速调管 2.5 维非线性注波互作用程序的研究

赵 鼎¹²) 丁耀根¹) 王 勇¹⁾

1)(中国科学院电子学研究所,北京 100080)
 2)(中国科学院研究生院,北京 100039)
 (2006年9月12日收到,2006年11月16日收到修改稿)

在高导流系数的速调管中电子束径及横向速度都会发生显著变化,运动电子与间隙电场之间的能量交换是非 线性的互作用过程.为了能准确描述这些现象,我们建立了相应的物理模型并据此编写了用于速调管注波互作用 分析的 2.5 维程序 LSP.随后使用该程序针对一个实际的 S 波段高峰值功率速调管做了详细的计算,与一维程序的 计算结果和实测数据的比较表明 LSP 程序的计算值具有更好的准确性且与实测值很好地一致.

关键词:速调管,2.5 维,注波互作用 PACC:5270G,5235M

1.引 言

实际中使用的大功率速调管通常工作在增益出 现饱和的非线性区域,以充分发挥其高输出功率和 高效率的优点,这时必须依靠大信号理论分析才能 得到有意义的结果.一维圆盘模型主要考虑了电子 之间的纵向电场力,同时认为每个圆盘中包含的电 子具有完全相同的运动状态.对于聚焦良好的速调 管,其电子注径向波动较小并且电子之间的超越现 象不严重,因此由一维模型得到的结果仍然能较好 的反映实际情况.但对于导流系数高,电子注波动大 的速调管,运动电子的径向和角向速度变得不能忽 略,这时一维程序的计算结果与实际测试结果(尤其 是宽带速调管的情形)之间存在较大误差.实际使用 表明对于高导流系数的速调管,根据一维模型计算 的器件效率要比实测值高 10%—20%^[1].

一维模型的误差主要来源于以下几个方面: 1)忽略了电子的横向运动,特别是对于低能电子,其 径向和角向速度的大小可以与轴向速度相比拟,而 刚性圆盘的假设却丢失了这些信息,2)无法精确描述间隙电场,因为圆盘的截面是不变的矩形,它不能 沿径向伸展以及沿轴向变凹或变凸,这使得考虑间 隙径向电场分量或者轴向电场分量沿径向的变化对 一维模型没有意义,3)基于圆盘模型的程序不能对 实际器件中存在的电子截获问题进行分析,所有的 荷电粒子最终都会离开间隙互作用区 4)圆盘模型 所描述的只能是一种具有无穷大轴向磁场的理想聚 焦情形,不能考察聚焦磁场强度及轮廓的改变对输 出腔效率的影响,而外加磁场是实际器件中必须要 考虑的重要参量.

所谓的 2.5 维是指计算中将磁场和电场的径向 和轴向分量均考虑在内,同时允许荷电粒子具有三 维的运动速度^[2].对于圆柱形的器件结构,充分利用 系统的对称性,将电子束沿径向进一步分割为宽度 可变的圆环(圆环上各点具有相同的角速度,整体作 为一个宏粒子),能够克服上述一维模型中的缺陷. 基于圆环模型的 2.5 维程序不仅能全面描述电子在 漂移管和谐振腔间隙运动时所经历的主要物理过程 而且还具有可接受的适中的计算量,这些优点使其 在速调管的分析和设计中具有重要的实用意义.

本文将介绍我们开发的 2.5 维计算程序 LSP 所 依据的原理,以及使用该程序对中国科学院电子学 研究所研制的用于电子直线加速器的 S 波段高峰值 功率速调管的分析结果,这包括电子的相位轨迹、电 子速度随轴向距离的变化、电子束径的波动、输出腔 入口和出口位置处电子的群聚状态、电子注运动电 流沿轴向的变化趋势和输出腔中感应电流的各次谐 波分量.最后在不同的运行电压下将 LSP 程序与 KLY6(中国科学院电子学研究所编写的速调管一维 分析程序)及实验数据做了比较结果表明 LSP 程序 的准确性优于一维程序并且与实测值很好地一致.

2. 物理模型

2.1. 圆环模型对电子注的描述

一般速调管采用圆柱状实心电子注,因此我们 很自然地使用一组共轴的圆环作为程序中追踪的荷 电粒子,并且考虑到时间周期性,速调管内部的主要 物理过程可由谐振腔场与一个电子波长λ。的电子 注的相互作用完全描述,于是对电子注的划分只需 局限于λ。的距离内.

