节瘤缺陷对中红外高反射膜电场增强影响的数值分析*

王 颖 章岳光† 刘 旭 陈为兰 厉以宇

(浙江大学现代光学仪器国家重点实验室 杭州 310027) (2007年1月5日收到 2007年4月10日收到修改稿)

运用时域有限差分(FDTD)方法建立了薄膜中节瘤缺陷在高斯激光照射下电磁场响应模型,分析了节瘤的深度、起始颗粒大小和入射光角度对薄膜中电磁场的影响。结果表明:节瘤缺馅对薄膜中电场强度有显著的加强作用,其内部峰值场强是入射光的6倍,大而浅节瘤缺陷对倾斜入射p偏振态的激光具有最高的加强效应.

关键词:多层介质薄膜,中红外,节瘤缺陷,高斯光 PACC:6860,4255R,0260

1.引 言

为满足高功率氟化氘激光系统(输出激光的波 长为 3.8 µm)的需要,中红外激光薄膜不仅要求具有 良好的光学性能 而且还必须具备较高的抗激光损 伤阈值,目前薄膜的抗激光损伤性能是限制高功率 激光器发展的瓶颈1].此前,人们针对近红外波长 的介质薄膜开展了大量的研究工作以探求薄膜损伤 的机理^[2-6].研究表明,薄膜中的微米量级的缺陷 是降低薄膜抗激光损伤阈值的主要因素^[2],其中节 瘤缺陷是典型的缺陷之一[378],缺陷对激光损伤的 影响是一个复杂的过程,现有的实验和模拟的结果 表明 ,节瘤的深度、形状、起始点的大小及成分都将 对损伤产生重要的影响,其中,较浅的节瘤容易在 激光照射下从薄膜表面喷溅出来,形成弹坑形状的 缺陷 这种缺陷在激光进一步照射时不易导致薄膜 损伤.相反,大而深(顶高大于0.6 um)的节瘤缺陷 对激光具有较高的响应度,容易成为损伤的起始点, 对薄膜造成致命的破坏^[79].此前的研究工作主要 集中在 1.053 µm 和 1.064 µm 波段,对中红外波段 (3-5 µm)薄膜中缺陷的研究少有报道.本文针对 中心波长为 3.8 um 的高反射膜进行了研究,采用时 域有限差分方法深入分析了不同尺寸和起始位置的 节瘤缺陷对入射激光的电场响应,并改变入射激光 的角度和偏振态,分析不同条件下缺陷对薄膜中场

强分布情况的影响,从而研究节瘤对不同入射激光的敏感程度,找出最具破坏性节瘤的特征.

2. 理论模型

时域有限差分方法^[10]自 Yee 提出以来得到广 泛应用,是近年来分析介质中电磁场传播最有效的 数值差分方法.本文在模拟中采用的膜系是沉积在 CaF₂ 基板上的 ZnS/YbF₃ 高反射膜,膜系结构为 [Subl(HL)⁹HIAir],H和L分别代表中心波长为 3.8 μ m的 $\lambda/4$ 高、低折射率层,其中 $n_{\rm H} = 2.25$, $n_{\rm L} =$ 1.50.薄膜中的节瘤缺陷如图 1 所示,节瘤的起始 点(种子)为球形颗粒,一般为基板上的缺陷、尘点或 者在镀膜沉积过程中材料喷溅形成的喷点.缺陷在 镀膜过程中不断生长,最终形成具有抛物线边界的 柱对称结构 SEM 和 AFM 的实验观察结果都印证了 节瘤缺陷的这种抛物线结构^[11].

文中的入射光为具有高斯分布的激光束,此前 的研究都将入射光简化为单色平面波的形式,不考 虑激光束本身的空间分布情况.本文将入射光理解 为多个角谱叠加形成的锥形高斯光的形式,光束中 包含了从负无穷到正无穷的所有角谱分量,这一模 型与实际激光束空间分布较为一致,在研究激光与 缺陷的相互作用时,更为接近实际情况.入射高斯 光可以表示为下面形式¹²¹:

$$E_{iy} = \int_{-\infty}^{+\infty} dk_x \exp[(k_x x + k_{0z} z)] \varphi(k_x), \quad (1)$$

^{*}固体激光技术国家级重点实验室基金资助的课题.

