Ag 偏离化学计量比 Ag_{1-x} Pb₁₈SbTe₂₀ 材料的热电传输性能*

鄢永高 唐新峰* 刘海君 尹玲玲 张清杰

(武汉理工大学材料复合新技术国家重点实验室,武汉 430070)(2006年10月30日收到2007年1月29日收到修改稿)

采用熔融-淬火-放电等离子体烧结制备了 Ag 偏离化学计量比 $Ag_{1-x}Pb_{18}$ SbTe₂₀(x = 0 0.25 0.50 0.75) 样品,研究了 Ag 含量对样品热电传输性能的影响.结果表明,随 Ag 含量降低,样品中出现少量第二相 Sb₂Te₃,样品载流子 浓度增加到 5×10^{18} cm⁻³后不再增加.样品载流子迁移率随 Ag 含量降低先降低后增加 随着温度增加,载流子散射 机理由电离杂质散射转变为声学波散射.随 Ag 含量降低,样品电导率增加而 Seebeck 系数降低,热导率增加.

关键词:热电材料,AgPb_mSbTe_{m+2},SPS,散射机理 PACC:7210,6590,6170

1.引 言

热电材料由于在热电发电和致冷领域有广泛的应用前景而引起研究者的关注.热电材料一般为重掺杂的窄带半导体,在过去的几十年中,硫族化合物由于其特有的能带结构和物理化学性质在很宽温度范围内都成为最重要的热电材料,如低温领域的 Bi_2Te_3 及其合金 $Bi_{2-x}Sb_xTe_{3-y}Se_y^{[1]}$,和中温领域的PbTe及其合金 $Pb_{1-x}Sn_xTe^{[2]}$,这些材料的最大无量纲热电优值ZT值接近 1.0.近十年,人们发现许多其他化合物具有 1.0 以上ZT值^[3-6],同时一些硫族化合物也表现出新的热电性能^[7].

最近,Hsu 等人^[8,9]报道一类 AgPb_mSbTe_{m+2}系列 硫族化合物可能具有 2.0 以上的 ZT 值,这类化合 物因而成为目前研究较多的几种热电材料之一.早 期的研究^[10]认为,这类化合物可以看成 AgSbTe₂ 和 PbTe 的固溶体,具有 NaCl 晶体结构,Ag,Sb 和 Pb 原 子随机占据 Na 的位置,Te 占据 Cl 的位置,而最近的 研究^[11]表明,Ag,Sb 和 Pb 原子表现出不同程度的有 序性,化合物中发现了纳米尺度的 AgSb 富集区和 Pb 富集区. Chen^[12]采用扫描 Seebeck 微探针对 ($Ag_{1-x}SbTe_2$),₀₅(PbTe),₉₅观测表明材料中出现了 mm 尺度的不均匀性,这类化合物主要采用熔融缓 冷法以及粉末冶金法制备. Hsu 采用从熔体中缓慢 冷却得到类似单晶的样品 此方法得到的样品晶界 和缺陷浓度低,样品的电导率较高,Hsu等人的结 果^[9]表明使 Ag 含量偏离化学计量比是调节材料载 流子浓度的有效手段;同时也有研究者采用粉末冶 金方法 ,Kosuga 等人[13-15]采用固相反应结合热压烧 结制备了 Ag1-x Pb18 SbTe20(x = 0.1 0.2 0.3)化合物, 结果表明材料 ZT 值随 Ag 含量的降低而增加 样品 最大 ZT 值为 1.0. Wang 等人^[16]采用机械合金化结合 放电等离子体烧结 SPS 正艺制备的 $A_{g_{0,8}}Pb_{18+x}SbTe_{20}$ 样品 样品电导率随 Pb 含量增加而增大 最大 ZT 值 为1.3^{f¹³}.这些研究结果都表明,AgPb_mSbTe_{m+2}系列 化合物具有结构上的不均匀性 而且样品的微观结 构和热电性能对其组成和制备条件非常敏感,不同 研究者由于采用不同工艺条件所得样品热电性能相 差很大,目前对该体系的研究集中在微观结构的测 试解析^{17,18]}和能带结构的理论计算^[19-21]上,而关于 样品组成以及制备条件对其载流子的传输特性及热 电性能的影响规律还有待深入研究.

本文采用熔融淬火法结合 SPS 工艺制备了偏离 化学计量的 Ag_{1-x} Pb₁₈ SbTe₂₀(*x* = 0,0.25,0.5,0.75) 化合物 系统研究了 Ag 含量对材料物相组成、载流

^{*} 国家自然科学基金重大国际合作项目(批准号 50310353)和高等学校科技创新工程重大项目培育资金项目(批准号 705035)资助的课题.

