光致异构聚合物中光学空间孤子 的垂直全光调控*

黎扬钢 佘卫龙*

(中山大学光电材料与技术国家重点实验室,广州 510275) (2006年3月31日收到2006年6月11日收到修改稿)

用数值方法研究了在具有光致异构非线性的聚合物中光学空间孤子的垂直全光调控.结果表明,对于调控光 和信号光是相干的情况,被调控的信号光会产生散射甚至坍塌、微偏转等现象,其作用强弱依赖于两束光的初始相 位之差、调控光光强、调控光入射位置等.这种垂直全光调控效应有望应用于全光开光、光集成等方面.

关键词:光折变空间孤子,孤子相互作用,垂直调控,光致异构 PACC:4265J,4265S,4270J

1.引 言

光折变空间孤子的研究已经有十多年了^[1-12], 理论上^[12568-12]、实验上^[347]都取得了重要进展. 近年又发现,在具有光致异构非线性的聚合物中能 形成新一类光学空间孤子^[13-15].与过去常用的光折 变材料不同,未极化的光致异构聚合物是各向同性 的,它所承载的孤子具有许多新的性质,例如,这种 材料中的孤子光束可以是圆偏振的^[14].有关研究刚 刚开始,许多课题有待进一步深入研究.

光孤子的相互作用是光孤子研究的前沿热 点^[16].1997年,Garcia-Quirino等^[17]研究了光折变晶 体 Bi₁₂TiO₂₀中相干孤子的平行同向传播相互作用, 实验上发现他们是同相互相吸引、异相互相排斥的. 非相干的平行同向传播的孤子一般是互相吸引 的^[18],然而互相排斥的现象也被发现了^[19].2000年, Coskun等^[20]发现非相干的暗孤子可使同向传播的 亮光束光强分布变得尖锐,相干性加强.2005年,Ku 等^[21]通过控制同向传播的两亮孤子的相干系数实 现对孤子相互作用的控制,发现改变相干系数可以 使两孤子相互吸引或相互排斥.2003年,Motzek 等^[22]数值研究了饱和自聚焦非线性介质中光束的 对向相互作用,指出了对向传播和同向传播由于具 有不同的边界条件而导致不同的相互作用.双光束 在自散焦介质中对向传播的聚焦效应也已见报 道^[23].2005年,Motzek等^[24]利用各向异性非局域理 论分析了相干对向传播的相互作用.以上同向、对向 相互作用都是在各向异性介质中进行的,且光的传 播方向是一个维度的.

因未极化的光致异构聚合物是各向同性的 这 就容易在两个或两个以上的维度研究光束的相互作 用,本文着眼于两组互相垂直的单光束在这种介质 中的相互作用,这两组光分别称为信号光和调控光. 信号光在聚合物中独立传播时,只感受到自身光场 诱导的折射率波导的作用,如在垂直方向引入调控 光,调控光也会形成折射率波导,那么,信号光会受 到怎么样的影响呢?这就是我们所要研究的垂直全 光调控,就我们所知,两垂直传播的光孤子相互作用 还没见报道,我们先建立垂直全光调控的模型,然后 采用数值方法研究在相干情况下信号光被调控的情 况 分别研究了 0 π 初始相位之差下调控光光强对 信号光的调控影响,讨论了调控光垂直入射位置对 信号光的调控影响 给出了相同调控光光强下不同 相位之差与信号光调控的关系曲线,接着分别研究 了不同信号光光强、不同相位之差下信号光的微偏 转 结果表明 这种垂直全光调控可望应用于全光开 关、光集成等方面,

^{*}国家自然科学基金(批准号:10374121,10574167)资助的课题.

[†] 通讯联系人. E-mail:stils02@zsu.edu.cn

2. 理论分析及数值模拟方案

2.1. 光致异构聚合物中的孤子理论

含有偶氮苯等有机生色团的聚合物中生色团 分子可以有两种异构体:顺态(cis态)异构体和反态 (trans态)异构体.在适当波长的光照射条件下两种 异构体可以互相转化,这就是光致异构.对同一波长 的光,顺态和反态异构体对应不同的折射率,因此, 光照该聚合物可产生光诱导折射率改变.