[†] E-mail zhangyueguang@163.com

图 1 典型节瘤缺陷结构图

其中

$$\varphi(k_x) = \frac{r_0}{2\sqrt{\pi}} \exp\{-[r_0^2(k_x - k_{ix})^2/4]\}.$$
 (2)

入射光中心光矢可以表示为 $k_i = \hat{x} k_0 \sin \theta_i + \hat{z} k_0 \cos \theta_i$, r_0 是薄膜与空气界面处激光光强下降到中心处能量的 1/e 时薄膜切线方向的位置.

3. 结果分析

3.1. 节瘤结构对场强的影响

节瘤形态是影响薄膜中场强分布的重要因素, 节瘤缺陷结构主要由起始种子的大小和深度决定. 为分析节瘤对薄膜中电场的增强作用,本文对缺陷 中的电场峰值 E_d 进行了归一化 ,光强的相对值用 $|E_d/E_g|^2$ 表示,其中 E_g 为自由空间中高斯光束中 心的场强. 根据本文分析的结果 ,当 $|E_d/E_s|^2 \ge 2$ 时,认为节瘤对薄膜电场分布产生显著增强效果,此 时节瘤引发的峰值场强会使薄膜内缺陷区域的损伤 概率提高.图2是激光垂直入射时,种子直径为1 μm 2 μm 3.8 μm 5 μm 和 7.6 μm 的节瘤缺陷内光强 峰值. 从图 2 可以看出,场强的峰值随着种子直径 的增大而逐渐增大.当种子直径小于 3 µm 时,节瘤 缺陷并没有使膜层内电场明显增强($|E_d/E_s|^2 < 2$), 因此,对于中红外高反射膜,只有种子的尺寸大于3 um的节瘤缺陷才可能对薄膜的抗损伤阈值产生显 著影响,这一尺寸远大于近红外波段高反射膜(中心 波长为 1.053 µm 或 1.064 µm) 中危害型节瘤种子的 临界尺寸(0.7 μm)^{7,13]}. 图 3 分析了种子深度对场 强的影响 种子的直径分别为的 1 μ m 和 3.8 μ m. 结 果表明 种子所处的膜层越浅 ,节瘤内的场强峰值越 高,对于1,µm 直径的种子,只有处于较浅的位置时 才对膜中场强有明显的增强作用,而当种子尺寸增

大到 3.8 µm 时 场强峰值随其所处的层数呈线性增 大. 由此推知 ,由大而浅的种子生长而成的节瘤缺 陷对膜层的场强增强作用较大 ,电场响应的灵敏度 高 ,在激光的照射下 ,这种节瘤缺陷容易产生较高温 升和热应力 ,从而导致节瘤喷溅出膜层 ,甚至发展成 薄膜损伤的起始点.

图 2 种子直径为 1 µm 2 µm 3.8 µm 5 µm 和 7.6 µm 的节瘤缺陷 内相对光强峰值图

图 3 节瘤内光强峰值随种子(直径分别为 1 µm 和 3.8 µm)所处 深度变化图(深度用膜层数表示,从基板侧开始为第 0 层,向空 气侧逐层增加)

3.2. 入射激光角度对节瘤内场强的影响

为了研究入射光角度和偏振态对节瘤的影响, 我们分别计算了 0°到 40°入射角下节瘤区域的场强 分布,其中节瘤种子直径为 3.8 µm,起始于基板.图 4(a)(b)和(c)分别给出了激光以 0°,30°s偏振态和 30°p偏振态入射的情况下缺陷区域的场强分布.在 0°到 40°范围内,高反膜的反射率保持在 98%以上, 因此本节的分析针对这一角度范围.倾斜入射的效

图 4 FDTD 方法模拟的场强分布 (a)高斯光束 0°角入射(b) 高斯光束 30°角入射(s偏振)(c)高斯光束 30°角入射(p偏振)