[†] 通讯联系人. E-mail :tangxf@mail.whut.edu.cn

子传输特性和热电性能的影响规律.

2.实验

将一定比例的 Ag 粉(4N5),Pb 粒(5N),Te 粉 (5N)和 Sb 粉(5N)真空密封于石英玻璃管中,于 1123 K 下熔融 4 h,淬火冷却得到熔块,粉碎后采用 放电等离子烧结法(日本住友株式会社,SPS-1050) 于真空下烧结,烧结温度和时间分别为 723 K 和 6 min.作为比较 ,Ag0.25 Pb18 SbTe20 样品同时采用 Hsu 等人报道的缓冷工艺^{9]},样品于 1123 K 下保温 8 h 后 40 h 内冷却到 723 K 然后随炉冷至室温 所得熔 块直接切割后进行测试,试样的相组成通过粉末 X 射线衍射法确定(荷兰 ,PANalytical X'Pert Pro 型衍射 仪 ,CuKα);采用电子探针(日本 ,JXA8800型 EPMA) 进行了样品微观组成分析;试样的 Seebeck 系数和 电导率采用日本真空理工株式会社 ZEM-1 型仪器 于 He 气氛中测定;使用激光闪射法(日本真空理 工,TC-7000热导率测试仪)测试试样的热容(C_p)和 热扩散系数(λ),热导率通过公式 $\kappa = C_n \lambda \rho (\rho)$ 为密 度)计算得到.采用 Hall 效应测试系统(英国 ACCENT HL5500PC 测试样品 100-500 K 的电阻率 和 Hall 系数 测试过程中样品温度采用液氮和样品 腔内微加热器共同控制,外加磁场强度为0.513T.

3. 结果与讨论

图 1 为经熔融-淬火-SPS 得到的样品的 XRD 图 谱,可以看出样品基本为单相的 NaCl 晶型化合物, 但所有样品在主峰附近(见图1右上角小图)出现了 第二相的衍射峰,图2为样品抛光面背散射照片, EPMA 结果表明样品均非单相 ,第二相尺度在几 µm 到十几 µm.主相和第二相组成分析结果见表 1. 从 主相的组成可以看出如下变化规律:随名义组成中 Ag含量的降低, 主相中 Pb 的含量逐渐增加, 同时 Ag 和 Sb 的含量逐渐下降. 第二相中 , $AgPb_{18}$ SbTe₂₀样品 出现了富 AgSb 的组成为 Ag7.63 Pb2.91 Sb7.89 Te20 的固溶 体 Sootsman^[17]指出 主峰附近出现的衍射峰可以看 成是由富含 AgSb 相造成的^{17]},与本研究结果一致. 随 Ag 含量的降低 ,其他样品中出现了富 Te 的第二 相 ,而 Ag0.25 Pb18 SbTe20 样品中第二相含有大量 Sb ,可 能为 Te 与 Sb, Te, 的混合物.这可解释如下: Ag, Te 和 Sb₂Te₃ 单独在 PbTe 中的固溶度低于 1%^[22,23],而

一般认为 AgSbTe₂ 与 PbTe 能形成无限固溶体^[10],即 Ag₂Te 和 Sb₂Te₃ 两者共同固溶时则固溶度大大增 加. AgPb₁₈SbTe₂₀样品中由于 Ag 和 Sb 摩尔比为 1:1, 因此 Ag 和 Sb 刚好可以完全固溶到 PbTe 基体中;当 Ag 含量降低时,Ag 和 Sb 共同固溶,形成 Ag_{1-x} Pb₁₈ Sb_{1-x}Te_{20-2x},而剩余的 Sb 和 Te 则生成 Sb₂Te₃.

以上过程可用下式表示:

 $Ag_{1-x} Pb_{18} SbTe_{20} = Ag_{1-x} Pb_{18} Sb_{1-x} Te_{20-2x}$ $+ 0.5x Sb_{2} Te_{3} + 0.5x Te_{3}$

图 2 Ag_{0.25} Pb₁₈ SbTe₂₀ 样品的背散射照片(500 倍)

当 x 较小时,和 Ag 共同固溶后剩下的 Sb₂Te₃ 的量也较少,可以完全固溶到主相中去,因此主相中 会出现 Ag 和 Sb 的浓度差;当 x 增大时 Sb₂Te₃ 只能 部分固溶到主相中去,剩余 Sb₂Te₃ 和 Te 共同析出成 为第二相.综合以上分析,样品 XRD 图谱中主峰附 近为 Te 或 Sb₂Te₃的衍射峰,对样品背散射照片进行 图片分析可得第二相体积含量为 1%—2%,含量较低,因此衍射峰的强度也较低.由于第二相的含量较少,因此可以认为第二相对样品的热电传输性能的影响较小.

