变加速直线运动黑洞的温度和 Dirac 场的熵*

杨波

(重庆三峡学院物理与电子工程学院,万州 404000) (2007年3月23日收到2007年4月5日收到修改稿)

采用 Tortoise 坐标变换 约化视界面附近 Dirac 场方程 ,得到 Kinnersley 黑洞的 Hawking 温度.用薄膜 brick-wall 模型,计算 Kinnersley 黑洞的熵,得到通过选择适当的截断因子和薄层,在视界面附近薄层上的熵就是黑洞的熵,结果表明黑洞熵与视界面积成正比.

关键词:Kinnersley 黑洞, Hawking 温度, 薄膜 brick-wall 模型, 熵 PACC: 9760L, 0420

1.引 言

自从 Bekenstein 和 Hawking 提出黑洞熵与其视 界面积成比以来^{12]},人们在黑洞热力学方面做了大 量的工作,特别是在黑洞熵的方面,取得了许多有价 值的成果. 't Hooff³¹提出的 brick-wall 模型对黑洞熵 的起源给出了一个统计解释.此后,为了黑洞熵统计 起源的问题更加明晰,人们用相关的方法计算了各 种黑洞的熵⁴⁻⁶¹. 赵峥等人改进了 brick-wall 模 型^[78],认为只要在黑洞视界附近处薄膜范围内各个 局部都存在热平衡,黑洞熵就是来自于视界附近一个 薄膜中量子场的贡献.近来人们利用薄膜 brick-wall 模型,计算了一些动态或非球对称黑洞的熵⁹⁻¹³¹.

文献 10 3给出了变加速直线运动的 Kinnersley 黑洞标量场的熵.本文计算变加速直线运动的 Kinnersley 黑洞 Dirac 场的熵.首先利用零标架和旋 系数方法,采用 Tortoise 坐标变换^[12],约化视界面附 近 Dirac 场方程,得到 Kinnersley 黑洞的 Hawking 温 度.在小质量近似的情况下,采用薄膜 brick-wall 模 型,分别计算出视界面附近 Dirac 粒子对应的波函数 4 个分量的熵.在选择适当的截断因子,得到了系统 的总熵与该黑洞视界面积成正比的结论.

2. 变加速直线运动的 Kinnersley 黑洞 的线元与零标架

作变加速直线运动的 Kinnersley 黑洞^[14]的线元

* 重庆市教委项目(批准号:KJ071111)资助的课题.

可写为

$$ds^{2} = 2dv (Gdv - dr - r^{2}fd\theta) - r^{2} (d\theta^{2} + \sin^{2}\theta d\phi^{2}), \qquad (1)$$

其中 $2G = 1 - 2M/r - 2 \operatorname{arcos} \theta - r^2 f^2$, $f = -a \sin \theta$,黑 洞质量 M = M(v)是时间 v 的函数,参数 a = a(v)为加速度大小.

根据零标架的定义^[15]选取的零标架分量为 $l^{\mu} = \begin{bmatrix} 1 & G & 0 & 0 \end{bmatrix}, \quad n^{\mu} = \begin{bmatrix} 0 & -1 & 0 & 0 \end{bmatrix},$ $m^{\mu} = \frac{1}{\sqrt{2}r} \begin{bmatrix} 0 & r^2 f & -1 & -\frac{i}{\sin\theta} \end{bmatrix},$ $\overline{m}^{\mu} = \frac{1}{\sqrt{2}r} \begin{bmatrix} 0 & r^2 f & -1 & \frac{i}{\sin\theta} \end{bmatrix}.$ (2)

计算出所需要的旋系数为

$$\varepsilon - \rho = \frac{G}{r} + \frac{G_{r}}{2}, \quad \pi - \alpha = \frac{1}{\sqrt{2}}f - \frac{\cot\theta}{2\sqrt{2}r},$$
$$\mu - \gamma = -\frac{1}{r}, \quad \beta - \tau = \sqrt{2}f - \frac{\cot\theta}{2\sqrt{2}r}.$$
 (3)