在有背景光照射条件下,线偏振光激发的折射 率改变 △*n* 可写为^[13]

$$\Delta n = 4\pi ST_0 \left\{ \frac{\alpha I + \gamma}{\beta I} \left[1 - \sqrt{\frac{1 + \alpha I}{\beta I}} \right] \times \arctan \sqrt{\frac{\beta I}{1 + \alpha I}} - \frac{1}{3}\gamma \right\}, \quad (1)$$

其中,*S* 是与信号光波长、样品材料有关的参数,*T*₀ 表示没有光照射情况下反态异构分子的浓度,*a* = $\frac{q_{cs}\sigma_{c}}{q_{tb}\sigma_{t}^{b}+q_{db}\sigma_{c}^{b}}$, $\beta = \frac{q_{ss}\sigma_{t}^{\parallel}}{q_{tb}\sigma_{t}^{b}+q_{db}\sigma_{c}^{b}}$, $\gamma = \frac{1}{(q_{tb}\sigma_{t}^{b}+1)q_{db}\sigma_{c}^{b}}$, 其中 q_{ts} , q_{cs} 分别表示信号光使反态转变成顺态、顺 态转变成反态时的量子产率, q_{tb} , q_{cb} 分别表示背景 光使反态转变成顺态、顺态转变成反态时的量子产 率, σ_{t}^{\parallel} 表示分子取向平行电场方向时反态转变成 顺态信号光的吸收截面, σ_{c} 表示顺态转变成反态时 信号光的吸收截面, σ_{c}^{b} , σ_{c}^{b} 分别表示反态转变成顺

态、顺态转变成反态时信号光的吸收截面. $I = \frac{I_s}{I_s}$,

 $I_{d} = I_{b} + \frac{K}{q_{eb}\sigma_{e}^{b}}$,其中 I_{s} , I_{b} 分别表示信号光、背景光 光强,K表示顺态转变为反态的热弛豫系数.如文 献 13 所指出的,当背景光激发的反态转变为顺态 的转换率大于信号光激发的顺态转变为反态的转换 率时,即 γ 较小时(例如文献 13] γ 取 0.2),折射率 改变 Δn 可以为正数,介质形成自聚焦型透镜,可以 支持光束形成亮孤子.本文考虑亮孤子情况.

描述光场在介质中传播的一维非线性薛定谔方 程为

$$i\frac{\partial A}{\partial z} + \frac{1}{2k}\frac{\partial^2 A}{\partial x^2} + k_0 \Delta nA = 0 , \qquad (2)$$

其中 k_{k_0} 分别是介质中、真空中的波数.

对于光学空间孤子 ,可令

$$A = u(x) \sqrt{I_{d}} \exp(i\Gamma z), \qquad (3)$$

其中 Γ 是孤子传播常数,则 I 又可表示为 $I = | u(x)|^2$.将(1)(3)两式代入(2)式,可得无量纲化的孤子方程

$$\frac{\partial^2 u(\xi)}{\partial \xi^2} = u(\xi) \left\{ b - \left[\frac{\alpha u^2 + \gamma}{\beta u^2} \left(1 - \sqrt{\frac{\alpha u^2 + 1}{\beta u^2}} \right) + \frac{\alpha u^2 + 1}{\beta u^2} \right] \right\}, \quad (4)$$

$$\times \arctan \sqrt{\frac{\beta u^2}{\alpha u^2 + 1}} - \frac{\gamma}{3} \right\}$$

其中, $\xi = \frac{x}{x_0}$, $x_0 = (8n_0k_0^2\pi ST_0)^{-1/2}$. 令 $z_0 =$

 $\frac{1}{4\pi ST_0 k_0}$, $L = \frac{z}{z_0}$, $\Delta N = \frac{\Delta n}{4\pi ST_0}$ (2)式可以写成归一 化无量纲的光场演化方程

$$\frac{\partial A}{\partial L} = i \frac{\partial^2 A}{\partial \xi^2} + i \Delta NA , \qquad (5)$$