表1 样品电子探针分析结果(按 Ten 进行归一)

名义组成	主相	第二相
$\mathrm{AgPb}_{18}\mathrm{SbTe}_{20}$	$\mathrm{Ag}_{1.14}\mathrm{Pb}_{16.07}\mathrm{Sb}_{1.57}\mathrm{Te}_{20}$	$\mathrm{Ag_{7.63}Pb_{2.91}Sb_{7.89}Te_{20}}$
$\rm Ag_{0.75}Pb_{18}SbTe_{20}$	$\mathrm{Ag}_{0.69}\mathrm{Pb}_{16.99}\mathrm{Sb}_{1.19}\mathrm{Te}_{20}$	$\rm Pb_{0.15}Sb_{1.07}Te_{20}$
$\mathrm{Ag}_{0.50}\mathrm{Pb}_{18}\mathrm{SbTe}_{20}$	$\mathrm{Ag}_{0.23}\mathrm{Pb}_{17.59}\mathrm{Sb}_{0.87}\mathrm{Te}_{20}$	$Ag_{0.47}Pb_{1.07}Sb_{1.79}Te_{20}$
${\rm Ag}_{0.25}{\rm Pb}_{18}{\rm SbTe}_{20}$	$\mathrm{Ag}_{0.28}\mathrm{Pb}_{17.77}\mathrm{Sb}_{0.48}\mathrm{Te}_{20}$	$\rm Pb_{0.987}Sb_{10.81}Te_{20}$

图 3 不同 Ag 含量样品电导率和温度的关系

图 3 给出了样品电导率随温度的变化关系. AgPb₁₈SbTe₂₀样品电导率随温度线性增加,而其他样 品电导率在低温阶段随温度增加而增加,在某一温 度 *T*₁,电导率下降;当温度增加至 *T*₂ 时,电导率又 急剧增加.

测试了样品在 100—500 K 的 Hall 系数 $R_{\rm H}$,由 公式 $N_e = 1/eR_{\rm H}$ (其中 e 为电子电量)计算了样品不 同温度下的载流子浓度,如图 4 所示. AgPb₁₈ SbTe₂₀ 样品载流子浓度随温度增加几乎线性上升,而其他 样品载流子浓度随温度增加而保持不变.可以认为 AgPb₁₈ SbTe₂₀样品呈现出本征传导特性,样品载流子 浓度随 Ag 含量的降低而增加,烧结样品在 Ag 含量 低于 0.50 后 样品载流子浓度不再增加,而是保持 在 5 × 10¹⁸ cm⁻³左右.

Hsu^[9]指出 ,AgPb_mSbTe_{m+2}化合物中 ,Ag 取代 Pb 形成负电中心 ,提供空穴 ;Sb 取代 Pb 形成正电中 心 ,提供电子.化合物中等量的 Ag 和 Sb 提供等量的

图 4 不同 Ag 含量样品载流子浓度与温度的关系

空穴和电子,空穴和电子刚好复合以保持化合物的 整体电价平衡,本研究中,AgPb₁₈SbTe₂₀样品中由于 Ag和 Sb 提供的电子和空穴完全中和,因而样品表 现出非常低的载流子浓度,在常温下就出现了明显 的本征传导特征,当化合物中Ag含量低于Sb时Sb 提供的正电中心除复合空穴外还将提供剩余的电 子,使化合物呈现 n 型传导,因此样品中 Ag 含量降 低后载流子浓度增加.同时,本研究结果表明,Ag含 量改变只能在一定范围内调节 $AgPb_mSbTe_{m+2}$ 化合 物载流子浓度,Ag含量降低到一定值后,化合物载 流子浓度并不再增加.如前所述,Ag1-*Pb18SbTe20样 品中 Ag 偏离化学计量比时,样品中出现了第二相, 而主相可以看成 $Ag_{1-x} Pb_{18} Sb_{1-x} Te_{20-2x}$ 和 $Sb_2 Te_3$ 的 固溶体 样品载流子浓度受 Sb, Te, 的固溶浓度的制 约 因此样品载流子浓度达到一定值后不再增加. Zhu等人^[24]采用从熔体中缓慢冷却的方法制备了 Sb, Te, 掺杂的 PbTe 样品,当 Sb, Te, 含量为1.02 mol% 时 样品载流子浓度可达 2.15 × 10¹⁹ cm⁻³ ,远高于本 研究结果的最大载流子浓度(5×10^{18} cm⁻³)这可能 是由于 Sb₂Te₃ 在 AgPbSbTe 四元化合物中固溶度远 比在 PbTe 中低的缘故.