其中 $G_r = \partial G / \partial r.4$ 个微分算子表示为

$$D = l^{\mu}\partial_{\mu} = \frac{\partial}{\partial v} + G \frac{\partial}{\partial r} \Delta = n^{\mu}\partial_{\mu} = -\frac{\partial}{\partial r},$$

$$\delta = m^{\mu}\partial_{\mu} = \frac{1}{\sqrt{2}r} \left(r^{2}f \frac{\partial}{\partial r} - \frac{\partial}{\partial \theta} - \frac{\mathrm{i}}{\mathrm{sin}\theta} \frac{\partial}{\partial \varphi} \right),$$

$$\overline{\delta} = \overline{m}^{\mu}\partial_{\mu} = \frac{1}{\sqrt{2}r} \left(r^{2}f \frac{\partial}{\partial r} - \frac{\partial}{\partial \theta} + \frac{\mathrm{i}}{\mathrm{sin}\theta} \frac{\partial}{\partial \varphi} \right). \quad (4)$$

3. Dirac 场方程

弯曲时空 Dirac 场方程^[15]为

 $(2D_{0} + 2GD_{1} + G_{r})F_{1} + \sqrt{2}(rfD_{1} - L_{-})F_{2}$ = $i\sqrt{2}\mu_{0}G_{1}$, (5a) $\sqrt{2}D_{1}F_{2} - (rfD_{2} - L_{+})F_{1} = -i\mu_{0}G_{2}$, (5b) $(2D_{0} + 2GD_{1} + G_{r})G_{2} - \sqrt{2}(rfD_{1} - L_{+})G_{1}$ = $i\sqrt{2}\mu_{0}F_{2}$, (5c)

 $\sqrt{2}D_1G_1 + (rfD_2 - L_-)G_2 = -i\mu_0F_1.$ (5d) 其中 F_1 , F_1 , G_1 和 G_2 为波函数的 4 个分量, 它们都 是时空坐标(v, r, θ , φ)的函数; μ_0 是 Dirac 粒子的 静止质量.而

$$D_{0} = \frac{\partial}{\partial v} , D_{1} = \frac{\partial}{\partial r} + \frac{1}{r} , D_{2} = \frac{\partial}{\partial r} + \frac{2}{r} ,$$
$$L_{\pm} = \frac{1}{r} \frac{\partial}{\partial \theta} \pm \frac{i}{r \sin \theta} \frac{\partial}{\partial \varphi} + \frac{1}{2r} \cot \theta .$$
(6)

把(5a)和(5b)式中的 G₁,G₂代入(5d)式中,并用到 (6)式 经整理得到 F₁的二阶偏导方程

$$(2G + r^{2}f^{2})\frac{\partial^{2}F_{1}}{\partial r^{2}} + 2\frac{\partial^{2}F_{1}}{\partial r\partial v} - 2f\frac{\partial^{2}F_{1}}{\partial r\partial\theta}$$

$$+ \frac{1}{r^{2}}\frac{\partial^{2}F_{1}}{\partial\theta^{2}} + \frac{1}{r^{2}\sin^{2}\theta}\frac{\partial^{2}F_{1}}{\partial\varphi^{2}} + \frac{2}{r}\frac{\partial F_{1}}{\partial v}$$

$$+ \left(\frac{4G}{r} + 3G_{,r} + 5rf^{2} + 2a\cos\theta\right)\frac{\partial F_{1}}{\partial r}$$

$$- \left(\frac{3f}{r} - \frac{1}{r^{2}}\cot\theta\right)\frac{\partial F_{1}}{\partial\theta}$$

$$+ \left(\frac{\mathrm{i}f}{r\sin\theta} - \frac{\mathrm{i}\cos\theta}{r^{2}\sin^{2}\theta}\right)\frac{\partial F_{1}}{\partial\varphi}$$

$$+ N_{1}F_{1} + \sqrt{2}\left(\frac{1}{r^{2}}\frac{\partial F_{2}}{\partial\theta} - \frac{\mathrm{i}}{r^{2}\sin\theta}\frac{\partial F_{2}}{\partial\varphi} + N_{2}F_{2}\right)$$

$$= \mu_{0}^{2}F_{1}.$$
(7)

其中 N_1 , N_2 分别是 F_1 , F_2 的系数, 它们与我们讨论的结果无关, 所以不需表示.