这就是光场在光致异构非线性的聚合物中的演化方程。我们采用分步傅里叶法^[25]数值模拟光场的传播 演化。

2.2. 垂直传播的两孤子相互作用的数值模拟方案

具有光致异构非线性的聚合物是各向同性的, 我们考虑两光束互相垂直传播相互作用的情况,如 图1所示。

图 1 两光束垂直传播相互作用示意图

图 1 中 A_1 , A_2 分别表示信号光和调控光. A_1 入射位 置是固定的, A_2 垂直入射位置可沿 z 轴移动, 光场 在边界面的反射忽略不计. 从麦克斯韦方程出发, 作 慢变振幅近似、旁轴近似处理, 可推导得到描述两垂 直光束各自的非线性薛定谔方程. 描述 A_1 的方程 为 $\frac{\partial A_1}{\partial L} = i \frac{\partial^2 A_1}{\partial \xi^2} + i\Delta N(A_1, A_2)A_1$, 描述 A_2 的方程则 为 $\frac{\partial A_2}{\partial \xi} = i \frac{\partial^2 A_2}{\partial L^2} + i\Delta N(A_1, A_2)A_2$. 这对于采用分步 傅里叶法进行数值模拟是有利的.

由于信号光和调控光的光场信息开始是互相独

立的、互不知道的,直接考察他们的相互作用比较困 难.我们采用如下方法数值模拟研究他们的相互作 用:

1)让A₁,A₂各自在聚合物中独立传播.

2)将 A₁,A₂的独立演化光场信息保存下来得 到 A₁₁,A₂₁.

3)再让 A₁, A₂ 在聚合物中传播 ,分别考虑 A₂₁, A₁₁的光强耦合作用.可得到新的光场 A₁₂, A₂₂.

4) 再次让 *A*₁, *A*₂ 在聚合物中传播,分别考虑 *A*₂₂, *A*₁₂的光强耦合作用.又可得到新的光场 *A*₁₃, *A*₂₃.

如此重复 经过多次循环迭代 最后获得的稳定 结果即为我们所需要的解.这样 我们就得到入射光 A_1 , A_2 在聚合物中的互相作用情况.实际上,数值模 拟循环 3—5 次就可以得到稳定结果.我们就以此方 案研究 A_2 对 A_1 的控制.

3. 数值模拟结果及分析

孤子方程(4)中参数 α , β , γ 分别取 0.1,0.1, 0.2,解方程(4)就可以得到一亮孤子数值解,以这个 数值解作为 A_2 的入射初始条件, A_1 入射初始条件 可以是该数值解乘上一个复值常数.其他参数选取 如下 $4\pi ST_0 = 10^{-2}$, $k_0 \approx 10^7$ m⁻¹, $n_0 = 1.5$.可估算得 $x_0 \approx 0.6$ μm, $z_0 = 10$ μm.考虑 A_1 , A_2 在相干情况下 的相互作用,如没特别说明,下文所说的 A_1 , A_2 的 相位差都是指两束光在入射面处初始相位之差,简 称相位差.

3.1.0 相位差时不同光强的光调控

图 2 是 A_1 , A_2 相干,相位差为 0,不同调制光强 对应的 A_1 的演化, A_2 在 L = 400处垂直于 A_1 入射, 图 3 是没有 A_1 时垂直入射的调控光 A_2 的独立传 播.为方便起见,入射调控光峰值光强简记为光强 I_c ,入射信号光峰值光强简记为 I_{cs} .

对于不同的调控光强, A_1 受调控程度明显不同,图 2 中三个图分别对应调控光光强 I_e 为 1 W/m²,10 W/m²,20 W/m² 时 A_1 的演化.出射光强 分布发生变化,光强分布被展宽, A_1 的原来孤子传 播特性被破坏.调控光光强越大,信号光被展宽越明 显,被破坏越明显,在 A_1 , A_2 交汇处破坏最明显, A_1 离开交汇区后光强分布会逐渐变窄.图 3 是没有 A_1

图 2 相位差为0时不同的 A_2 光强 I_c 调控下 $A_1(I_{cs} = 1 \text{ W/m}^2)$ 的演化 (a) $I_c = 1 \text{ W/m}^2$ (b) $I_c = 10 \text{ W/m}^2$ (c) $I_c = 20 \text{ W/m}^2$

时调控光 A2 的独立传播,下文不给出调控光的演

图 4 相位差为 0, $I_c = 10$ W/m² 时 A_1 ($I_{cs} = 1$ W/m²)入射光强分 布(虚线)和出射光强分布(实线)

化.图 χ_c)中 A_1 的入射、出射光强分布如图4所示.

