磁性质和输运性质变化,揭示该体系中磁涨落与输运性质之间的关联. 实验结果发现:在 Eu $_2$ - $_4$ Pb $_4$ Ru $_2$ O $_7$ 体系中,随着 Pb 替代浓度 $_4$ 值的增加,体系在 $_4$ = 0.8 附近发生了金属-绝缘体($_4$ M-I)相变,Ru $_4$ 的局域磁矩减小,其自旋玻璃冻结温度下降。

2. 实验方法

采用常规的固态反应法制备 Eu_{2-x} Pb_x Ru_2 O_7 多晶样品. 首先将 Eu_2 O_3 (99.9%), RuO_2 (99.5%), PbO (99.99%) 按化学计量比混和、研磨和压片;在 950° 预烧 24h 后,再次研磨和压片,在 1200° 烧结 48h,最后随炉冷却至室温.

使用 X 射线粉末衍射(XRD)方法检测样品的单相性. 采用标准四引线法观测样品的电阻. 样品在不同温度下的磁化率采用超导量子干涉仪(SQUID) 测量.

3. 结果与讨论

图 1 给出了 $Eu_{2-x}Pb_xRu_2O_7(x=0.0,0.2,0.4,0.6,0.8,1.0$ 和 1.8)系列样品的 XRD 曲线. 其中所有的衍射峰均可用空间群为 $Fd\overline{3}m$ 的立方晶格拟合 在实验精度内没有观测到杂相峰. 由上述 XRD 结果拟合得到的样品晶格常数 a 值如图 2 所示. 可以看出 随着 Pb 替代浓度 x 值的增加 ,晶格常数 a 值单调增大. 由于 $Eu^{3+}(0.95\text{Å})离子半径小于 <math>Pb^{2+}(1.20\text{Å})$ 的离子半径 ,这进一步说明 Pb 对 Eu 的部分替代在晶粒内是均匀的.

图 1 Eu_{2-x} Pb_x Ru₂ O₇ 样品的 XRD 曲线

图 3 给出了 $Eu_{2-x}Pb_xRu_2O_x(x=0.0,0.2,0.4,0.6,0.8,1.0$ 和 1.8 样品的电阻率-温度 $\rho(T)$ 关系曲线. 首先可以看出 ,随着 Pb 替代浓度 x 值的增加 ,样品在同一温度下的电阻率 ρ 值急剧减小. 样品在 T=250K 时电阻率-Pb 替代浓度 $\rho(x)$ 关系曲线如图 g(b)中插图(1)所示 ,如 g(x)0 样品在 g(x)0 样品 g(x)0 有 g(x)0 样品 g(x)0 并且 g(x)0 样品 g(x)0 并且 g(x)

图 2 $Eu_{2-x}Pb_xRu_2O_7$ 体系的晶格常数 a 值与 Pb 替代浓度 x 值的关系曲线

时的电阻率为 $3.66\Omega \cdot \text{cm}$,而 x = 1.8 样品的电阻率则为 $4.5 \times 10^{-3} \Omega \cdot \text{cm}$,下降了三个数量级. 这与 $\text{Sm}_{2-x} \text{Bi}_x \text{Ru}_2 \text{O}_7^{[11]}$ 和 $Y_{2-x} \text{Bi}_x \text{Ru}_2 \text{O}_7^{[15]}$ 中所观测到的结果相类似. 其次 ,该体系在 x = 0.8 附近发生了金属-绝缘体(M-I)相变. 对于 x = 0.0 0.2 0.4 和 0.6 样品 ,其电阻率随着温度的降低单调增加 ,其 $\rho(T)$ 关系呈现典型的半导体行为. 对于 x = 1.0 和 1.8 样品 ,其电阻率均随着温度的降低单调下降 ,其 $\rho(T)$ 关系在整个观测温区内均呈现金属行为. 图 $\rho(T)$ 关系在整个观测温区内均呈现金属行为. 图 $\rho(T)$ 关系曲线 ,可以看出 :对于 $\rho(T)$ 关系曲线 ,可以看出 :对于 $\rho(T)$ 关系曲线 ,可以看出 :对于 $\rho(T)$ 关系曲线 ,可以看出 :对于 $\rho(T)$ 关系由线 ,可以看出 :对于 $\rho(T)$ 关系由线 ,可以看出 :对于 $\rho(T)$