果与垂直入射相比较,主要有两点变化:首先,场强 峰值逐渐向节瘤与膜层之间的边界处靠近,特别是 p偏振态,边界处能量显著增强,并且光强从边界处 出射,在薄膜内形成多次反射;其次,随着入射角增 大,从节瘤边界处透射出的能量明显增强,致使缺陷 区域反射率明显低于无缺陷区域.此外,节瘤内的 场强峰值与激光的偏振态密切相关,随着入射角增 大,p偏振的激光照射下产生的电场峰值明显高于 s 偏振态,特别是在 40°入射的情况下,场强峰值达到 了入射光场强的6倍以上,如图5所示.这一点与 节瘤的圆形结构有关,节瘤区的弧度使得入射光相 对于节瘤表面的入射角范围远大于无缺陷区域^[13], 薄膜对于 p偏振光的角度反射带宽远小于 s 态偏振 光,因此相对于 s偏振光,倾斜入射的 p偏振光更容 易在节瘤处产生透射,节瘤区域的峰值场强自然将 高于 s 偏振态的情况.

图 5 不同入射角和偏振态的激光照射下节瘤内峰值场强

4.结 论

节瘤缺陷对薄膜中的入射光光强有明显的加强 作用 场强增强的程度与节瘤的结构和入射光的角 度及偏振态密切相关. 本文采用 FDTD 方法分析了 多种条件下节瘤与高斯光的相互作用.结果表明, 大而浅的节瘤容易聚集更多的能量,产生较高的峰 值场强,造成吸收和应力增加,节瘤稳定性降低,从 而影响薄膜整体的损伤阈值, 当激光入射角的增 加 ,节瘤内场强峰值也随之增大 ,并向节瘤与薄膜边 界处偏移 不仅使薄膜透射增加 反射率降低 ,更重 要的是 在边界处常常存在扭曲变形和空隙(见图 1) 是结合性最薄弱的区域 稳定性差 因此当光强 会聚此处时更容易发生破坏. 此外, 与 s 态偏振光 相比,p偏振态激光能够形成更高的峰值场强.综 上所述 种子直径大于 3 µm 的较浅节瘤对 p 偏振态 激光最为敏感 降低此类节瘤缺陷的密度是提高中 红外高反膜损伤域值的关键.

- [1] Xiong S M , Zhang Y D 1997 Appl. Opt. 36 4956
- [2] Xia Z L, Shao J D, Fan Z X 2007 Acta. Phys. Sin. 56 400 (in Chinese)[夏志林、邵建达、范正修 2007 物理学报 56 400]
- [3] Tench R J , Chow R , Kozlowski M R 1993 SPIE 2114 416
- [4] Austin R R, Michaud R, Guenther A H, Putman J 1973 Appl. Opt. 12 665
- [5] Zhang D P , Shao J D , Zhang et al 2004 Opt . Lett . 29 2870
- [6] Walton C C , Génin F Y , Chow R , Kozlowski M R , Loomis G B , Pierce E 1996 SPIE 2714 550
- [7] Dijon J , Poulingue M , Hue J 1998 SPIE 3517 387
- [8] Milam D , Bradbury R A 1973 , NBS Spec . Publ . 387 124
- [9] Kozlowski M R , Tench R J , Chow R , Sheehan L 1994 SPIE 2253 743
- [10] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302

[11] Christopher J S , Tench R J , Kozowski M R , Fornier A 1996 SPIE 2714 374 Letters 33 136

[13] Stolz C J , Feit M D , Pisto T V 2006 Appl. Opt. 45 1594

[12] Jin A K ,Wu B L ,Zhang Y 2002 Microwave and Optical Technology

Analysis of laser intensification by nodular defects in mid-infrared high reflectance coatings *

Wang Ying Zhang Yue-Guang[†] Liu Xu Chen Wei-Lan Li Yi-Yu

(State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China)

(Received 5 January 2007 ; revised manuscript received 10 April 2007)

Abstract

Electric field modeling of nodular defects is performed to investigate the interaction between defective multilayer coatings and Gaussian profile laser beam. Light intensity is significantly enhanced as large as 6 times within the nodular defects. Different geometries of defects irradiated by laser beams at 0 to 40 deg incident laser angles are analyzed. Nodules with large but shallow seeds, or irradiation of 40 deg p-polarized laser beam, tends to produce the greatest enhancement effect.

Keywords : multilayer coating , mid-infrared , nodular defect , Gaussian laser PACC : 6860 , 4255R , 0260

 $[\]ast$ Project supported by the Key State Laboratory of Solid State Laser Engineering , China.

[†] E-mail zhangyueguang@163.com