对于长度为 λ_{e} 的均匀电子注,可以首先将其沿轴向等分为 N_{e} 个圆盘,再将每个圆盘沿径向分割 为 N_{e} 个等体积的圆环(中心粒子仍为圆盘),这里 假设电子注截面上的电荷均匀分布(实际情形中边 缘的电荷密度较大),因而各圆环携带的电量均相 等.此外还需定义圆环的中心线以标记其所在位置, 即对于每一个圆环,我们选择位于圆环体内将整个 环体分割为两个体积相等的子环的圆柱面为中心环 面,中心环面上与圆环垂直于轴线的两侧端面距离 相等的圆为中心线.图 1 中示出了将一个电荷圆盘 分割为三个圆环的情形,同时标出它们的中心线与 轴线间的距离, R_{h} 为电子束半径.

图 1 将一个圆盘分割为 3 个圆环的示意图

对于第 *i* 个圆环 ,*i* = 1 2 ,... , N_r ,其中心线半径 $r_{i,cen}$,内边缘半径 $r_{i,in}$ 和外边缘半径 $r_{i,out}$ 可依据下面 的一组公式计算:

$$r_{i \text{ cen}} = \sqrt{\frac{2i-1}{2N_r}} R_{\rm b}$$
 , (1)

$$r_{i,in} = \sqrt{\frac{2i-2}{2i-1}} r_{i,cen}$$
 , (2)

$$r_{i \text{ out}} = \sqrt{\frac{2i}{2i - 1}} r_{i \text{ cen}}.$$
 (3)

在粒子运动过程中当第 *i* 个圆环的中心线径向 位置改变时,它的内、外边缘半径仍然按照(2 承(3) 式的比例关系确定.这样处理的前提是电子的运动 满足层流性要求,在考虑下述两点分析的基础上,我 们可以认为这一前提是近似成立的,即1)电子注集 中于轴线附近且在束截面上的空间电荷场和聚焦磁 场近似均匀(即满足傍轴近似条件);2)尽管谐振腔 间隙电场不满足傍轴近似,但只有在输出腔中才存 在较强的间隙场,位于群聚段的谐振腔间隙场相对 较弱.

在运动过程中圆环的径向宽度将有所变化,但 其纵向厚度保持恒定.粒子运动遵循相对论形式的 洛伦兹力方程:

$$\frac{\mathrm{d}(\gamma v)}{\mathrm{d}t} = -\eta \left(E + v \times B \right), \qquad (4)$$

式中,_η为电子荷质比,_γ为相对论因子, *E*为粒子 之间的空间电荷场和谐振腔间隙电场的线性迭加, *B*为电子束自身激励的角向磁场与外加聚焦磁场 的线性迭加,实际计算中应该将(4)式在柱坐标系中 展开为分量式.

对于满足设计要求的电子枪,由其发射的电子 在经过实际的过渡区之后在速调管注波互作用区入 口处的运动状态与理想过渡区对电子注的作用效果 相同^[3] 因此在程序中各荷电圆环在初始时刻的位 置和速度分量可根据平衡电子流的要求人为设置.

2.2. 圆环之间的空间电荷力

圆环之间的空间电荷力使用格林函数法^[4]计 算,在求取作用力时忽略谐振腔间隙而认为荷电圆 环位于无限长的理想导电圆柱面内,同时还假设各 圆环体内的电荷密度均匀.取源电荷环1携带的电 量为 q_1 ,中心线位于 r'_e 和 z'_e 处, r'_1 和 r'_o 分别为圆 环1的内缘和外缘半径; q_2 为受力电荷环2携带的 电量,不带撇的量 r_e 和 z_e 为中心线的坐标位置;圆 环的纵向厚度均为d.经过一系列繁复的数学运算, 可以得到源电荷环1对受力电荷环2的轴向和径向 作用力如下:

