Eu^{3+} 掺杂的 Sr_2CeO_4 发光材料的光致发光研究*

符史流† 尹 涛 丁球科 赵韦人

(汕头大学物理系,汕头 515063) (2005年9月26日收到2006年3月12日收到修改稿)

利用高温固相反应法制备了 Eu^{3+} 掺杂的 $Sr_2 CeO_4$ 样品,并对其吸附水前后的光谱特性进行了研究.结果发现, 对于刚制备的 $Sr_{2-x}Eu_x CeO_{4+x/2}$ 样品,在 $Ce^{4+}-O^{2-}$ 的电荷迁移激发中,只有强激发带(~35700 cm⁻¹)与 Eu^{3+} 离子间 存在能量传递,而弱激发带(~29400 cm⁻¹)只是引起 $Ce^{4+}-O^{2-}$ 的电荷迁移发射;在 $Sr_{2-x}Eu_x CeO_{4+x/2}$ 样品吸附水 后, Eu^{3+} 的线状吸收跃迁强度显著增加, $Ce^{4+}-O^{2-}$ 两个激发带均向 Eu^{3+} 离子传递能量. $Ce^{4+}-O^{2-}$ 强激发带通过 交换作用向 Eu^{3+} 离子传递能量,而弱激发带与 Eu^{3+} 离子间的能量传递机理是非辐射多极子近场力的相互作用.

关键词:Sr_{2-x}Eu_xCeO_{4+x/2},发光性质,能量传递,吸附水 PACC:7855

1.引 言

稀土离子是一种特殊的掺杂中心 ,研究其掺杂 于发光基质材料中的发光行为具有重要的现实意 义^[12]. Danielson 等人^[3]利用组合化学方法发现了 高效的 Sr₂CeO₄ 蓝色发光材料,引起了人们的关 注^[4-6].在该发光体中含有 CeO₆ 八面体通过共用边 形成的一维链状结构 ,其发光来源于 CeO₆ 八面体中 Ce⁴⁺—O²⁻ 键的电荷迁移(CT)跃迁.Sr₂CeO₄ 发光强 度很大,且其激发和发射谱均为宽带,在其中掺杂合 适的稀土离子以寻找新型发光材料引起了人们的重 视.Sankar 等人^[7]利用高温固相反应法合成了 Eu³⁺ 掺杂的 Sr₂CeO₄ 发光材料 发现 Sr₂CeO₄ 基质与 Eu³⁺ 离子之间存在能量传递, Eu³⁺掺杂浓度可以调节发 光体的发光颜色.后来揣晓红^[8]、Nag^[9]和石士考^[10] 等分别利用柠檬酸-凝胶法、湿化学法和燃烧法合成 了该发光材料,并对其发光性质进行了进一步的探 讨. Nag 等人通过研究 Sr_{2-x} Ln_xCeO_{4+x/2}(Ln = Eu, Sm ,Yb)的发光特性 ,建立了 Ln³⁺ 掺杂的 Sr₂CeO₄ 发 光体的发光模型. $Sr_2 CeO_4$ 的 CT 激发宽带为双峰结 构 强激发带位于 35700cm⁻¹左右, 弱激发带位于 29400cm⁻¹附近. Nag 等人的发光模型只是解释了 $Ce^{4+} - O^{2-}$ 强激发带向 Eu^{3+} 传递能量的发光过程, 而不能说明在其实验结果中明显存在的 $Ce^{4+}-O^{2-}$ 弱激发带与 Eu^{3+} 离子间的能量传递现象.作者在研 究 Eu^{3+} 掺杂的 Sr_2CeO_4 发光材料时,发现样品在吸 附水前后, $Ce^{4+}-O^{2-}$ 弱激发带的激发效果存在明 显的差别.本文报道 Eu^{3+} 掺杂的 Sr_2CeO_4 样品在吸 附水前后的光谱特性,并进一步探讨 $Ce^{4+}-O^{2-}$ 与 Eu^{3+} 之间的能量传递机理.

