亚微米聚苯乙烯微球在气-液界面组装的机理研究*

王晓冬† 董 鹏‡ 陈胜利 仪桂云

(中国石油大学重质油国家重点实验室,北京 102249)(2006 年 5 月 19 日收到 2006 年 7 月 29 日收到修改稿)

系统地研究了亚微米聚苯乙烯微球在气-液界面的组装机理.聚苯乙烯微球在介质对流的带动下会到达悬浮 液的表面并在气-液界面组装,气-液界面处聚苯乙烯微球间由弯液面产生的毛细管力是组装的推动力.界面处聚苯 乙烯微球在干燥过程中其润湿性发生了转变,由完全润湿到部分润湿并最终变成不润湿,相应的聚苯乙烯微球与 分散介质间接触角也逐渐增大.研究表明,只有接触角达到或超过某数值 $\theta'_{critical}$ 时,才能够出现气-液界面组装现 象.考虑到 PS 胶粒晶体的表面是"规则"粗糙的表面,由 Wenzel 公式知 $\theta'_{critical}$ 大于测量值 $\theta = 22^{\circ}$.聚苯乙烯微球润湿 性的转变是界面组装发生和持续进行的关键性因素.

关键词:自组装,胶粒晶体,聚苯乙烯微球,润湿性 PACC:9240J &270D &120S 6810

1.引 言

近年来,亚微米聚苯乙烯(PS)微球组装的胶粒 晶体引起了广泛的关注.作为一类新型三维有序亚 微米材料,PS 胶粒晶体在许多领域都有潜在的用 途.它可潜在地用于光子晶体^[12]、光学滤波器^[3]、光 开关^[4]、高密度电磁数据存储器^{4]}以及化学和生物 化学传感器^[5].通常,三维 PS 胶粒晶体可以通过单 分散的 PS 胶体颗粒的有序组装来实现.

目前文献报导了多种关于胶粒晶体的组装方 法^[67].Nagayama 等人在水平玻璃基片上组装了 PS 胶粒晶体,在胶体颗粒之间出现的弯月面上形成的 毛细管力是组装二维或三维胶粒晶体的推动 力^[8-12].Szekeres 等人在悬浮液中加入离子型表面活 性剂,通过静电引力表面活性剂的离子端与带电胶 体颗粒相互吸附.表面活性剂疏水端朝外而使胶体 颗粒与分散介质变成不润湿性,从而在气-液界面组 装出了高度有序的单层胶体颗粒薄膜^{13]}.但是用这 种方法组装的胶粒晶体其胶体颗粒粒径仅仅局限在 小于 400 nm 的情况,因为较大颗粒的重力沉降速度 通常比溶剂蒸发所引起的液面下降速度要快,而无 法继续组装.Vlasov 等人^[14—16]通过增加悬浮液的温 度梯度解决了结晶过程中垂直基片与胶体溶胶间弯 月面处较大粒径胶体颗粒(~0.8 µm)沉降的问题, 温度梯度促使对流的发生,而对流可以防止沉降并 为弯月面区域提供连续的颗粒流.Park 等人^[17,18]提 出了一种在悬浮液表面组装 PS 胶粒晶体的方法,他 们研究了在水分散介质表面组装 PS 胶粒晶体的方法,他 们研究了在水分散介质的对流会带动 PS 微球到悬浮 液的表面,气-液界面的 PS 微球在由弯液面而产生 的毛细管力的拉动下组装在一起,并因胶粒晶体的 表观密度低于介质密度而漂浮在气液界面.

本文在 Park 等人的研究基础上做了进一步研 究,对 PS 微球的多层组装过程给出了新的诠释.

2.实验部分

2.1. 试剂及仪器

实验所用的微球为自制单分散 PS 微球^[18],粒径 275±15 nm;用日立公司 H-8100 型透射电子显微镜 TEM)测量 PS 微球粒径;在重庆市恒达仪器厂 CS101-E型电热鼓风干燥箱内组装 PS 微球;用日立 公司 S-4200 型扫描电子显微镜(SEM)观察 PS 胶体 晶体形貌.用上海中晨经济发展公司 JZ95A 型影像

^{*}国家重点基础研究发展规划项目(批准号 2004CB217808)和国家自然科学基金(批准号 20376046 20473108)资助的课题.