样品载流子迁移率 $\mu_{\rm H}$ 由电阻率和 Hall 系数计 算得到.一般地,载流子迁移率和温度的关系可以通 过公式 $\mu_{\rm H} = \mu_{\rm HD} T^{-1.5+r}$,r为散射因子,r=0,-1.0, 3.0时分别为声学波散射、声学波和光学波相互作 用散射以及电离化杂质散射^[25].图 5 给出了样品载 流子迁移率随温度的变化关系.可以看出在 400 K 以下,载流子散射机理以电离杂质散射为主,随温度 增加,在 400 K 以上时逐渐转变为声学波散射.由于

图 5 不同 Ag 含量样品载流子迁移率与温度的关系

AgPb₁₈SbTe₂₀样品载流子浓度很低,受电离杂质散射 影响较小,所以载流子迁移率较大;Ag_{0.75}Pb₁₈SbTe₂₀ 样品载流子浓度增加,载流子受电离杂质散射影响 较大,载流子迁移率大大降低;随 Ag 含量继续降 低,样品中载流子浓度变化不大,但 PbTe 基体电离 杂质散射中心 Ag⁺和 Sb³⁺离子的浓度减小,对载流 子的散射强度减小,因而载流子迁移率又逐渐增加.

结合载流子浓度和迁移率随温度的变化关系可 以解释电导率出现的两个转变温度点:在温度较低 时,样品载流子浓度几乎不随温度变化,因此样品电 导率受载流子迁移率的调控,在 400 K 左右时,载流 子迁移率出现最大值,此时对应电导率第一个转变 温度点 *T*₁;电导率第二个转变温度点 *T*₂ 可以看成 是本征载流子开始主导传导特性的温度点.

图 6 给出了样品 Seebeck 系数随温度的变化关 系.所有样品 Seebeck 系数在整个温度测试范围内 为负值,与 Hall 系数测试结果一致,所有样品均为 n 型传导.低温下,样品 Seebeck 系数绝对值随 Ag 含量 降低而降低,随温度升高而增大,在高温下受本征激 发的影响,样品 Seebeck 系数有不同程度下降, AgPb₁₈SbTe₂₀由于掺杂浓度最低,受本征激发的影响 最大,Seebeck 系数在高温下大幅降低而远低于其他 样品.

图 7 给出了样品热导率 κ 随温度的变化关系. 样品热导率随温度降低而降低 ,同时大致随 Ag 含量的降低而增加.采用公式 $\kappa_e = LeT(L)$ 为洛沦兹常数 ,对半导体取 $2 \times 10^{-8} V^2/K^2$ 作近似^[26])计算样品载流子热导率 ,样品晶格热导率由 $\kappa_L = \kappa - \kappa_e$ 求得 ,如图中右上角插图所示 ,可见样品晶格热导率随

图 6 不同 Ag 含量样品 Seebeck 系数和温度的关系

图 7 不同 Ag 含量样品热导率和温度的关系

Ag 含量的降低而增加.前期研究结果表明, AgPb_mSbTe_{m+2}化合物晶格热导率随*m*值的降低而 降低,即随 AgSb 含量的增加而降低^[27],而本研究中 随 Ag 含量的降低 Sb 作为第二相析出,样品中作为 声子散射中心的 AgSb 浓度下降,因此样品晶格热导 率增加.

本研究中电性能最好的 Ag_{0.25} Pb₁₈ SbTe₂₀ 样品热 导率与文献 9]值相近,但由于掺杂浓度较低,电导 率大大低于文献 9]值,同时材料的 Seebeck 系数在 高温下受到少数载流子的影响而降低,样品在 450 K 具有最大的功率因子,仅为 1.26×10⁻³ W·m⁻¹·K⁻², 且在高温下降低,因此样品的整体热电性能指数 较低.

4.结 论

(1)采用熔融-淬火-SPS 烧结工艺制备了 Ag_{1-x}
Pb₁₈SbTe₂₀(x = 0,0.25,0.50,0.75)样品,Ag 含量降低时,Ag和 Sb 共同固溶到 PbTe 中,剩余 Sb 并不能
完全固溶到基体中而形成第二相 Sb₂Te₃.