为了揭示 $Eu_{2-x}Pb_xRu_2O_7(x=0.0,0.2$ 和 0.4) 样品半导体性质的微观机理 ,图 4 给出其 $\log_{\rho} T^{-1}$ 和 log/c-T^{-1/4}关系曲线. 从图 4(a)可以看出 ,Eu_{2-x} $Pb_x Ru_2 O_7(x = 0.0, 0.2 \times 0.4)$ 三样品的电阻率均不 满足热激活半导体机理. 而热激活半导体的 $\rho(T)$ 关系应满足 $\rho = \rho_0 \exp(\Delta/k_B T)$ 其中 Δ 为半导体能 隙, k_R为 Boltzmann 常数. 该结果与文献 10]中报道 结果不同, 而从图 4(b)可以看出,该三样品在低温 下的 (T)关系可近似地用三维变程跳跃型半导体 机理来描述^[16]. 其 $\rho = \rho_0 \exp[(E/k_B T)^*]$, $\alpha = 1/4$. 对于 x = 0.6 样品(图中没有给出)也有相类似的结 果. 而这种变程跳跃型电阻-温度关系是 Mott 绝缘 体的典型特征,这进一步证实 Eu2-x Pbx Ru3 O7 体系 在 x = 0.8 附近发生了 Mott 绝缘体-金属相变 ,该体 系属强关联电子体系 是一个值得关注的系统 Lee 等人[17]的能带计算结果也证实:Ru 系焦绿石化合

图 3 $Eu_{2-x}Pb_xRu_2O_7(a)x=0$,0.2 和 0.4 (b)x=0.6,0.8 , 1.0 和 1.8 样品电阻率-温度关系 (T)曲线(图(b))中插图(1)为 250K 下样品电阻率与 Pb 替代浓度 (x)关系曲线 插图(2)为 x=0.8 和 1.0 样品在 80K 以下的 (x)关系曲线

物 A_2 Ru₂ O₇ 的输运性质可以用电荷局域化的 Mott 绝缘体理论来解释. 在 RE_2 Ru₂ O₇ 中 ,Ru 4d 电子为局域电子 ,该体系呈现出绝缘体特性. 但是当 Pb 或 Bi 部分替代了 RE 后 ,未满的 Pb 或 Bi 的 6p 能带与Ru 4d 电子的 t_{2g} 能带混合 ,并使其能带拓宽 ,当能带宽度大于临界值时 ,体系便呈现金属特性.

图 5 给出了 $Eu_{2-x}Pb_xRu_2O_r(x=0.0,0.2,0.4,0.6,1.0$ 和 1.8 》样品在有场冷却(FC)和零场冷却(ZFC)两种条件、400kA/m 的磁场下所测得的磁化率-温度 $\chi(T)$ 关系曲线. ZFC 测量过程:在零场下将样品冷却至 5K ,再在升温过程中测量其不同温度下的磁化强度;FC 测量过程:在磁场中将样品冷却至 5K ,再在升温过程中测量其磁化强度. 从图中可以看出,对于 $Eu_2Ru_2O_r(x=0.0)$ 样品,当 T>120K,其 ZFC 和 FC 下所测量的 χ 值相同,并随着温度的下降单调增加。在 120K 附近,FC 条件下所测得的 χ_{FC} 值开始比 ZFC 条件下所测得的 χ_{FC} 值开始比 ZFC 条件下所测得的 χ_{FC} 值有一急剧增加,在 25K 以下, χ_{FC} 值几乎不随温度的降低而变化,对应的 χ_{ZFC} 在 25K 附近也呈现一峰值。该结果与在 $Sm_2Ru_2O_r^{[18]}$ 中所观测到

图 4 $\text{Eu}_{2-x}\text{Pb}_x\text{Ru}_2\text{Or}(x=0.0,0.2\,\text{和}\,0.4)$ 样品的(a) $\log\rho \cdot T^{-1}$, (b) $\log\rho \cdot T^{-1/4}$ 关系曲线