1)源电荷环与受力电荷环在轴向不存在重叠, 即 $|_{z_c} - z'_c| \ge d$ 时,

$$F_{21z>} = \frac{z_{\rm c} - z_{\rm c}'}{|z_{\rm c} - z_{\rm c}'|} \frac{q_1 q_2}{2\pi\varepsilon_0 a^2} \sum_{n=1}^{\infty} \frac{J_0(\mu_n r_{\rm c})}{J_1^2(\mu_n a)}$$

$$\times C_r(n)C_{zl}(n),$$
 (5)

$$F_{21r>} = \frac{q_1 q_2 \gamma}{2\pi\epsilon_0 a^2} \sum_{n=1}^{\infty} \frac{J_1(\mu_n r_c)}{J_1^2(\mu_n a)} C_r(n) C_{zl}(n). (6)$$

2)源电荷环与受力电荷环在轴向存在重叠,即 $|z_c - z'_c| < d$ 时,

$$F_{21z<} = \frac{z_{c} - z'_{c}}{|z_{c} - z'_{c}|} \frac{q_{1}q_{2}}{2\pi\varepsilon_{0}a^{2}} \sum_{n=1}^{\infty} \frac{J_{0}(\mu_{n}r_{c})}{J_{1}^{2}(\mu_{n}a)} \times C_{r}(n)C_{z2}(n), \qquad (7)$$

$$F_{21r<} = \frac{q_1 q_2 \gamma}{2\pi\varepsilon_0 a^2} \sum_{n=1}^{\infty} \frac{J_1(\mu_n r_e)}{J_1^2(\mu_n a)} C_r(n) C_{z3}(n). (8)$$

式中的 C₁(n),C₂₁(n),C₂₂(n)及 C₂₃(n)具有下列 形式:

$$C_{r}(n) = \frac{r'_{o}J_{1}(\mu_{n}r'_{o}) - r'_{i}J_{1}(\mu_{n}r'_{i})}{0.5\mu_{n}(r'^{2}_{o} - r'^{2}_{i})}, \qquad (9)$$

$$C_{zl}(n) = \frac{1}{(\mu_n \gamma d)^{\gamma}} \left[-2e^{-\mu_n \gamma |z_c - z'_c|} + e^{-\mu_n \gamma (|z_c - z'_c| + d)} + e^{-\mu_n \gamma (|z_c - z'_c| + d)} \right],$$
(10)

$$C_{z2}(n) = \frac{1}{(\mu_{n}\gamma d)^{\gamma}} [2 - 2e^{-\mu_{n}\gamma}|_{z_{c}-z_{c}'}| + e^{-\mu_{n}\gamma}(|z_{c}-z_{c}'|+d) - e^{\mu_{n}\gamma}(|z_{c}-z_{c}'|-d)],$$
(11)

$$C_{z3}(n) = \frac{1}{(\mu_n \gamma d)^2} [-2\mu_n \gamma (|z_c - z'_c| - d)] - 2e^{-\mu_n \gamma |z_c - z'_c|} + e^{-\mu_n \gamma (|z_c - z'_c| + d)} + e^{\mu_n \gamma (|z_c - z'_c| - d)}].$$
(12)

上述(5)—(12)式中, ϵ_0 为真空中的介电常数,a为 漂移管内半径, J_0 和 J_1 分别为零阶和一阶贝塞尔 函数, μ_n 是方程 $J_0(\mu_n a)=0$ 的第n个根.

需要说明的是,上述推导的前提是电子都以恒 定的速度 u₀ 沿纵轴运动,但速调管中的电子显然处 于有加速度存在的运动状态,考虑到空间电荷力随 轴向距离的增加很快衰减,因此只要电子在 1/4 电 子波长的距离内速度能大致保持一致,则该方法仍 然是可行的.

当受力圆环的径向宽度较小时,计算表明对于 受力圆环内的某一点,由源电荷环施加的空间电荷 力随该点所在径向位置的不同变化很小,这样就可 以将受力圆环的电荷集中放置在内、外边缘之间的 中心环面上以简化计算;在累加源电荷环施加的空 间电荷力时,将源环携带的电量集中于其内部某一 代表性的环线或环面上,均会导致计算出的空间电 荷场出现很大误差,这是由于电子束中的电荷实际 上是分布在一定的区域内,做上述处理将极大的改 变这一物理前提⁵¹.

作为一个实际的算例,图 2 所示为在半径 a = 1.7 mm 的导电圆柱面内,源电荷环的中心线位于 0.3 a 处,内缘和外缘半径分别为 0.245 a 和 0.346 a 时,作用于一个径向厚度为无限薄的理想圆环上的 空间电荷力,电子波长 λ_a 约为 0.0108 m,圆环的厚 d 均取为 0.0005 m,图中的横轴表示两圆环中心 线之间的纵向距离.