2. 实验方法

实验所用原料 SrCO₃ 为分析纯,CeO₂ 和 Eu₂O₃ 的纯度为 99.99%.按化学式 Sr_{2-x} Eu_xCeO_{4+x/2}中各 物质的量比称取各原料,在玛瑙研钵中充分研磨后 装入陶瓷坩埚,置于马弗炉在 1150℃的空气气氛中 灼烧 20h,然后重新粉碎研磨,在相同的气氛中再灼 烧 40h.激发和发射光谱采用 Perkin Elmer 公司的 LS55 型荧光光谱仪测定,用 Xe 灯作激发光源.

3. 实验结果与分析

3.1. 光谱特性

图 1 给出了刚制备的 $Sr_{2-x}Eu_x CeO_{4+x/2}$ 样品的发射光谱.对于未掺杂的 $Sr_2 CeO_4$ 样品(如图 1 虚线所

^{*}国家自然科学青年基金(批准号 50001010)资助的课题.

[†] E-mail : slfu@stu.edu.cn

示),发射光谱为 360~650nm 间的宽带,峰值位于 465nm 左右 发射光谱形状与激发波长的选择无关, 它属于 Sr₂CeO₄ 晶格中 Ce⁴⁺ — O²⁻ 键的 CT 跃迁发 射.在 Sr₂CeO₄ 中掺杂 Eu³⁺ 离子 样品的发射光谱由 Ce⁴⁺—O²⁻的 CT 跃迁宽带谱和一组附着在宽带谱 上的 Eu³⁺ 线状发射谱组成. Eu³⁺ 的发射主要来自 于⁵D₀ 激发态能级,包括⁵D₀—⁷F₁(585nm), ⁵D₀—⁷F₂ (616nm)、⁵D₀-⁷F₃(654nm)和⁵D₀-⁷F₄(704nm)跃迁, 其中⁵D₀—⁷F₂ 跃迁发射强度最大 ;此外还存在着较 高的 ${}^{5}D_{2}$ 和 ${}^{5}D_{1}$ 激发态能级的辐射跃迁,包 括⁵D₂—⁷F₀(467nm), ${}^{5}D_{2}$ —⁷F₂(486nm), ${}^{5}D_{2}$ —⁷F₃ (510nm)跃迁和⁵D₁—⁷F₁(536nm),⁵D₁—⁷F₂(555nm) 跃迁. $Sr_{2-x}Eu_xCeO_{4+x/2}$ 样品的发射光谱随 Eu^{3+} 掺杂 浓度产生很大变化,当 Eu³⁺掺杂浓度较低时(图1 (a)), Eu³⁺ 的发射强度很小,样品主要表现为 $Ce^{4+} - O^{2-}$ 的 CT 跃迁发射 随着 Eu^{3+} 掺杂浓度的增 加, Eu³⁺的⁵D₀—⁷F₂ 跃迁发射强度明显增加,而 $Ce^{4+} - O^{2-}$ 的 CT 跃迁发射强度随着减小,当 x = 0.15(图1(e))时, Ce4+ — 02- 的 CT 跃迁发射完全 消失.因此 ,通过改变 Eu³+ 掺杂浓度 ,可以使 Sr_{2-x} Eu_x CeO_{4+x/2}样品的发光从蓝白光调整到白光,进而 到红光.对于来自 Eu^{3+} 的 $^{5}D_{2}$ 和 $^{5}D_{1}$ 激发态能级的辐 射跃迁,随着 Eu³⁺掺杂浓度的增加,它们的发射强 度先增加而后逐渐减小直至消失.5D2和5D1激发 态能级辐射跃迁的存在说明 Eu³⁺ 与基质晶格的振 动耦合系数小 因而 Eu³⁺离子的多声子弛豫过程概 率较小.当 Eu³⁺ 掺杂浓度较高时, Eu³⁺ 离子之间的 相互作用增加 它们之间的交叉弛豫猝灭了高激发 态能级的发射.