[†] E-mail: wangxd0863@yahoo.com.cn

非 通讯联系人.E-mail:p.dong@china.com

分析仪测量接触角.

2.2. 蒸发自组装法制备 PS 胶粒晶体

取质量分数为 9.34wt%的 PS 微球的水悬浮液 置于烧杯中,在超声波振荡器内处理 3 次,每次 3 min.然后在 95℃的恒温箱内,加热 6—8 h 烧杯中的 水被蒸发完全以后,便得到 PS 的胶粒晶体.

2.3. 接触角的测量

用 JZ95A 型影像分析仪测量分散介质在 PS 胶 粒晶体表面的接触角.由于液滴在固体表面接触角 与液滴体积、环境温度以及测试时间有关,液滴体积 增大、温度提高或测试时间长,都会降低润湿角并给 测量带来误差^[19,20].因此实验在室温(25℃)下,液 滴量控制在1µL,在30s内完成拍摄,然后在照片上 测量润湿____物镜放大倍数4×,目镜放大倍数 $17 \times .$

3.结果与讨论

3.1. 蒸发自组装法制备的 PS 胶粒晶体及组装过程

3.1.1. 蒸发自组装的 PS 胶粒晶体

图 1 是蒸发自组装制备的 PS 胶粒晶体扫描电 镜照片.其中图 1(a)是 PS 胶粒晶体上表面的形貌. 可以看出晶体中 PS 微球呈面心立方(fcc)形式排 列 组装体上表面微球排列非常有序 晶体有序区域 至少可达 50×50 µm².图 1(b)是胶粒晶体断面的形 貌,可以看出在晶体的内部 PS 微球排列也比较有 序.从图 1(b)中还可看出,胶体晶体的内部存在一 定的缺陷,包括一些空穴缺陷(如图 1(b)中白色箭 头所示)和位错缺陷(如图 1(b)中黑色箭头所示).

图 1 聚苯乙烯胶粒晶体的表面和断面的 SEM 照片 (a)和(b)分别为样品的表面和断面

3.1.2. 蒸发自组装中 PS 微球的组装过程

加热初期在悬浮液表面出现一定面积的彩色光 泽区域 光泽是由有序排列的亚微米颗粒对可见光 发生布拉格衍射的结果 ,所以光泽是颗粒有序排列 的简单判据),而且随着组装的继续 ,彩色区域沿水 平面在不断扩大 ,直至铺满悬浮液的表面 . 此后 ,组 装体的表面积不再扩大 ,而是随分散介质蒸发逐渐 变厚.

3.2. 组装机理的研究

PS 微球/水分散体系在加热的条件下能够在悬 浮液的气-液界面进行组装,可能与 PS 微球自身润 湿性的变化有关.通过测量干燥 PS 胶粒晶体与水之 间的接触角来研究润湿性的变化.

3.2.1.PS 微球与水的润湿性

乳液聚合法制备的 PS 微球在水中可长期稳定 存在 表明分散在水中的 PS 微球与水是完全润湿 的 接触角应接近 0°. 图 2 为干燥 PS 胶粒晶体与水

图 2 水与干燥 PS 胶粒晶体之间的润湿角测量图

之间接触角测量图.其中 θ 为 PS 胶粒晶体与水之间 接触角, $\theta = 112^{\circ}$.固体表面的润湿性与表面粗糙度 是有关的^[21].由于干燥的 PS 胶粒晶体表面并非平 面,而是"规则"粗糙的表面,因此由 Wenzel 公 式^[22,23]

$$r(\gamma_{\rm sg} - \gamma_{\rm sl}) = \gamma_{\rm lg} \cos\theta \qquad (1)$$

可得到 PS 微球和胶粒晶体分别与水的接触角 θ' 和 θ 的关系 即

$$r = \frac{\cos\theta}{\cos\theta'} , \qquad (2)$$

式中 r 为 PS 胶粒晶体的粗糙度 ,r = A(真实表面 积)/A(表观表面积)

θ 和θ'分别为 PS 胶粒晶体和 PS 微球与水之间的接触角.r 反映表面的粗糙程度,对于 PS 胶粒晶体的表面 r > 1.但从图 1 可知,PS 胶粒晶体的表面可看作由直径相等的多个半球面组成的粗糙表面,因此粗糙度 r 可由

 $r = n(4\pi(d/2)^2) n\pi(d/2)^2$ (3) 计算, r = 2.考虑到胶粒晶体表面液滴中有部分水是 与胶体晶体孔隙中的空气接触的,实际液-固接触面 积要小于(3)式中的计算值,因此粗糙度 r < 2.综 上 粗糙度 r 的值介于 1 和 2 之间.