图 2 圆环产生的(a) 油向作用力 F_z 和(b) 沦向作用力 F_r 随二 者之间距离 z 的变化

从图 χ a)可以注意到 ,两圆环重叠时轴向作用 力 F_z 降为零 ,当二者之间的距离约为 d 时 F_z 出现 极值 ,之后随着 z 的持续增大 F_z 很快衰减 ,此外 ,当 受力圆环径向位置 r_c 变动时 F_z 的最大值 F_{zmax} 有明 显不同 ,在 r_c 逐渐增加的过程中 , F_{zmax} 首先增大然 后开始减小 ,可以预见当 r_c 移动到源环中心线 r'_c 附近的某一位置时 F_{zmax} 取得极值.

图 χ b)显示出 F_r 和 F_z 的区别在于 :圆环在纵 向重叠(即 z = 0)时 $F_r \neq 0$,且对应这一位置 F_r 出现 极值 随着距离 z 的增加 F_r 较 F_z 衰减得更快 ;当 r_c 较小时对应一定的 z 值(通常仅在|z| < d的范围内)理想圆环有可能受到指向轴线的"压缩"力作用.同样, F_{max} 的极值亦出现在 r_e 与源环中心线 r'_e 相距较近的位置处.

空间电荷力的轴向分量 F_z 为距离 z 的奇函数, 径向分量 F_z 为z 的偶函数.

2.3. 谐振腔作用间隙中的电场

在经过短暂的瞬态过程之后,不断通过的电子 流将在谐振腔中激起稳定的电磁场,达到稳态的谐 振腔中往往只存在单一的谐振模式(此时场的结构 也相对简单),间隙电压成为随时间做简谐振荡的函 数.因此可以将位于漂移管外部的谐振腔的作用由 其间隙处建立的电压直接等效,即采用"端口近似" (port approximation)方法^[26]以简化对谐振腔的处理. 此时谐振腔的具体结构没有被明显考虑,但其影响 体现在间隙电场的分布函数中.

如设重入式谐振腔的互作用间隙宽度为 2l,漂 移管半径 a 取为其内径 r_1 和外径 r_2 的平均值 ,即 $a = (r_1 + r_2) 2$.选取漂移头之间电场的分布函数为 f(z,a) = cosh(mz),其中 m 为场形参数 ,用于反映 间隙电场变化的陡峭程度 ,则从波动方程出发使用 围道积分的方法可以导出间隙内的二维场分布^[7], 经过整理之后的表达式如下:

1)当 – *l* < *z* < *l* 时

$$f_{z}(r,z) = \cosh(mz) \frac{J_{0}(r\sqrt{k^{2}+m^{2}})}{J_{0}(a\sqrt{k^{2}+m^{2}})} - \sum_{n=1}^{\infty} A_{n} \frac{v_{n}J_{0}(\frac{r}{a}v_{n})}{p_{n}J_{1}(v_{n})} \cosh(p_{n}\frac{z}{a}) e^{-p_{n}\frac{1}{a}},$$
(13)

$$f_{r}(r_{n}z) = \sum_{N=1}^{\infty} A_{n} \frac{J_{1}(\frac{r}{a}v_{n})}{J_{1}(v_{n})} \sinh\left(p_{n}\frac{z}{a}\right) \\ \times e^{-p_{n}\frac{l}{a}} - \frac{m\sinh(mz)J_{1}(r\sqrt{k^{2}+m^{2}})}{\sqrt{k^{2}+m^{2}}J_{0}(a\sqrt{k^{2}+m^{2}})}.$$
(14)

2)当 z > l 或z < - l 时

$$f_{z}(r,z) = \sum_{n=1}^{\infty} B_{n} \frac{v_{n} J_{0}\left(\frac{r}{a}v_{n}\right)}{p_{n} J_{1}(v_{n})} e^{-p_{n} \frac{|z|}{a}}, \quad (15)$$

$$f_{r}(r,z) = \sum_{n=1}^{\infty} B_{n} \frac{J_{1}\left(\frac{r}{a}v_{n}\right)}{J_{1}(v_{n})} e^{-p_{n} \frac{|z|}{a}} \frac{z}{|z|}. \quad (16)$$