图 2 是以 Eu³⁺的⁵D₀—⁷F₂(616nm)跃迁发射作 为监控波长而得到的 Sr_{2-x}Eu_xCeO_{4+x/2}样品的激发 光谱.对于未掺杂的 Sr₂CeO₄样品,在发射波段内以 任一波长作为监控波长所得到的激发光谱形状保持 一致(如图 2 虚线所示),其激发光谱呈宽带双峰结 构,强激发峰位于 280nm 左右,弱激发峰位于 340nm 附近,它属于 Ce⁴⁺—O²⁻键的电荷迁移激发 带.在 Eu³⁺掺杂的 Sr₂CeO₄样品中,激发光谱也出 现一个宽带,其强度随着 Eu³⁺掺杂浓度的增加而增 大,但光谱形状类似,且与 Sr₂CeO₄ 电荷迁移带中强 激发带的形状基本保持一致,此外,在激发光谱中还 存在着 Eu³⁺的吸收跃迁⁷F₀—⁵L₆(395nm)和⁷F₀—⁵D₂ (467nm),它们的激发强度即使在 Eu³⁺掺杂浓度较

图 1 Sr_{2-x}Eu_xCeO_{4+x/2}样品的发射光谱

图 2 $Sr_{2-x}Eu_xCeO_{4+x/2}$ 样品的激发光谱

高时都非常弱.

实验发现, $Sr_{2-x}Eu_xCeO_{4+x/2}$ 样品在完全暴露室 温空气环境数天后,发射光谱和激发光谱产生明显 的变化,其结果如图 3 和图 4(a)所示.由图 3 可见, 样品发射光谱的组成结构及其随 Eu^{3+} 掺杂浓度的 变化趋势与图 1 的实验结果类似,但对于同一 Eu^{3+} 掺杂浓度的样品,在暴露室温空气后, Eu^{3+}

图 3 Sr_{2-x}Eu_xCeO_{4+x/2}样品在暴露室温空气数天后的发射光谱

图 4 暴露室温空气后的 Sr_{2-x}Eu_xCeO_{4+x2}样品(a)和再焙烧处 理后的 Sr_{1.9}Eu_{0.1}CeO₄ 样品(b)的激发光谱

的⁵D₀—⁷F₂ 跃迁发射强度与 Ce⁴⁺—O²⁻ 的 CT 跃迁 发射强度之比明显增加. 由图 \mathcal{A} a)的激发光谱可看 出 样品的激发宽带为双峰结构 ,与 Sr₂CeO₄ 电荷迁 移激发带的形状保持一致 ;此外 ,样品中 Eu³⁺ 的线 状激发强度显著增强 ,且随着 Eu³⁺ 掺杂浓度的增加