4. 黑洞的辐射温度

给出 Tortoise 坐标变换为

$$r_{*} = \frac{1}{2\kappa (v_{0}, \theta_{0})} \ln [r - r_{H}(v, \theta)],$$

$$v_{*} = v - v_{0}, \theta_{*} = \theta - \theta_{0}.$$
(8)

其中 : $r_{\rm H}$ 为黑洞的事件视界 ; κ 为调节参数并且在 Tortoise 坐标变换下不变 ; v_0 , θ_0 是与 Tortoise 坐标变 换无关的任意常数.首先把(8)式代入到方程(5b) 式,并求当 $r \rightarrow r_{\rm H}$ [表示 $v \rightarrow v_0$, $\theta \rightarrow \theta_0$]时的极限,得 到在事件视界附近的 F_1 与 F_2 之间关系式

$$\sqrt{2} \frac{\partial F_2}{\partial r_*} - \left(rf + \frac{r_{\rm H\theta}}{r} \right) \frac{\partial F_1}{\partial r_*} = 0 , \qquad (9)$$

再把(8)式代入到方程(7)式,当 $r \rightarrow r_{\rm H}$ [表示 $v \rightarrow v_0$, $\theta \rightarrow \theta_0$]时,期望在 Tortoise 坐标下的方程能够化成标 准的波动方程,就要求其第1项 $\partial^2 F_1/\partial r_*^2$ 的系数

$$A = \frac{\left(2G + r^2 f^2 - 2r_{\rm Hv} + 2fr_{\rm H\theta} + \frac{r_{\rm H\theta}^2}{r^2}\right)}{2\kappa(r - r_{\rm H})}.$$
 (10)

的极限是常量,即 A 的分子的极限值必须趋近于 零,从而得到确定黑洞事件视界面位置的方程

$$1 - 2M/r_{\rm H} - 2ar_{\rm H}\cos\theta - 2r_{\rm Hv} + 2fr_{\rm H\theta} + r_{\rm H\theta}^2/r_{\rm H}^2 = 0.$$
 (11)

它与由零曲面方程导出的结论形式上一致.这时 *A* 的极限为 0/0 型,可用罗必塔法则求极限并调节参 数 κ,使 *A* 的极限趋近于 1,就得到

$$\kappa = M/r^2 - r_{H\theta}^2/r^3 - a\cos\theta |_{r=r_H}$$
. (12)

在视界面附近方程(7)式可化成

$$\frac{\partial^{2} F_{1}}{\partial r_{*}^{2}} + 2 \frac{\partial^{2} F_{1}}{\partial r_{*} \partial v_{*}} - 2 \left(f + \frac{r_{\mathrm{H}\theta}}{r^{2}} \right) \frac{\partial^{2} F_{1}}{\partial r_{*} \partial \theta_{*}} + \left[\frac{4G}{r} + G_{r} + 3rf^{2} + 2a\cos\theta + \frac{2r_{\mathrm{H}\theta}^{2}}{r^{3}} - \frac{2r_{\mathrm{H}\theta}}{r} - \frac{r_{\mathrm{H}\theta}}{r^{2}} + \left(\frac{3f}{r} - \frac{1}{r^{2}}\cot\theta \right) r_{\mathrm{H}\theta} \right] \frac{\partial F_{1}}{\partial r_{*}} = \sqrt{2} \frac{r_{\mathrm{H}\theta}}{r^{2}} \frac{\partial F_{2}}{\partial r_{*}} = \left(\frac{f}{r} + \frac{r_{\mathrm{H}\theta}}{r^{3}} \right) r_{\mathrm{H}\theta} \frac{\partial F_{1}}{\partial r_{*}}.$$
(13)