图 5 $Eu_{2-x}Pb_xRu_2O_f(a)x=0$, 0.2 和 0.4 (b) x=0.6, 1.0 和 1.8 样品在 FC 和 ZFC 两种条件下、400kA/m 磁场中测得的磁化率-温度关系曲线

的结果相类似. 由于 Eu₂Ru₂O₇ 结构相邻 RuO₆ 八面

体的特殊几何构形 "局域的 Ru^{4+} 磁矩之间形成几何 受挫 ,无法形成反铁磁的长程序,而在冻结温度 T_C = 120K 以下形成自旋玻璃态. 随着温度的进一步 降低 ,局域的 Eu^{3+} 磁矩在 25K 附近又形成了长程铁磁序. 因此,在 $Eu_2Ru_2O_7$ 化合物中,当 T < 25K 时, 局域 Ru^{4+} 磁矩形成的自旋玻璃态和局域的 Eu^{3+} 磁矩形成的长程铁磁序共存. 而对于 x=0.2, 0.4, 0.6和 1.0 样品,在高温下,它们的 χ_{FC} 和 χ_{ZFC} 值同样随着温度的下降而单调增加. 其 χ_{FC} (T)和 χ_{ZFC} (T)曲线分别在 $T_C = 102$, 96, 72 和 30K 开始不重

合. 在低温下 ,除 x = 0.2 样品的 $\chi_{\text{FC}}(T)$, $\chi_{\text{ZFC}}(T)$ 曲线在 25K 附近仍呈现一小的峰外 ,在其他样品中均未观测到 Eu^{3+} 磁矩的长程铁磁序. x = 0.8 样品的结果和 x = 0.6 样品相类似 ,图中没有给出. 由此可见 , Pb^{2+} 对 Eu^{3+} 的部分替代 ,使局域 Ru^{4+} 磁矩自旋玻璃冻结温度 T_{C} 下降 ,对 Eu^{3+} 局域磁矩的长程铁磁序具有破坏作用.

另外,由于 $Eu_{2-x}Pb_xRu_2O_7$ 样品中含有 Eu^{3+} ,其 磁化率中应包括 Eu^{3+} 离子中电子的热激发所产生的 Van-Vleck 磁化率 $\chi_{vv}^{[19]}$:

$$\chi_{VV} = N_{A} \frac{\sum_{J=0}^{6} \{ g_{J}^{2} \mu_{B}^{2} J(J+1)/3kT \} + \alpha_{J} \{ 2J+1 \} \exp(-W_{J}/kT)}{\sum_{J=0}^{6} (2J+1) \exp(-W_{J}/kT)}, \qquad (1)$$

其中 $g_J = 3/2$, $\alpha_J = -\mu_B^2/6\lambda$ ($1 \le J \le 6$)和 $\alpha_0 = 8\mu_B^2/6\lambda$ 为不同能级上单个 Eu^{3+} 离子的 Van-Vleck 贡献,而 $W_J = \lambda J$ (J+1)/2 为 J>0 的能级间的平均耦合能. 在室温以下, W_J 项只需考虑 $J \le 2$ 以下的能级激发 $E^{(20)}$. 因此 $Eu_{2-x}Pb_xRu_2O_T$ 在顺磁态下的磁化率可以用修正后的居里-外斯定律描述,其顺磁态下的磁化率为

$$\chi_{\text{total}} = \frac{C}{T - \theta} + \chi_0 + A \chi_{\text{VV}} , \qquad (2)$$

其中 θ 为 Curie-Weiss 温度 \mathcal{X}_0 为与温度无关的磁化率 居里常数 $C=N_{\mathrm{A}}\mu_{\mathrm{eff}}^2/3\,k_{\mathrm{B}}$, N_{A} 为 Avogadro 常数 , μ_{eff} 为有效 Bohr 磁矩 \mathcal{X}_{B} 为 Boltzmann 常数 .

为了得到 Eu_{2-x} Pb_x Ru_2 O_7 (x=0.0 , 0.2 , 0.4 , 0.6 , 1.0 和 1.8)样品的有效磁矩 μ_{eff} , 剩余磁化率 χ_0 和 Curie-Weiss 温度 θ 值 ,我们对其在 400kA/m 磁场中 FC 条件下测得的 $\chi(T)$ 曲线进行了拟合.