而明显增大. Eu^{3+} 的激发除了 $F_0-L_5L_6$ 和 F_0-5D_2 跃迁外,还出现⁷F₀—⁵G₂₋₆(381nm)和⁷F₀—⁵D₃ (414nm)跃迁,其中⁷F₀—⁵D,跃迁强度最大.图4 (b)为Sr₁₉Eu₀₁CeO₄样品再经不同温度焙烧处理后 的激发光谱,样品经400℃焙烧处理后,强激发带位 置移动至 266nm 附近 ,Eu³⁺ 线状激发强度明显减弱; 再经 800℃焙烧处理后,样品的强激发带又恢复至 280nm 左右,弱激发带已无明显存在,而 Eu³⁺线状激 发强度进一步减小 其形状类似于图 2 的结果,上述 光谱特性的变化与样品暴露室温空气后吸附的配位 水有关.在 Sr, CeO4 中, 铈离子与 6 个氧离子形成八 面体配位,其中一个 CeO₆ 平面上的 4 个氧离子分别 被另外两个 CeO₆ 八面体共用 形成八面体共边的一 维链状结构,而剩余的两个反式终端氧与 Sr²⁺ 离子 配位. CeO₆ 八面体的终端 Ce⁴⁺—O²⁻ 键比其平面上 的 Ce⁴⁺ — O²⁻ 键短 0.01nm. 在 Sr₂CeO₄ 中掺杂 Eu³⁺ 离子, Eu³⁺ 取代 Sr²⁺ 的位置, 由于 Eu³⁺ 离子的价态 高于 Sr²⁺ 离子 因而必然存在负的电荷补偿以保持 电中性.对于刚从高温空气气氛中制备出来的样品, 补偿电荷可以由距 Eu³⁺ 离子某种距离的填隙氧离 子来实现.当 $Sr_{2-x} Eu_x CeO_{4+x/2}$ 样品暴露室温空气 后 样品吸附配位水 ;在焙烧脱水处理过程中 ,样品 将逐步失去配位水,在400℃附近样品经历水解产 生羟基 :再经 800℃左右焙烧后 ,样品将全部脱去羟 基,无论哪个过程都将引起样品化学环境的变化 改 变 Eu³⁺ 的配位环境,从而导致样品光谱特性的变 化. 至于水分子对 $Sr_{2-x}Eu_x CeO_{4+x/2}$ 的作用机理有待 于进一步研究.对于目前已报道的 Eu³⁺ 掺杂的 Sr,CeO₄ 发光材料的光谱结果 揣晓红^[8]等人所报道 的激发光谱(225-500nm) 与图 4(a) 结果类似, Sankar^[7]和 Nag^[9]等报道的激发宽带也具有明显的 双峰结构,石士考^{10]}等人所报道的激发宽带却没有 明显的双峰特征 类似于图 2 的实验结果.为方便下 面的光谱讨论,把吸附水的Sr2-xEuxCeO4+x0样品记 为 Sr_{2-x} Eu_x CeO_{4+x/2}[吸附 H₂O].

3.2.Ce4+ -O2- 与 Eu3+ 间的能量传递

掺杂于 $Sr_2 CeO_4$ 中的 Eu^{3+} 离子的跃迁能量来源 存在着两种可能性 :其一是 Eu^{3+} 直接吸收能量产生 跃迁,该情形在 Eu^{3+} 掺杂的发光材料中最为常见; 其二是 $Sr_2 CeO_4$ 基质晶格吸收能量,然后再向 Eu^{3+} 离子转移能量.对于 $Sr_{2-x} Eu_x CeO_{4+x/2}$ [吸附 H_2O]样 品 以 Eu^{3+} 的⁵ D_0 —⁷ F_2 跃迁发射作为监控波长,所 得到的激发宽带与 Sr_2CeO_4 电荷迁移激发带的形状 完全一致,这说明样品中存在 Sr_2CeO_4 基质与 Eu^{3+} 离子 间 的 能 量 转移,样 品 的 激发 宽 带 归 属 于 $Ce^{4+} -O^{2-}$ 的电荷迁移激发带.随着 Eu^{3+} 掺杂浓度 的增加, $Ce^{4+} -O^{2-}$ 与 Eu^{3+} 之间的能量传递程度加 强,从而使 Eu^{3+} 的发光强度增加,同时 $Ce^{4+} -O^{2-}$ 的 CT 发射减弱.当 Eu^{3+} 掺杂浓度较高时, $Ce^{4+} -O^{2-}$ 吸收的能量全部转移给 Eu^{3+} 离子, $Ce^{4+} -O^{2-}$ 的 CT 发射宽带消失.