累加求和项中的系数 A_n 和 B_n 分别为

$$A_n = \frac{\mathrm{e}^{ml}}{p_n - am} + \frac{\mathrm{e}^{-ml}}{p_n + am}, \quad (17)$$
$$B_n = \frac{\mathrm{sinl}(p_n + am)\frac{l}{a}}{p_n + am} + \frac{\mathrm{sinl}(p_n - am)\frac{l}{a}}{p_n - am}.$$

(18)

上述(13)--(18)式对应轴向坐标原点取在间隙对称 中心的情形, v_n 是零阶贝塞尔函数的第n 个根, $p_n = \sqrt{v_n^2 - (ka)^2}$,自由空间的波数 $k = 2\pi f/c$,这里 f为工作频率,c 为真空中的光速.

场形参数 *m* 的值与漂移头的曲率半径 *r_n* 以及 间隙长宽比 *l/a* 有关 结合文献 8 9 叶的经验公式 及我们所做的修正 ,*m* 可依据下式确定:

$$m = \left(\cosh^{-1}\left(0.51\sqrt{\frac{2l}{r_n}} + 0.58\right) + 1\right) / 2l.(19)$$

图 3 中绘出了在 a = 1.9 mm, l = 1.6 mm 及 f = 6505 MHz 时,由上述解析公式和 SUPERFISH(该软件的结果作为场的真实值)计算出的对应间隙中半径 r = 0.2a, r = 0.6a 及r = 0.8a 处的电场强度变化曲线,此时的 m = 1475,图中的实线和虚线分别对应解析解和软件数值解.

图 3 由解析式及 SUPERFISH 计算出的间隙不同径向位置处的 (a) 釉向电场 *E*₂ 和(b) 径向电场 *E*₇ 的比较

从图 3(a)中可见,轴向电场 E_2 主要集中在作 用间隙内,直到 r = 0.8a 时解析结果才表现出与数 值解的较大不同,而漂移管内的电子注填充比一般 为 0.6-0.7,因此可以认为由解析式描述的轴向场 是足够准确的;图 3(b)中的曲线表明径向电场 E_7 的极值出现在漂移头处,随着径向位置 r 的增大,解 析解与数值解在漂移头附近的差异也变得较大,但 在作用间隙内二者仍然具有较好的一致性.

将原点取在间隙中心时,轴向场 *E_z* 是 *z* 的偶函数, *E* 向场 *E_t* 是 *z* 的奇函数.

2.4.磁场

速调管中的磁场来自三个方面,分别为运动电子束自身激励的磁场,谐振腔作用间隙中 TM₀₁₀型模式的角向磁场分量以及外加的聚束磁场.

电子束自身激励的角向磁场能够提供运动电子 一个指向轴线的洛伦兹力,从而有助于抵消电子注 中引起径向扩散的电场力,但它的值只是电子注内 径向场强的 u_0/c^2 倍,在电子速度 u_0 远小于光速 c的非相对论情形下是可以忽略的.

谐振腔间隙中的角向磁场约为其内部电场强度 的 1/ω, 而ω的值通常很大(10°—10¹⁰量级以上),它 对电子运动的影响甚至小于电子束的自激磁场,间 隙磁场不能提供稳定的聚焦作用,因为它的幅值和 方向随时间不断变化.电子流的运动状态主要取决 于谐振腔间隙的电场,因而在计算中忽略间隙磁场 的影响.

由螺管线包或永磁系统产生的聚焦磁场在速调 管轴线上的分布值可通过实验方法直接测量,对于 轴对称的聚焦结构,如果其轴线上磁场 $B_{z}(0,z)$ 已 知,则离轴的磁场分量 $B_{z}(r,z)$ 和 $B_{r}(r,z)$ 可以表 示为谢尔茨级数(Scherzer series)的展开式^[3,0]:

$$B_{z}(r,z) = B_{z}(0,z) - \frac{r^{2}}{4}B_{z}'(0,z) + \frac{r^{4}}{64}B_{z}^{(4)}(0,z) - \dots + (-1)^{n}\frac{r^{2n}}{2}B_{z}^{(2n)}(0,z), \qquad (20)$$

$$B_{r}(r,z) = -\frac{r}{2}B_{z}'(0,z) + \frac{r^{3}}{16}B_{z}'''(0,z) - \dots + (-1)^{n+1}\frac{r^{2n+1}}{2^{2n+1}n(n+1)!}B_{z}^{(2n+1)}(0,z).$$
(21)