其中 $r_{H_{\theta}} = \partial r_{H} / \partial v$, $r_{H\theta} = \partial r_{H} / \partial \theta$, $r_{H\theta} = \partial^{2} r_{H} / \partial \theta^{2}$. 我 们看到(13)式中第1项等式还有相互耦合,把(9)式 代入到(13)式,就在第2项等式进行了退耦,方程就 化成了标准的波动方程

$$\frac{\partial^2 F_1}{\partial r_*^2} + 2 \frac{\partial^2 F_1}{\partial r_* \partial v_*} + 2B \frac{\partial^2 F_1}{\partial r_* \partial \theta_*} + C \frac{\partial F_1}{\partial r_*} = 0.$$
(14)

令方程(14) 式的解为

)

$$F_1 = R(r_*) e^{-i\omega r_* + ik_{\theta}\theta_* + ik_{\varphi}\varphi_*}$$
, (15)

根据 Damour-Ruffinf¹⁶ Sannan^[17]方法,不难得到出射 波的黑体谱为

$$N_{\omega}^{2} = \left[e^{(\omega - Bk_{\theta}) y_{k_{B}} T} + 1 \right]^{-1}.$$
 (16)

其黑洞辐射温度为

$$T = \kappa/2\pi k_{\rm B} \, \mathfrak{g} \, \beta = 2\pi/\kappa \, , \qquad (17)$$

从(12)和(17)式中看出黑洞的辐射温度依赖于时间 v和极角 θ .

用计算波函数第1个分量的方法可计算出波函 数其它3个分量所对应的视界位置方程、辐射温度 和辐射谱/结论表明波函数4个分量所对应的视界 位置方程、辐射温度和辐射谱是完全相同的.

5. 黑洞的熵

黑洞的熵是 Dirac 场中波函数 4 个分量共同贡 献的,可分别求出每个分量所对应的熵,然后对它们 进行求和,得到系统总的熵.采用薄膜 brick-wall 模 型方法来计算黑洞的熵,薄膜就是视界附近 $r_{\rm H} + \epsilon$ → $r_{\rm H} + \epsilon + \delta$ (其中截断因子 ϵ 和薄膜厚度 δ 都远远 小于 $r_{\rm H}$)的区域.变加速直线运动黑洞属于非球对 称动态黑洞,其辐射温度是随位置和角度发生变化 的,因此还要把薄膜分成许多小的子系统,在每个小 子系统内的量子场可看作是热平衡的,且统计规律 是有效的.对度规(1)式引入坐标变换^[18] $R = r - r_{\rm H}(v, \theta)$, $dR = dr - r_{\rm Hv} dv - r_{\rm H\theta} d\theta$,可得 $ds^2 = g_{00} dv^2 + 2g_{01} dv dR + 2g_{02} dv d\theta$ $+ g_{20} d\theta^2 + g_{30} d\varphi^2$, (18)

其中

 $g_{00} = \mathcal{X} G - r_{H\nu}), \quad g_{01} = -1, g_{02} = -(r^2 f + r_{H\theta}),$ $g_{22} = -r^2, \quad g_{33} = -r^2 \sin^2 \theta.$ (19) 则 4 个微分算子表示为

$$D = \frac{\partial}{\partial v} + \frac{g_{00}}{2} \frac{\partial}{\partial r}, \quad \Delta = -\frac{\partial}{\partial r},$$
$$\delta = -\frac{1}{\sqrt{2}r} \left(g_{02} \frac{\partial}{\partial r} + \frac{\partial}{\partial \theta} + \frac{i}{\sin\theta} \frac{\partial}{\partial \varphi} \right),$$
$$\bar{\delta} = -\frac{1}{\sqrt{2}r} \left(g_{02} \frac{\partial}{\partial r} + \frac{\partial}{\partial \theta} - \frac{i}{\sin\theta} \frac{\partial}{\partial \varphi} \right). \quad (20)$$