 Ce^{4+} — O^{2-} 的 CT 激发宽带为双峰结构,强激发 带位于 280nm 左右, 弱激发带位于 340nm 附近, 在 Sr_{2-x}Eu_xCeO_{4+x/2}[吸附 H₂O]样品中, Ce⁴⁺—O²⁻强、 弱两个激发带与 Eu³⁺ 离子间都存在能量传递. 对于 Sr2-xEuxCeO4+x2样品 激发宽带与 Sr2CeO4 电荷迁移 带中强激发带的形状一致,这说明在 Ce4+ — O2- 电 荷迁移激发中,只有强激发带与 Eu³⁺离子间存在能 量传递,而弱激发带没有向 Eu³⁺离子传递能量,由 图 1(c)和图 5 的实验结果可看出它只是引起 Ce⁴⁺ —O²⁻ 的 CT 发射. 对于 Sr_{1.95} Eu_{0.05} CeO₄ 样品 在 强激发带 280nm 附近激发时,发射光谱形状类似 (如图 1(c)所示), Eu³⁺的⁵D₀—⁷F₂ 跃迁发射强度 *I*(⁵D₀-⁷F₂)略大于 Ce⁴⁺-O²⁻ 的 CT 发射强度 *I* (CT),两者的比值 /(⁵D₀—⁷F₂)//(CT)基本保持不 变;而在弱激发带 340nm 附近激发时(图 5(a), (b)(c)), I(⁵D₀—⁷F₂)却明显小于 I(CT),且 *I*(⁵D₀—⁷F₂)/*I*(CT))随激发波长的增大而减小.在 280nm 附近激发时, Sr2-, Eu, CeO4+, 1/2 样品中只存在 着 Ce⁴⁺ —O²⁻ 强激发带的激发^[6], 其部分激发能量 向 Eu³⁺离子转移导致 Eu³⁺的发射,剩余的部分使样 品产生 CT 发射 :而在 340nm 附近激发时,样品中同 时存在着 Ce^{4+} — O^{2-} 强、弱激发带的激发, 由于弱激 发带的激发只是引起 Ce⁴⁺ — O²⁻ 的 CT 发射 因而其 发射光谱中的 /(⁵D₀--⁷F₂)/ /(CT)与图 1(c)中的结 果相比明显减小.

Eu³⁺掺杂的 Sr₂CeO₄ 的电导或光导性能很差, 可排除样品借助于载流子扩散的能量传递机理.另 外,根据 Ce⁴⁺—O²⁻的发射宽带在 Eu³⁺掺杂浓度较 高时完全整体消失可知,样品中也不存在辐射再吸 收的能量传递过程.因此,Ce⁴⁺—O²⁻与 Eu³⁺之间的 能量传递是通过非辐射传递过程实现的.在非辐射 传递过程中,施主与受主中心之间通过多极子相互

图 5 Sr_{1.95} Eu_{0.05} CeO₄ 样品在 340nm 附近激发时的发射光谱

作用或交换作用实现能量传递.对于电偶极-电偶极 相互作用,两中心能量传递的临界距离(R_)为3nm 左右,对于电偶极-电四极相互作用,R。值约为 1.2nm ,而以交换作用进行的能量传递只有两中心 的距离较近时才发生, R。值约为 0.5—0.8nm. 在 Sr₂CeO₄ 中掺杂 Eu³⁺ 离子, Eu³⁺ 占据 Ce⁴⁺-O²⁻-Sr²⁺ 键中的 Sr²⁺ 格位, Ce⁴⁺ 与 Eu³⁺ 间的距离约为 0.35mf^{3]}.对于处在7配位氧化物环境中的 Eu³⁺ 离 子, Eu³⁺—O²⁻的CT激发带应出现在33700cm⁻¹附 近^[11]这个数值略低于 Ce⁴⁺—O²⁻ 强激发带位置 (35700cm⁻¹). Nag^[9]等人认为 Ce⁴⁺ —O²⁻ 与 Eu³⁺之 间的能量传递是通过交换作用实现的,即在紫外光 激发下, Ce⁴⁺—O²⁻—Eu³⁺中的O²⁻外层电子进入 Ce4+ 外层空轨道形成电荷迁移激发态(CTS),再通过 交换作用到达 Eu³⁺ —O²⁻ 的 CTS ,然后经过复杂的 弛豫快速到达 Eu³⁺的⁵D₀₋₂激发态能级 最后跃迁返 人建立的发光模型中,只是解释了 Ce4+ — O2- 强激 发带(35700cm⁻¹)向 Eu³⁺ 离子传递能量的发光过 程,而对于处在 29400cm⁻¹附近的弱激发带,它的 CTS 能级比 Eu³⁺ — O²⁻ 的 CTS 能级低 4300cm⁻¹ ,因 而不可能通过上述方式向 Eu³⁺ 离子传递能量. 根据 上述的实验结果 ,Ce⁴⁺ —O²⁻ 弱激发带的激发存在两 种不同的发光过程 ,在 Sr_{2-x} Eu_x CeO_{4+ x/2} 样品中 ,它 直接导致 $Ce^{4+} - O^{2-}$ 的 CT 发射;而在 Sr₂₋