一般而言,无论实测数据连成的曲线多么光滑,使用 时保留上两式中直至二阶导数的项即已足够,增加 高阶项并不能进一步提高精度,

3. 计算结果及讨论

中国科学院电子学研究所研制的 S 波段 50 MW 高峰值功率速调管用于电子直线加速器,其工作频 率为 2856 MHz,电子注直流电压 V_0 为 309 kV,直流 电流 I_0 为 376 A,使用均匀磁场聚焦.该速调管注波 互作用段包含 6 个谐振腔,总长度约为 0.49 n(输入 腔与输出腔间隙中心间的距离),在计算中将一个电 子波长的电子注做轴向 30 × 径向 3 的划分,下面给 出由 LSP 程序得到的结果.

图 4 示出荷电粒子在 *r-z* 截面的运动轨迹,纵 轴为粒子的径向位置对漂移管半径 *a* 的归一化值, 从图中可见在速调管的群聚段电子注的径向波动较 小,但当电子运动到输出段时其径向位置将出现很 大的变化.

图 4 荷电粒子在 r-z 截面的运动轨迹

图 5 表示荷电粒子对光速 c 归一化的轴向速度 u_z 随运动距离 z 的变化,可知在通过输出腔,对应图 中的 0.49 m 处)时大多数电子受到间隙电场的减速 而向外界交出能量,其运动速度在很短的距离内迅 速下降且各电子的速度零散变得十分显著.

图 5 荷电粒子的轴向速度分量随运动距离的变化

图 6 为荷电粒子的相轨迹, 它反映了电子从均

匀入射至依次受到各谐振腔的调制而逐渐出现群聚 的变化过程,在速调管的设计阶段相轨迹图将为判 断器件结构及参数选择是否合理提供重要参考.从 图中可见,随着轴向距离的增加,每一条重合的相轨 迹开始分裂为三条,这反映出起始时刻由同一圆盘 划分出的三个圆环的运动状态逐渐变得不同.

图 6 荷电粒子的相轨迹

图 7 为电子注归一化运动电流的前 5 次谐波 分量随轴向距离的变化曲线,它们的幅值随电子的 群聚过程而逐渐增加,其中基波分量最大,二阶及以 上的谐波分量相对较小且对最终的能量交换过程没 有贡献.

图 7 电子注归一化运动电流的谐波分量沿轴向距离的变化

图 8 中示出对应输出腔的入口和出口位置处 的粒子速度与相位之间的关系,从图 & (a)可见,入 口处的电子速度基本一致且大部分电子均集中在较 窄的相位区间内,图 & b)表明经过输出腔后电子的 速度和相位都出现较大的零散,而且大多数电子的 速度都明显减小.

图 9 为输出腔中激励的感应电流及前 4 次谐波 分量在一个时间周期内的波形,易知基波电流的幅 值最大,二次及以上的高次谐波分量相对较小.

图 10 为对应不同工作电压时由 LSP 及 KLY6 程序计算出的传输特性曲线,可见二者的差异比较 明显,在输入功率从零开始增加时 KLY6 程序预测

图 8 在输出腔的(a)入口和(b)出口位置处的粒子速度相位图

图 9 输出腔中激励的感应电流及前 4 次谐波分量

的输出功率很快上升达到饱和,此外由 KLY6 求出 的最大输出功率高于 LSP 的计算结果;而对于 LSP 程序,在输入功率大于 300 W 之后输出功率才开始 出现饱和,并可注意到这一变化过程比较平缓,这与 速调管实测中观察到的趋势相一致.KLY6 程序计算 的传输特性曲线变化较为'剧烈'的原因是一维模型 中的电子动量都集中在纵向,因此速调管中的互作 用效率被高估了.