所需要的旋系数如下

$$\varepsilon - \rho = \frac{1}{2r}g_{00} + \frac{1}{4}g_{00,r},$$

$$\pi - \alpha = -\frac{g_{02,r}}{4\sqrt{2}r} - \frac{g_{02}}{2\sqrt{2}r^2} - \frac{\cot\theta}{2\sqrt{2}r},$$

$$\mu - \gamma = -\frac{1}{r},$$

$$\beta - \tau = -\frac{3g_{02,r}}{4\sqrt{2}r} - \frac{g_{02}}{2\sqrt{2}r^2} - \frac{\cot\theta}{2\sqrt{2}r}.$$
(21)

把 20 和 21 元代入 Dirac 场方程 ,仿照第 3 节 相应的方法进行处理 ,并将 $F_1 = e^{-(E_v - m\varphi) + iS(R, \theta)}$ 代 入进行分离变量 ,采用 WKB 近似可得

$$\left(g_{00} + \frac{g_{02}^2}{r^2}\right)k_{\rm R}^2 - 2\left(E - \frac{g_{02}}{r^2}k_{\theta}\right)k_{\rm R} + \frac{1}{r^2}k_{\theta}^2 + \frac{m^2}{r^2\sin^2\theta} - B + \mu_0^2 = 0, \quad (22)$$

其中

$$k_{\rm R} = \frac{\partial S}{\partial r} , k_{\theta} = \frac{\partial S}{\partial \theta} ,$$

$$B = \frac{g_{00}}{r^2} + \frac{g_{00,r}}{2r} + \left(\frac{3g_{02,r}}{4} + \frac{g_{02}}{2r} + \frac{\cot\theta}{2}\right)^2 (23)$$

从(22)式中可以得到 $k_{\rm R}$ 和 k_{θ} 的关系

$$k_{\rm R}^{\pm} = \frac{E'}{g_{00} + g_{02}^2/r^2} \pm \frac{\sqrt{E'^2 - (g_{00} + g_{02}^2/r^2) k_{\theta}^2/r^2 + m^2/r^2 \sin^2\theta - B + \mu_0^2}}{g_{00} + g_{02}^2/r^2}, \qquad (24)$$

其中 $E' = E - g_{02} k_{\theta} / r^2$.

根据量子统计理论,把薄膜分成许多小的子系统,第 *i* 个子系统的自由能可表示为

$$\Delta F_i = -\int_0^\infty \mathrm{d}E' \; \frac{I(E')}{\mathrm{e}^{\beta E'} + 1} \; , \qquad (25)$$

其中 I(E')是能量小于等于 E'的微观态的数目.根 据半经典量子化条件和薄膜 brick-wall 模型,有

$$I(E') = \frac{1}{4\pi^{3}} \int dm \int dk_{\theta} \int_{\theta_{i}}^{\theta_{i} + \Delta\theta_{i}} d\theta \int_{\varphi_{i}}^{\varphi_{i} + \Delta\varphi_{i}} d\varphi$$
$$\times \left(\int_{\varepsilon}^{\varepsilon + \delta} k_{R}^{+} dR + \int_{\varepsilon + \delta}^{\varepsilon} k_{R}^{-} dR \right) , \quad (26)$$

考虑到(24)式的根号中的表达式应该大于或等于 零,要限制 k₀和 m 的积分上下限,并在积分过程中 采用小质量和系数 B 近似,因此有

$$\Gamma(E') = \int dA_i \frac{E'^3}{6\pi^2} \int_{\epsilon}^{\epsilon+\delta} \frac{1}{(g_{00} + g_{02}^2/r^2)^2} dR ,$$
(27)