根据粗糙度 r 值及(2)式可推知 PS 微球与水的 接触角 θ'的值介于 90°—112°,所以 PS 微球与水依 然是不润湿的.PS 微球润湿性的变化可能与存在于 胶粒表面极性基团(包括表面活性剂)的离解状态不 同有关.

3.2.2. 蒸发自组装机理

Park 等人^[15,16]分析了组装需要满足两个条件: 1)PS 胶粒晶体的表观密度应小于分散介质密度;2) PS 微球与分散介质之间的密度差应足够小,使分散 介质蒸发过程中 PS 胶粒晶体能漂浮在悬浮液表面. 胶粒晶体的表观密度是指单位体积内组装体的质 量,其中组装体体积包括 PS 微球和球间孔隙.Park 等人阐述的机理能较好地解释第一层胶体晶体的组 装,但对第二层开始的多层组装过程却无法解释.因 为 PS 微球尽管可以通过对流而被输送到第一层组 装体下面,但由于上层胶体晶体的覆盖 PS 微球无法 到达气-液界面,缺乏毛细管引力而无法继续组装.

本文在对 PS 微球在气-液界面组装过程进行系统研究的基础上提出了新的组装机制,如图 3 所示. PS 微球在对流带动下到达气-液界面,由颗粒之间 弯液面产生的毛细管力会拉动 PS 微球彼此靠近并 组装在一起.与此同时,组装体孔隙内由于分散介 质的蒸发出现短暂水分缺失,而失去水分暴露于空 气中的 PS 微球表面润湿性逐渐会发生变化,即与水 完全润湿变成部分润湿直至不润湿.由于润湿性的 改变,分散介质无法补充到孔隙中而使悬浮液液面 逐渐下降至组装体下面.因此传输上来的 PS 微球与 组装体之间仍然会出现弯液面,进而形成的毛细管 力会拉动 PS 微球与上层组装体组装在一起,如图 3 中放大图所示.上述过程的重复发生,就形成了多层 组装体.因此在这一机理中 PS 微球与水润湿性的变 化在气-液界面实现多层组装过程中起了关键性 作用.

图 3 蒸发自组装法中 PS 微球进行气-液界面组装机理示意图

3.2.3. 组装机理的验证

为了证实 PS 润湿性的变化在气-液界面组装中 的作用,设计了如下实验,配置一系列含有不同比例 乙醇-水作为分散介质的 PS 悬浮液,把水作为分散 介质的 PS 悬浮液([)与含有不同比例乙醇的系列 PS 悬浮液 II) 同时放置在 90℃烘箱内加热 ,并观察 界面组装情况.体系([)在较短的时间内(约10 min 时 就会发现明显的界面组装现象 且组装持续 进行直至组装结束.体系(]])的界面组装现象与体 系(Ⅰ)明显不同:首先出现组装体的时间明显延长 且组装体生长缓慢 淇次就相同时刻而言 组装体的 上表面积随着分散介质中乙醇质量分数的提高而减 小 并且当乙醇的质量分数达到或超过 28% 时就不 再出现界面组装现象 第三 在未出现界面组装的体 系中 当分散介质被大量蒸发后才会发现界面组装 现象,上述不同体系中界面组装的差异显然与 PS 胶 体晶体和分散介质间不同润湿性有关、为此进一步 测量了干燥的 PS 胶粒晶体与体系(Ⅱ) 中混合分散 介质之间的接触角.