 $Eu_x CeO_{4+x/2}$ [吸附 H₂O 詳品中,它向 Eu³⁺离子传递 能量导致 Eu³⁺的发射.根据 Dexter 能量传递理论, 发生非辐射共振能量传递要求施主发射光谱与受主 吸收光谱有较大的重叠,传递速率与光谱重叠程度 大小成正比.对于 Eu³⁺掺杂的 Sr₂CeO₄ 发光材料, Eu³⁺的⁷F₀—⁵G₂₆,⁷F₀—⁵D₃,⁷F₀—⁵L₆ 和⁷F₀—⁵D₂ 等 线状吸收跃迁均处于 Ce⁴⁺—O²⁻的 CT 发射范围内. 在 Sr_{2-x}Eu_xCeO_{4+x/2}样品中,Eu³⁺的线状吸收跃迁强 度很弱,光谱重叠非常小 而在 Sr_{2-x}Eu_xCeO_{4+x/2}[吸 附 H₂O 詳品中,Eu³⁺的线状吸收跃迁强度明显增 大,光谱重叠显著增加,从而使 Ce⁴⁺—O²⁻ 弱激发带 的激发只有在 Sr_{2-x}Eu_xCeO_{4+x/2}[吸附 H₂O]样品中才 产生明显的能量传递.

 $Sr_2 CeO_4$ 发光来源于 Ce⁴⁺—O²⁻ 键的电荷迁移 跃迁,但目前对其电荷迁移发光机理存在着不同的 观点^[9,12,13].作者^[6]研究了 $Sr_2 CeO_4$ 电荷迁移发光的 光谱结构规律,认为 $Sr_2 CeO_4$ 强激发带属于 CeO₆ 八 面体终端 Ce⁴⁺—O²⁻ 键的电荷迁移带,而弱激发带 可能属于 CeO₆ 八面体平面上 Ce⁴⁺—O²⁻ 键的电荷 迁移带.在 Eu³⁺掺杂的 $Sr_2 CeO_4$ 中, Eu³⁺ 离子占据 终端 Ce⁴⁺—O²⁻—Sr²⁺ 键中的 Sr²⁺ 格位, Ce⁴⁺—O²⁻ 强激发带通过交换作用向 Eu³⁺ 离子传递能量. Ce⁴⁺—O²⁻ 弱激发带只有当施主发射光谱与受主吸 收光谱存在较大的光谱重叠时才产生明显的能量传 递,由于该激发带难于通过交换作用向 Eu³⁺离子传 递能量,因而其能量传递机理应是非辐射多极子近 场力的相互作用.

4.结 论

 $Ce^{4+} - O^{2-} CT 激发宽带为双峰结构,强激发带$ 位于 35700cm⁻¹左右,弱激发带位于 29400cm⁻¹附近.在 Eu³⁺掺杂的 Sr₂CeO₄发光材料中,Ce⁴⁺--O²⁻与 Eu³⁺离子间存在着能量传递,但是,Sr_{2-x}Eu_xCeO_{4+x/2}样品在吸附水前后的光谱特性存在明显的差别.对于刚制备的 Sr_{2-x}Eu_xCeO_{4+x/2}样品,Eu³⁺的线状吸收跃迁强度非常弱,激发宽带呈单峰特征,在 Ce⁴⁺--O²⁻的 CT 激发中,只有强激发带向Eu³⁺离子传递能量,弱激发带只是引起 Ce⁴⁺--O²⁻的 CT 发射;在 Sr_{2-x}Eu_xCeO_{4+x/2}样品吸附水后,Eu³⁺的线状吸收跃迁强度显著增大,激发宽带为双峰结构,Ce⁴⁺--O²⁻强、弱两个激发带均向 Eu³⁺离子传递能量.Ce⁴⁺--O²⁻强激发带通过交换作用向 Eu³⁺离子传递能量,而弱激发带与 Eu³⁺离子间的能量传递机理是非辐射多极子近场力的相互作用.