其中 $\int dA_i = \int_{\theta_i}^{\theta_i + \Delta\theta_i} \int_{\varphi_i}^{\varphi_i + \Delta\varphi_i} r^2 \sin\theta d\theta d\varphi$ 是第 *i* 个子系 统在视界上的小面积,记为 ΔA_i .把(27)式代入(25) 式,对 *E*'积分,并保留低阶项得

$$\begin{split} \Delta F_i &= -\frac{\Delta A_i}{6\pi^2} \\ &\times \int_{\varepsilon}^{\varepsilon+\delta} \frac{1}{\left(g_{00} + g_{02}^2/r^2\right)^2} \mathrm{d}R \int_{0}^{\infty} \mathrm{d}E' \frac{E'^3}{\mathrm{e}^{\beta E'} + 1} \\ &= -\frac{7\pi^2 \Delta A_i}{720\beta^4} \int_{\varepsilon}^{\varepsilon+\delta} \frac{1}{\left(g_{00} + g_{02}^2/r^2\right)^2} \mathrm{d}R \,. \end{split}$$
(28)

因为 $g_{00} + g_{02}^2/r^2 = 2(G - r_{H_v}) + (r^2 f + r_{H_\theta})^2/r^2 = 0$ 为黑洞视界位置的方程[见(11)式],可以把它表示为

$$g_{00} + g_{02}^2/r^2 = (r - r_H)p(v, r, \theta),$$
 (29)
把(29)式代入(28)式中,完成对 R 的积分

$$\Delta F_{i} = -\frac{7\pi^{2}\Delta A_{i}}{720\beta^{4}p^{2}(r_{\rm H})}\frac{\delta}{\epsilon(\epsilon+\delta)}, \quad (30)$$

于是,系统的波函数第1个分量第*i*个子系统贡献的熵为

$$\Delta S_{i} = \beta^{2} \frac{\partial \Delta F_{1}}{\partial \beta} \Big|_{\beta = \beta_{H}} = \frac{7\pi^{2} \Delta A_{i}}{180\beta_{H}^{3} p^{2} (r_{H})} \frac{\delta}{\epsilon (\epsilon + \delta)}.$$
(31)

考虑到(29)和(12)式,有 $p(r_{\rm H}) = \Im(g_{00} + g_{02}^2/r^2)$ $\partial r|_{r=r_{\rm H}} = 2\kappa$,而 $\beta_{\rm H} = 2\pi/\kappa$,因此,系统的波函数第1 个分量贡献的熵为

$$S_{1} = \sum_{i} \Delta S_{i} = \frac{7}{2} \frac{A_{\rm H}}{16} \frac{1}{90\beta_{\rm H}} \frac{\delta}{\epsilon(\epsilon + \delta)}, \quad (32)$$

- [1] Bekenstein J D 1973 Phys. Rev. D 7 2333
- [2] Hawking S W 1975 Commun. Math. Phys. 43 199
- [3] 't Hooft G 1985 Nucle Phys. B 256 727
- [4] Luo Z J, Zhu J Y 1999 Acta. Phys. Sin. 48 395(in Chinese)[罗 智坚、朱建阳 1999 物理学报 48 395]
- [5] Liu W B, Zhu J Y, Zhao Z 2000 Acta Phys. Sin. 49 581 (in Chinese) [刘文彪、朱建阳、赵 峥 2000 物理学报 49 581]
- [6] Zhao R, Zhang L C 2002 Acta. Phys. Sin. 51 21 (in Chinese)
 [赵 仁、张丽春 2002 物理学报 51 21]
- [7] Liu W B , Zhao Z 2001 Chin . Phys . Lett . 18 310
- [8] Li X , Zhao Z 2001 Chin . Phys . Lett . 18 463
- [9] Zhu B, Yao G Z, Zhao Z 2002 Acta. Phys. Sin. 51 2656 (in Chinese)[朱 斌、姚国政、赵 峥 2002 物理学报 51 2656]
- [10] He H, Zhao Z 2002 Acta. Phys. Sin. **51** 2661 (in Chinese)[贺晗、赵 峥 2002 物理学报 **51** 2661]