图 4 为干燥 PS 胶粒晶体与混合分散介质之间 的接触角 θ .根据 Wenzel 公式,润湿表面粗化后可使 润湿性变好,而对于不润湿表面粗化后润湿性变差. 因此 PS 微球与水之间的接触角 θ' 以 90°为分界,测 量值 $\theta > 90°$ 时,90° < $\theta' < \theta$;当 $\theta < 90°$ 时, $\theta < \theta' <$ 90°.接触角 θ' 随乙醇质量分数的增加而降低.当乙 醇的质量分数小于 10.7% 时,接触角 $\theta' > 90°$,表明 二者是不润湿的.当质量分数超过 10.7%,接触角 $\theta' < 90°$.胶粒晶体与混合分散介质间变成润湿,且 润湿性随乙醇比例的增加而增强.实验中未观察到 界面组装现象所对应的接触角为 $\theta = 22°$.根据粗糙 度 r 及(2)式可知,PS 微球与水的接触角 θ' 介于 22°—62°之间.我们称未出现组装体时对应的 PS 微 球与水的接触角为临界接触角 θ' crited.

图 4 干燥 PS 胶粒晶体与混合分散介质之间的接触角 θ 随乙醇 质量百分数 x 的变化曲线

胶粒晶体中 PS 微球通常呈面心立方(fcc)排列 (如图 1 所示),其中 PS 微球的体积占 74%,孔隙占 26%.据此可计算出 PS 胶粒晶体表观密度约为 0.78 g/cm³(PS 的密度为 1.05 g/cm³,空气的密度约等于 0 g/cm³).未出现组装体的 PS 悬浮液中乙醇质量分数 为 28%,其密度约为 0.93 g/cm³(乙醇的密度为 0.79 g/cm³,水的密度为 1 g/cm³).由于 PS 胶粒晶体的表 观密度(0.78 g/cm³)小于混合分散介质的密度(0.93 g/cm³) 按照 Park 等人的结论应该生成组装体,然而 事实上却没有出现界面组装体.

上述实验结果说明,PS 胶粒晶体的表观密度低 于分散介质的密度只是进行界面组装的条件之一, 同时还需满足 PS 微球与分散介质间的接触角大于 某一数值 θ'_{critical}这一条件.因为随着 PS 微球与分散 介质间润湿程度的提高,即接触角小于 θ'_{critical}时,即 使有少数的 PS 微球可暂时组装在一起,但是其孔隙 内分散介质被蒸发掉的同时仍然会不断补充进来. 由于孔隙内充满分散介质的 PS 胶体晶体表观密度 是大于分散介质密度的,因此瞬间形成的组装体就 会沉入悬浮液内部而无法继续组装.

乙醇质量百分含量为 28% 的 PS 悬浮液在后期 仍出现界面组装现象可能与混合分散介质中乙醇被 大量蒸发有关.因为随着分散介质中乙醇浓度的降 低,气-液相界面处 PS 微球与分散介质之间接触角 增大,润湿性变差.当接触角大于 $\theta'_{criteal}$ 时,就开始 组装.这个实验也证实了 PS 微球润湿性的转变在持 续组装过程中发挥着关键作用.

4.结 论

PS 微球蒸发自组装是在悬浮液表面(气-液界 面)进行的.气-液界面处 PS 微球间由弯液面产生的 毛细管力是 PS 胶体晶体发生组装的推动力.随分散 介质蒸发,裸露在空气中的 PS 微球表面与水之间的 润湿性发生了转变.PS 微球润湿性的变化,一方面, 使分散介质无法补充到组装体孔隙内,孔隙内充满 空气的组装体表观密度小于水而浮在悬浮液液面 上;另一方面,使悬浮液面能够维持在组装体的下 面,传输上来的 PS 微球得以到达气-液界面并产生 组装的推动力——毛细管力.

综上所述 组装的发生至少要满足以下两点:1) PS 微球与分散介质的密度差要足够小 2)PS 微球润 湿性随分散介质的蒸发而发生转变并最终变成不润 湿.基于上述两点 ,生成的 PS 胶粒晶体表观密度会 小于分散介质密度 ,从而组装体能漂浮在悬浮液表 面而持续组装.