- [1] Yang X J, Shi C S, Xu X L 2002 Acta Phys. Sin. 51 2871 (in Chinese)[杨秀健、施朝淑、许小亮 2002 物理学报 51 2871]
- [2] Xin X S, Zhou B B, Lü S C *et al* 2005 *Acta Phys*. *Sin*. **54** 1859 (in Chinese)[辛显双、周百斌、吕树臣等 2005 物理学报 **54** 1859]
- [3] Danielson E , Devenney M , Giaquinta D M et al 1998 Science 279 837
- [4] Jiang Y D , Zhang F , Summers C J et al 1999 Appl. Phys. Lett. 74 1677
- [5] Lee Y E, Norton D P, Budai J D et al 2000 Appl. Phys. Lett. 77 678
- [6] Fu S L, Dai J, Ding Q K et al 2005 Acta Phys. Sin. 54 2369 (in Chinese)[符史流、戴 军、丁球科等 2005 物理学报 54 2369]

- [7] Sankar R , Subba Rao G V 2000 J. Electrochem. Soc. 147 2773
- [8] Chuai X H, Zhang H J, Li F S et al 2003 Chin. J. Inorg. Chem.
 19 462 (in Chinese)[揣晓红、张洪杰、李福 等 2003 无机化 学学报 19 462]
- [9] Nag A , Narayanan Kutty T R 2003 J. Mater. Chem. 13 370
- [10] Shi S K, Wang J Y, Li J M et al 2004 Journal of the Chinese Rare Earth Society 22 859 (in Chinese)[石士考、王继业、栗俊敏等 2004 中国稀土学报 22 859]
- [11] Blasse G 1972 J. Solid State Chem. 4 52
- [12] Park C H , Kim C H , Pyun C H et al 2000 J. Luminescence 87-89 1062
- [13] Pieterson L V, Soverna S, Meijerink A 2000 J. Electrochem. Soc. 147 4688

Investigation of the photoluminescence of Eu^{3+} doped Sr₂CeO₄ phosphor^{*}

Fu Shi-Liu Yin Tao Ding Qiu-Ke Zhao Wei-Ren

(Department of Physics , Shantou University , Shantou 515063 , China) (Received 26 September 2005 ; revised manuscript received 12 March 2006)

Abstract

 Eu^{3+} doped $Sr_2 CeO_4$ samples were prepared by a solid-state method and the luminescent properties of the samples with and without adsorbed moisture were investigated. When the $Sr_{2-x} Eu_x CeO_{4+x/2}$ samples were prepared, it was found that only the excitation energy in the strong charge-transfer-state (CTS) band of $Ce^{4+} - O^{2-}$ peaking at about 35700cm⁻¹ was transferred to Eu^{3+} ion while that in the weak CTS band of $Ce^{4+} - O^{2-}$ located at about 29400cm⁻¹ led to $Ce^{4+} - O^{2-}$ charge-transfer (CT) emission. After adsorption of moisture in the $Sr_{2-x} Eu_x CeO_{4+x/2}$ samples, the intensity of Eu^{3+} intra-4f⁶ absorption transition increased remarkably, the energy transfer took place from the two $Ce^{4+} - O^{2-}$ CTS bands to Eu^{3+} ion. The excitation energy in the strong $Ce^{4+} - O^{2-}$ CTS band was transferred to the $Eu^{3+} - O^{2-}$ CTS band through radiationless process involving exchange interaction, however, the weak $Ce^{4+} - O^{2-}$ CTS band caused the excitation to the Eu^{3+} excited levels through resonance radiationless process by a multipole interaction mechanism.

Keywords : $Sr_{2-x} Eu_x CeO_{4+x/2}$, luminescent property, energy transfer, adsorbed moisture PACC : 7855

^{*} Project supported by the National Natural Science Foundation for Outstanding Young Researchers of China (Grant No. 50001010).