3.2. π相位差时不同光强的光调控

图 5 是相位差为 π ,不同调控光强 I_e 对应的 A_1 的演化 A_2 在 L = 400 处垂直入射.

相位差为 π 时, A_1 原来的孤子传播特性大受破 坏,不同的调控光强下,A1出射光强相差甚大.调控 光光强较小时,A1光强分布在交汇区明显地被展 宽,但随着传播距离变大,A1光强分布又逐渐变窄, 会逐渐恢复入射前状态,如图 5(a)所示,增大入射 光强,如 $I_c = 10 \text{ W/m}^2$, A_1 光强分布极大地被展宽, 出射光被散射,甚至坍塌,A1光强分布不会随着传 播距离而恢复入射前状态,如图 5(b)所示.继续增 大入射光强 ,如 $I_c = 20 \text{ W/m}^2$,此时 A_1 光强分布极 大地被展宽,A,被散射但没有坍塌,明显区别于 $I_a = 10$ 的情况,但随着传播距离增大, A_1 的光强分 布稍有逐渐变窄而恢复入射前状态的趋势,如图 f(c)所示.再继续增大入射光强使 $I_c = 30$ W/m², A_1 光强分布在交汇区明显地被展宽 随传播距离增大 会较快恢复入射前状态,如图 5(d)所示.这表明,适 当光强的调控光可以调控 A_1 的出射光强分布 ,如 $I_c = 10 \text{ W/m}^2$ 时, A1 的出射光基本坍塌, 对应着信号 光 A₁ 的关闭状态,而没有 A₂ 调控时对应着信号光 A₁的开通状态 此现象有望应用于光控光开光.

3.3. 调控光在不同位置入射的光调控

上面调控光垂直入射位置都是在 L = 400 处, 本小节让调控光分别在 L = 100,200 处垂直入射,研 究信号光的演化.图6是 A2 在 L = 100 处垂直入射

图 5 相位差为 π 时 不同光强 I_c 的 A_2 在 L = 400 处垂直入射 时对应的 $A_1(I_{cs} = 1 \text{ W/m}^2)$ 的演化 (a) $I_c = 1 \text{ W/m}^2$ (b) $I_c = 10 \text{ W/m}^2$ (c) $I_c = 20 \text{ W/m}^2$ (d) $I_c = 30 \text{ W/m}^2$

时 不同的 A_1 , A_2 入射初始相位之差对应的 A_1 的 演化 $I_c = 10 \text{ W/m}^2$.

从图 6 可以看到 $_{0}$ 相位差时 $_{A_{1}}$ 的出射光基本 坍塌 ; $\frac{\pi}{2}$ 相位差时 $_{A_{1}}$ 被展宽 ,且传播较长一段距离 后 ,光强空间分布改变较小 ; π 相位差时 , A_{1} 在交汇 区略被展宽 ,但很快恢复到入射前状态 .出射光坍塌 对应着信号光的关闭状态 ,这种坍塌可望应用于光 控光开关 .图 7 给出 A_{2} 在 L = 200 处垂直入射时 , π 同的 A_{1} , A_{2} 入射初始相位之差对应的 A_{1} 的演化 , $I_{c} = 10$ W/m² .

从图 7 可以看到 , $\frac{\pi}{2}$ 相位差时 , A_1 的出射光基

图 6 $A_2 \Leftrightarrow L = 100$ 处垂直入射时,不同相位差对应的 A_1 ($I_{cs} = 1$ W/m²)的演化 (a)0 相位差 (b) $\frac{\pi}{2}$ 相位差 (c) π 相位差

本坍塌;其他情况时,A1在交汇区被展宽,但随着传播距离增大而又会恢复到入射前状态.图67表明, A2的不同的入射位置,对应着不同的相位差使A1 的出射光坍塌,这在实际中有潜在指导意义.