- [1] Chen H Y, Guo H L, Ni P G, Zhang Q, Cheng B Y, Zhang D Z
 2003 Acta. Phys. Sin. 52 2155 (in Chinese) [陈红艺、郭红莲、
 倪培根、张 琦、程丙英、张道中 2003 物理学报 52 2155]
- [2] Zhang Q , Meng Q B , Cheng B Y , Zhang D Z 2004 Chinese Physics 13 58
- [3] Takano K , Nakagawa K 2001 Ieice Transactions on Electronics E84C 669
- [4] Cumpston B H , Ananthavel S P , Barlow S , Dyer D L , Ehrlich J E , Erskine L L , Heikal A A , Kuebler S M , Lee I-Y S 1999 Nature 398 51
- [5] Lee K, Asher S A 2000 J. Am. Chem. Soc. 122 9534
- [6] Amos R M, Rarity J G, Tapster P R, Shepherd T J, Kitson S C 2000 Phys. Rev. E 31 2929
- [7] Jiang P , Bertone J F , Hwang K S , Colvin V L 1999 Chem. Mater 11 2132
- [8] Dimitrov A S , Nagayama K 1996 Langmuir 12 1303
- [9] Yamaki M , Higo J , Nagayama K 1995 Langmuir 11 2975
- [10] Adachi E , Dimitrov A S , Nagayama K 1995 Langmuir 11 1057
- [11] Denkov N D , Velev O D , Kralchevsky P A , Ivanov I B , Yoshimura H , Nagayama K 1993 Nature 361 26

- [12] Denkov N , Velev O , Kralchevski P , Ivanov I B , Yoshimura H , Nagayama K 1992 Langmuir 8 3183
- [13] Szekeres M, Kamalin O, Schoonheydt R A, Wostyn K, Clays K, Persoons A, Dekany I 2002 J. Mater. Chem. 12 3268
- [14] Norris D J , Vlasov Y A 2001 Adv. Mater. 13 371
- [15] Vlasov Y A , Bo X Z , Sturm J C , Norris D J 2001 Nature 414 289
- [16] Joannopoulos J D 2001 Nature **414** 257
- [17] Im S H , Park O O 2002 Langmuir 18 9642
- [18] Im S H , Lim Y T , Suh D J , Park O O 2002 Adv . Mater . 14 1367
- [19] Gao M L, Chen G, Zhang H 2003 Chem. J. Chinese Universities
 24 2293(in Chinese)[高芒来、陈 刚、张 华 2003 高等学校 化学学报 24 2293]
- [20] Zhao Q N, Liu B Sh, Zhao X J, Sleight A W 2003 J. Chin. Ceram. Soc. 31 678(in Chinese)[赵青南、刘保顺、赵修建、 Sleight A W 2003 硅酸盐学报 31 678]
- [21] Cao X P, Jiang Y M 2005 Acta. Phys. Sin. 54 2202(in Chinese) [曹晓平、蒋亦民 2005 物理学报 54 2202]
- [22] Wenzel R N 1936 Ind. Eng. Chem. 28 988
- [23] Cassie A B D , Baxter S 1944 Trans . Faraday Soc . 40 546

The mechanism of self-assembly of polystyrene submicrospheres at water-air interface *

Wang Xiao-Dong Dong Peng[†] Chen Sheng-Li Yi Gui-Yun

(State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Beijing 102249 , China) (Received 19 May 2006 ; revised manuscript received 29 July 2006)

Abstract

The mechanism of polystyrene submicrosphere assembly in aqueous suspension was studied systemically. During the evaporation of solvent, the PS spheres were transported to the water-air surface, where these spheres self-assembled into colloidal crystal through the capillary force between the particles at water-air interface. The wettability of the PS spheres at the water-air interface could change from complete wetting to partial wetting and finally to non-wetting with the evaporation of water, so that the contact angle between the PS spheres and water increased gradually. The researches showed that only after the contact angle reached a critical value $\theta'_{\text{critical}}$, could the PS sphere-assembly occur. The critical value $\theta'_{\text{critical}}$ which was obtained from the Wenzel equation was greate than the measured value $\theta_{\text{critical}} = 22^{\circ}$, because the surface of PS colloidal crystal was " regularly " coarse. The change of the PS spheres at water-air interface from hydrophilic to hydrophobic is essential for the PS spheres assembling into colloidal crystals.

Keywords : self-assembly , colloidal crystals , polystyrene microspheres , wettability PACC : 9240J , 8270D , 8120S , 6810

^{*} Project supported by the State Key Development Program for Basic Research of China (Grant No. 2004CB217808) and by the National Natural Science Foundation of China (Grant No. 20376046 20473108).

[†] Corresponding author. E-mail : p. dong@china.com