图 6 给出了 Eu_{2-x} Pb_x Ru_2O_7 (x=0.2 和 1.8)两样品在 FC 条件下、400kA/m 磁场下所测得的 χ (T) 关系曲线 ,以及由(2)式对高温磁化率数据的拟合结果. 可以看出 ,考虑 Eu^{3+} 离子的 Van-Vleck 磁化率后 修正的居里-外斯定律对 x=0.2 样品的高温磁化率数据 ,x=1.8 样品在整个测量温区(5—300K)的磁化率数据均能很好地描述. 而对于 x=0 , 0.4 , 0.6 和 1.0 另外四个样品(图 6 中没有给出),也有相类似的结果.

表 1 给出了由此拟合所得到的各样品有效磁矩 $\mu_{\rm eff}$ Curie-Weiss 温度 θ 值、以及由 χ (T)关系曲线所

图 6 $Eu_{2-x}Pb_xRu_2O_{7}(a)x = 0.2$ 和(b)x = 1.8 两样品的磁化率-温度 $\chi(T)$ 关系曲线 其中实线为(2)式的拟合结果

确定的自旋玻璃冻结温度 $T_{\rm G}$ 值. 从表中数据可以看出:首先 θ 值为负 表明局域的 $R_{\rm H}$ 磁矩之间为反铁磁相互作用. 另外随着 $P_{\rm b}$ 替代浓度 x 值的增加 , 有效磁矩 $\mu_{\rm eff}$ 值逐渐减小 ,其 Curie-Weiss 温度 θ 值也逐渐降低 对于 x=1.8 样品其 $\theta\approx 0$ 样品在所观测的整个温区内呈现顺磁性.

综上所述,通过对 Eu_{2-x} Pb_x Ru_2O_7 (x=0.0 , 0.2 , 0.4 , 0.6 , 0.8 , 1.0 和 1.8)系列样品的结构、电

表 1 $Eu_{2-x}Pb_xRu_2O_7$ 样品的自旋玻璃冻结温度 T_G , Curie-Weiss 温度 θ 和有效磁矩 μ_{eff} 值

Eu _{2-x} Pb _x Ru ₂ O ₇ 中 x值	自旋玻璃冻结 温度 <i>T</i> _G /K	Curie-Weiss 温度 θ/K	有效磁矩 μ _{eff} /μ _B
0	120	- 262.4	4.03
0.2	102	- 257.2	3.22
0.4	96	- 253.6	2.80
0.6	72	- 237.6	1.89
1.0	30	- 233.4	1.80
1.8	0	-3.18	0.14

阻和磁化率的观测 ,结果发现 :随着 Pb 替代浓度 x 值的增加 ,体系的自旋玻璃冻结温度 T_a 值、Curie-

Weiss 温度 θ 值、以及有效磁矩均下降,而其 ρ (T) 关系曲线由半导体行为转变为金属行为,体系在 x=0.8 附近发生了金属-绝缘体(M-I)相变. 如前所述, Pb^{2+} 对 Eu^{3+} 部分替代,其 6p 能带与 Ru^{4+} 的 4d 电子能带相混合, Ru^{4+} 的 4d 能带被拓宽,Ru 4d 电子能带相混合, Ru^{4+} 的 4d 能带被拓宽,Ru 4d 电子的巡游性得以增强. 该观点在 $Y_{2-x}Lu_xRu_2O_7^{[10]}$ 和 $Y_{2-x}Ca_xRu_2O_7^{[10]}$ 体系中也得到了证实. Lu^{3+} 对 Y^{3+} 的替代并不引入载流子,只是由于离子半径的不同,改变晶格畸变的大小,并不改变 Ru 的电子态性质,所以自旋玻璃态相变温度、Ru 的局域磁矩和化合物的输运性质均无明显变化。而 Ca^{2+} 对 Y^{3+} 的替代不仅影响晶格畸变,而且引入了载流子,影响了 Ru 的电子态性质,所观测到的结果与上述结果相类似。