3.4. 不同相位差的光调控

我们定义出射光强比 α 为 A_1 出射光强分布中 心最大值与 A_1 入射光强分布中心最大值的比值 , 如图 4 中 α 约为 0.8.下面 ,我们考虑 A_2 在 L = 400处垂直入射 , $I_c = 10$ W/m² 时 ,不同的相位差对 α 的 影响 .图 8 给出 α 和相位差(0— π)的关系 .

图 8 显示,在相位差 0—0.76 π 内, α 变化很平缓,在相位差 0.75 π 附近 α 迅速变小,曲线变得陡

图 7 $A_2 \Leftrightarrow L = 200$ 处垂直入射时,不同相位差对应的 A_1 ($I_{cs} = 1 \text{ W/m}^2$)的演化 (a)0 相位差(b) $\frac{\pi}{2}$ 相位差(c)π相位差

图 8 $A_2 \Leftrightarrow L = 400$ 处垂直入射 $J_c = 10 \text{ W/m}^2$ $J_{cs} = 1 \text{ W/m}^2$ 时 α 与相位差的关系

峭 ,之后 α 恢复平缓而保持较小值.在 0—0.75π 内 对应着信号光开通状态 ,在 0.9π—π 内对应着信号 光关闭状态.这在光控光开关方面有潜在的应用.

3.5. 弱光调控强光微偏转

上面我们讨论了控制光光强比信号光强大的情况,如果调控光光强比信号光光强小会怎样呢?数 值模拟发现,信号光会偏转.这就是用弱光束调控强 光束的偏转.我们固定控制光光强 $I_e = 1$ W/m²,约 定沿信号光传播方向的左边、右边偏转的角度分别 为负、正,偏转角度记为 β .图9给出强的信号光被 弱的调控光调控而产生的微偏转角度与信号光光强 的关系,此时 A_2 在 L = 400 处垂直入射.

图 9 $A_2 \Leftrightarrow L = 400$ 处垂直入射弱光束调控强光束的偏转 (a)0 相位差 (b)h 相位差

其他相位差时情况如何呢?图 10 给出 A_2 在 L = 400 处垂直入射,调控光光强 $I_c = 1$ W/m²,信号 光光强 $I_{cs} = 10$ W/m²时,信号光的微偏转角度和相

图 10 信号光的微偏转角度 β 和相位差的关系

4.结 论

采用数值方法研究了互相垂直传播的两光束的 相互作用,亦即调控光对信号光的全光垂直调控.讨 论了0π相位差时调控光光强对信号光的影响,讨 论了调控光垂直入射位置对信号光的影响,给出了 相同调控光光强下出射光强比 α和相位差的关系 曲线,分别给出了微偏转角度 β和相位差、信号光 光强的关系曲线.结果表明,信号光受调控的性质及 强弱可以通过改变相位差、调控光光强、调控光垂直 入射位置等实现.这种横向调控具有便于实现、全光 可控、响应时间快等优点,对于全光开光、光集成等 的深入研究具有重要的指导意义.

- Segev M ,Crosignani B ,Yariv A ,Fischer B 1992 Phys. Rev. Lett.
 68 923
- [2] Segev M, Valley G C, Crosignani B, Diporto P, Yariv A 1994 Phys. Rev. Lett. 73 3211
- [3] She W L , Lee K K ,Lee W K 1999 Phys. Rev. Lett. 83 3182
- $\left[\ 4 \ \right] \quad$ She W L , Lee K K , Lee W K 2000 Phys . Rev . Lett . $85 \ 2498$
- [5] Lu K Q , Tang T T 1999 Acta Phys. Sin. 48 2070 in Chinese I 卢 克清、唐天同 1999 物理学报 48 2070]
- [6] Hou C F, Yuan B H, Sun X D, Xu K B 2000 Acta Phys. Sin.
 49 1969(in Chinese) 侯春风、袁保红、孙秀冬、许克彬 2000 物 理学报 49 1969]
- [7] Wang X S ,He G G ,She W L ,Jiang S J 2001 Acta Phys. Sin.
 50 496(in Chinese Ⅰ 王晓生、何国岗、佘卫龙、江绍基 2001 物 理学报 60 496]
- [8] Liu J S ,Hao Z H 2003 Chin . Phys . 12 1124
- [9] Fang J P Zheng C L 2005 Chin . Phys. 14 669