其中 $A_{\rm H} = \sum_{i} \Delta A_{i}$ 是黑洞的面积.选择适当的截断 因子 ϵ 和薄层厚度 δ ,使得满足 $\delta/\epsilon(\epsilon + \delta) = 90\beta_{\rm H}$, 上式可以写为

$$S_1 = \frac{7}{2} \frac{A_{\rm H}}{16}.$$
 (33)

用计算波函数第 1 个分量贡献的熵的方法可计算出 波函数其它 3 个分量所贡献的熵 在取一级近似的情 况下 这 3 个分量贡献的熵均与 *S*₁ 相同 根据熵的可 加性 得到变加速直线运动黑洞 Dirac 场的总熵为

$$S = 4S_1 = \frac{7}{2} \frac{A_{\rm H}}{4} = \frac{7}{2} S_{\rm K-G}.$$
 (34)

其中 S_{K-G}为变加速直线运动黑洞标量场的熵¹⁰¹.

6.结 论

本文利用薄膜 brick-wall 模型方法,计算变加速 直线运动的 Kinnersley 黑洞 Dirac 场的熵,得到了熵 与视界面积成正比的关系.用这种 Tortoise 坐标,得 到的黑洞的辐射温度函数 κ ,使在计算动态黑洞熵 时所用到的截断因子变成与静态和稳态形式相同, 只是截断因子 ϵ 和薄膜厚度 δ 是依赖于时间 v 和角 度 θ .另外,波矢量 4 个分量所贡献的熵并不严格相 等,只是在取一级近似,才有相同的表达式.

- [11] Zhang J Y 2003 Acta . Phys . Sin . 52 2356 (in Chinese)[张靖仪 2003 物理学报 52 2356]
- [12] Niu Z F, Liu W B 2005 Acta Phys. Sin. 54 475 (in Chinese)[牛振风、刘文彪 2005 物理学报 54 475]
- [13] Zheng Y Q 2006 Acta. Phys. Sin. 55 3272(in Chinese)[郑元强 2006 物理学报 55 3272]
- [14] Kinnersley W 1969 Phys. Rev. 186 1335
- [15] Zhao Z 1999 Thermal Properties of Black Hole and Singularities of Space-time (Beijing Normal University press)(in Chinese)[赵 峥 1999 黑洞的热性质与时空奇异性(北京:北京师范大学 出版社)]
- [16] Damour T, Ruffini R 1976 Phys. Rev D 14 332
- [17] Sannan S 1988 Gen. Rel. Grav 20 239
- [18] Li Z H, Zhao Z 1997 Acta. Phys. Sin. 46 1273 (in Chinese) [黎 忠恒、赵 峥 1997 物理学报 46 1273]

Entropy of Dirac field in a rectilinearly nonuniformly accelerating Kinnersley black hole *

Yang Bo

(Physics and Electronic Engineering College of Chongqing Three Gorgee University, Wanzhou 404000, China)
 (Received 23 March 2007; revised manuscript received 5 April 2007)

Abstract

Using the Tortoise coordinate transformation and the Dirac field equation near the event horizon, the Hawking temperature of Kinnersley black hole is obtained. Meanwhile, adopting thin film brick-wall model, the entropy of Kinnersley black hole is calculated. The entropy near the event horizon is shown to be the entropy of black hole by regulating the cut-off parameter and the thin film 's thickness properly. The results show that the entropy of the black hole is proportional to the area of the event horizon.

Keywords : Kinnersley black hole , Hawking temperature , thin film brick-wall model , entropy PACC : 9760L , 0420

^{*} Project supported by the Chongqing Municipal Education Commission of China (Grant No. KJ071111).