- [1] Yasuoka H, Imai T, Shimizu T 1989 Strong Correlation and Superconductivity, Springer Series in Solid State Sciences Vol. 89 (Springer-Verlag, Berlin) p254
- $[\ 2\]$ $\:$ Ito T , Takenaka K , Uchida S 1993 Phys . Rev . Lett . 70 3995
- [3] Harris M J , Bramwell S T , McMorrow D F , Zeiske T , Godfrey K W 1997 *Phys* . *Rev* . *Lett* . **79** 2554
- [4] Ramirez A P , Subramanian M A 1997 Science 277 546
- [5] Gaulin B D , Reimers J N , Mason T E , Greedan J E , Tun Z 1992 Phys . Rev . Lett . 69 3244
- [6] Taira Nobuyuki , Wakeshima Makoto and Hinatsu Yukio 1999 J. Solid State Chem. 144 216
- [7] Kao Ying-Jer, Enjalran Matthew, Mastreo Adrian Del, Molavian Hamid R, Gingras Michel J P 2003 Phys. Rev. B 68 172407
- [8] Bramwell Steven T, Gingras Michel J P 2001 Science 294 1495
- [9] Taguchi Y , Oohara Y , Yoshizawa H , Nagaosa N , Tokura Y 2001 Science 291 2573
- [10] Yoshii S , Sato M 1999 J. Phys . Soc . Jpn . 68 3034
- [11] Yoshii S , Murata K , Sato M 2000 J. Phys. Soc. Jpn. 69 17

- [12] Rice J P , Giapintzakis J , Ginsberg D M , Mochel J M 1991 Phys .
 Rev . B 44 10158
- [13] Akazawa T , Inaguma Y , Katsumata K , Hiraki K , Takahashi T 2004 J. Crystal Growth 271 445
- [14] Bouchard R J , Gillson J L 1971 Mater . Res . Bull . 6 669
- [15] Yoshii S , Murata K , Sato M 2001 J. Phys. Chem. Solid 62 331
- [16] Tsuda N , Nasu K , Yanase A , Siratori K 1991 Electronic Conduction in Oxides , Springer Series in Solid State Sciences Vol. 94 (Springer-Verlag , Berlin) p155
- [17] Lee K S , Seo D K , Whangbo M H 1997 J. Solid State Chem. 131
- [18] Taira N , Wakeshima M , Hinatsu Y 1999 J. Phys. Cond. Matter 11 6983
- [19] Van Vleck J H 1965 The Theory of Electric and Magnetic Susceptibilities (Oxford University Press , London) p 245
- [20] Vybronov M , Perthold W , Micher H , Holubar T , Hilscher G , Rogl P , Fisher P 1995 Phys . Rev . B 52 1389

Metal-insulator transition and spin-glass behavior in $Eu_{2-x}Pb_x Ru_2O_7$ system *

Qiu Mei-Qing Fang Ming-Hu
(Department of Physics , Zhejiang University , Hangzhou 310027 , China)
(Received 18 January 2006 ; revised manuscript received 9 March 2006)

Abstract

The investigation on the structure, resistivity and susceptibility was carried out for $\operatorname{Eu}_{2-x}\operatorname{Pb}_x\operatorname{Ru}_2\operatorname{O}_7$ (x=0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and 1.8) samples. It is found that the resistivity of the samples, the local magnetic moment of Ru^{4+} and the freezing temperature T_G of spin glass decrease gradually with the increasing substitution concentration value x of Pb for Eu in $\operatorname{Eu}_{2-x}\operatorname{Pb}_x\operatorname{Ru}_2\operatorname{O}_7$ system. A metal-insulator (M-I) transition occurs near x=0.8. It is suggested that in this system the partial substitution of Pb²⁺ for Eu^{3+} results in the increasing of carrier concentration. And the mixing of 6p band of Pb and the t_{2g} band of Ru 4d electrons brings about an enhancement of itinerary for Ru 4d electrons.

Keywords: spin frustration, Eu_{2-x} Pb_x Ru₂O₇ system, M-I transition, spin glass

PACC: 7550L, 7130

 $[\]ast$ Project supported by the National Basic Research Program of China (Grant No. 2006CB01003).