- [10] Liu J S ,Du Z M 2005 Acta Phys. Sin. 54 2739(in Chinese] 刘劲 松、杜泽明 2005 物理学报 54 2739]
- [11] Huang C F, Guo R, Liu S M 2006 Acta Phys. Sin. 55 1218(in Chinese] 黄春福、郭 儒、刘思敏 2006 物理学报 55 1218]
- [12] Lu K Q Zhao W ,Yang Y L Zhang M Z ,Li J P ,Liu H J Zhang Y P 2006 Chin. Phys. 15 403
- [13] Wang X S , She W L ,Lee W K 2004 Opt . Lett . 29 277
- $\left[\begin{array}{c} 14 \end{array} \right] \hspace{0.2cm} \mbox{Wang X S} \hspace{0.2cm} \mbox{She W L 2005} \hspace{0.2cm} \mbox{Opt} \hspace{0.2cm} . \hspace{0.2cm} \mbox{Lett} \hspace{0.2cm} . \hspace{0.2cm} \mbox{30} \hspace{0.2cm} 863 \end{array}$
- [15] Wang X S She W L 2005 Phys. Rev. E 71 026601
- [16] Stegeman G I Segev M 1999 Science 286 1518
- [17] Garcia-Quirino G S , Ituibe-Castillo M D , Vysloukh V A ,Snchez-Mondragn J J , Stepanov S I ,Lugo-Martnez G ,Torres-Cisneros G E 1997 Opt. Lett. 22 154
- [18] Shih M Segev M 1996 Opt. Lett. 21 1538
- [19] Krolikowski W , Saffman M , Luther-Davies B , Denz C 1998 Phys. Rev. Lett. 80 3240

- [20] Coskun T H ,Grandpierre A G ,Christodoulides D N ,Segev M 2000 Opt. Lett. 25 826
- [21] Ku T S , Shih M F Sukhorukov A A ,Kivshar Y S 2005 Phys. Rev. Lett. 94 063904
- [22] Motzek K Jander P ,Desyatnikov A ,Belic M ,Denz C ,Kaiser F 2003 Phys. Rev. E 68 066611
- [23] Jiang X J , Li H Z , Guo Q , Hu W 2004 Acta Phys . Sin . 53 3771(in

Chinese [江秀娟、李华刚、郭 旗、胡 巍 2004 物理学报 53 3771]

- [24] Motzek K ,Belic M ,Richter T ,Denz C ,Desyatnikov A ,Jander P , Kaiser F 2005 Phys. Rev. E 71 016610
- [25] Li J, Huang D X, Zhang X L 2003 *Opt*. *Tech&Info*. **16** 9(in Chinese]李 均、黄德修、张新亮 2003 光电子技术与信息 **16** 9]

Perpendicular all-optical control of optical spatial soliton in photoisomerized polymers *

Li Yang-Gang She Wei-Long[†]

(State Key Laboratory of Optoelectronic Materials and Technology ,Zhongshan University ,Guangzhou 510275 ,China) (Received 31 March 2006 ; revised manuscript received 11 June 2006)

Abstract

In the photoisomerized polymer the perpendicular and all-optical control of optical spatial soliton is simulated by numerical method. The results show that if the controlling beam (c-beam) and the signal beam (s-beam) are coherent, the s-beam under controll of the c-beam will be dispersed, deflected or even collapse. The interactions depend on the difference of the two beam 's initial phases c-beam 's intensity and the incident position of c-beam. The effect of perpendicular and all optical control has potential applications in all-optical switching and optical integration.

Keywords : photovoltaic spatial soliton , soliton interaction , perpendicular control , photoisomerization PACC : 4265J , 4265S , 4270J

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10374121, 10574167).

[†] Corresponding author. E-mail : stils02@zsu.edu.cn