图 11 为输出功率 P_{au} 随直流电压 V_0 变化的实

图 10 由 LSP 及 KLY6 计算的对应不同工作电压的传输特性曲线

图 11 输出功率 Pout随直流电压 Vo 变化的实测值及程序计算值

测值及 KLY6 计算值和 LSP 计算值,程序中的输入 功率参考实验条件取为 275 W,可以注意到除在直 流电压 V_0 较高的几个点上 LSP 的计算值相对于实 测结果存在一定的偏差外,在其余位置二者具有很 好的一致性.在 V_0 为 309 kV 时,速调管的实测输出 功率达到 50.9 MW, LSP 程序的计算值为 49.74 MW. 这一速调管使用了很强的聚焦磁场(约为布里渊磁 场值的2.5倍),强磁场有效抑制了电子的横向运动,因而在整个注波互作用段电子束可以较好的满 足前面2.1节中所述的层流性假设,这解释了计算 值与实测值能如此吻合的原因.

实际器件的输出功率受到多种因素的影响,如 阴极区电子速度零散、二次电子发射以及机械结构 的偏差等,这使得理论预期难以与实验值完全一致. 此外,在输出腔中电子注的层流性假设不能成立,电 子轨迹在轴向和径向都会出现严重的超越和交叉, 而基于圆环模型的2.5 维程序仍然部分的保留了层 流性的特征,即认为各圆环的径向宽度正比于其中 心线与轴线之间的距离,这也是计算误差的一个 来源.

4.结 论

为更加准确的分析速调管中电子与场的非线性 互作用过程,我们编写了基于圆环模型的 2.5 维程 序 LSP,并使用该程序对一个实际的 S 波段高功率 速调管做了分析.从计算结果可知,我们能够使用 LSP 程序对器件内部运动电子群聚的微观物理过程 进行详细考查,且由包含粒子横向运动的 2.5 维程 序计算出的速调管宏观性能指标与实测值更为 接近.

与全面考虑所有物理过程的通用程序相比,依 据近似的物理模型所开发的参量模拟程序其优点在 于能够快速的给出计算结果并且可以"清晰"的确定 各物理量之间的依赖关系,这使其在器件的分析与 设计中仍然发挥不可替代的作用.

- [1] Vacuum Tube Design Handbook Editing Committee 1979 Design Handbook of High Power Klystrons (Beijing: National Defence Industry Press) (in Chinese) [电子管设计手册编辑委员会 1979 大功率速调管设计手册(北京:国防工业出版社)]
- [2] Yu S S, Wilson P, Drobot A 1985 IEEE Trans. Nuclear Science 32 2918
- [3] Vacuum Tube Design Handbook Editing Committee 1981 Design Handbook of Microwave Tube Electron Optics System (Beijing: National Defence Industry Press)(in Chinese)[电子管设计手册 编辑委员会 1981 微波管电子光学系统设计手册(北京:国防 工业出版社)]
- [4] Smythe W R 1950 Static and Dynamic Electricity (New York:

McGraw-Hill)

- [5] Tallerico P J, Carlsten B E 1983 IEEE Trans. Nuclear Science 30 2170
- [6] Zhao D, Ding Y G, Sun P, Wang J H 2006 Acta Phys. Sin.
 55 2389 (in Chinese) [赵 鼎、丁耀根、孙 鹏、王进华 2006 物理学报 55 2389]
- [7] Kosmahl H G , Branch G M 1973 IEEE Trans. Electron Devices 20 621
- [8] Vaughan J R 1985 IEEE Trans. Electron Devices 32 2482
- [9] Onodera T , Hoashi T 1998 IEEE Trans . Electron Devices 45 1858
- [10] Vaughan J R 1972 IEEE Trans. Electron Devices 19 144

Research on 2.5-dimensional nonlinear beam-wave interaction program of klystrons

Zhao Ding¹⁽²⁾ Ding Yao-Gen¹⁾ Wang Yong¹⁾

1 X Institute of Electronics , Chinese Academy of Sciences , Beijing 100080 , China)

2) Graduate University of Chinese Academy of Sciences, Beijing 100039, China)

(Received 12 September 2006; revised manuscript received 16 November 2006)

Abstract

In high perveance klystrons, violent variation of electron beam radius and electron transverse velocity is met with, and the energy exchange between kinetic electrons and gap field is a nonlinear process. For accurately describing these physical phenomena, we have put forward the corresponding physical model and further developed the 2.5-dimensional computation program LSP. Moreover, by use of this tool, we analyzed a practical S-band high peak-power klystron in detail. By comparing with the calculation results using 1-dimensional program and experimental data, we noticed that this poly-dimensional program can approach the real situation with higher precision.

Keywords : klystron , 2.5-dimensional , beam-wave interaction PACC : 5270G , 5235M