(2)随 Ag 含量的降低,过剩的 Sb₂Te₃ 固溶到基

- [1] Jiang J, Xu G J, Cui P, Chen L D 2006 Acta Phys. Sin. 55 4849
 (in Chinese)[蒋 俊、许高杰、崔 平、陈立东 2006 物理学报 55 4849]
- [2] Zhang L M, Shen Q, Li J G, Wang G M, Tu R, Chen L D, Toshio H 1999 Acta Phys. Sin. 48 2334 (in Chinese)[张联盟、沈强、李俊 国、王国梅、涂溶、陈立东、平井敏雄1999 物理学报 48 2334]
- [3] Kuznetsov V L , Kuznetsova L A , Kaliazin A E ,Rowe D M 2000 J. Appl. Phys. 87 7871
- [4] Bhattacharya S , Pope A L , Littleton R T , Tritt T M , Ponnambalam V , Xia Y ,Poon S J 2000 Appl. Phys. Lett. 77 2476
- [5] Tang X F, Chen L D, Goto T, Hirai T, Yuan R Z 2000 Acta Phys. Sin. 49 2196 (in Chinese)[唐新峰、陈立东、後藤孝、平井敏 雄、袁润章 2000 物理学报 49 2196]
- [6] Caillat T, Fleurial J P, Borshchevsky A 1997 J. Phys. Chem. Solids 58 1119
- [7] Chung D Y , Hogan T , Brazis P ,Rocci-Lane M , Kannewurf C R , Bastea M , Uher C ,Kanatzidis M G 2000 Science 287 1024
- [8] Hsu K F, Loo S, Chen W, Uher C, Hogan T, Kanatzidis M G 2004 Mat. Res. Soc. Symp. Proc. 793 S6.3.1
- [9] Hsu K F , Loo S , Guo F , Chen W , Dyck J S , Uher C , Hogan T , Polychroniadis E K ,Kanatzidis M G 2004 Science 303 818
- [10] Rosi F D , Hockings E F , Lindenblad N E 1961 RCA Rev. 22 82
- [11] Quarez E , Hsu K F , Pcionek R , Frangis N , Polychroniadis E K , Kanatzidis M G 2005 J. Am. Chem. Soc. 127 9177
- [12] Chen N, Franck G, Snyder G J, Muller E, Karpinski G, Stiewe C 2005 Appl. Phys. Lett. 87 171903

体中使样品载流子浓度增加 ,但受 Sb_2Te_3 固溶度的 限制 样品载流子浓度增加至 5×10^{18} cm^{-3} 后不随 Ag 含量降低而增加.

(3)随 Ag 含量降低,样品载流子迁移率先降低 而后增加,载流子散射机理400 K 前以电离杂质散 射为主 400 K 后以声学波散射为主.

(4) 随 Ag 含量的降低,样品电导率增加, Seebeck 系数降低 热导率增加.

- [13] Kosuga A , Kurosaki K , Uno M , Yamanaka S 2005 J. Alloys Compd. 386 315
- [14] Kosuga A, Uno M, Kurosaki K, Yamanaka S 2005 J. Alloys Compd. 387 52
- [15] Kosuga A, Uno M, Kurosaki K, Yamanaka S 2005 J. Alloys Compd. 391 288
- [16] Wang H , Li J F , Nan C W , Zhou M , Liu W S , Zhang B P , Kita T 2006 Appl. Phys. Lett. 88 092104
- [17] Sootsman J, Peioneka R, Kongb H, Uher C, Kanatzidis M G 2006 Mater. Res. Soc. Symp. Proc. 886 F08-05.1
- [18] Androulakis J, Hsu K F, Pcionek R, Kong H J, Uher C, D'Angele J J, Downey A, Hogan T, Kanatzidis M G 2006 Adv. Mater. 18 1170
- [19] Bile D, Mahanti S D, Quarez E, Hsu K F, Peionek R, Kanatzidis M G 2004 Phys. Rev. Lett. 93 146403
- [20] Mahanti S D , Bilc D 2004 J. Phys. : Condens. Matter. 16 S5277
- [21] Bilc D, Mahanti S D, Kanatzidis M G 2004 Mat. Res. Soc. Symp. Proc. 793 S8.27.1
- [22] Wald F 1967 J. Less-com Met. 13 579
- [23] Henger G W, Peretti E A 1965 J. Less-com. Met. 8 124
- [24] Zhu P W , Imai Y , Isoda Y , Shinohara Y , Jia X P ,Zou G T 2005 Mater. Trans. 46 2690
- [25] Allgaier R S , Scanlon W W 1958 Phys. Rev. 111 1029
- [26] Mahan G D , Bartkowiak M 1999 Appl . Phys . Lett . 74 953
- [27] Yan Y G , Tang X F , Liu H J , Yin L L Zhang Q J 2006 Key. Eng. Mater. 336-338 854

Thermoelectric properties of nonstoichiometric Ag_{1-x} Pb₁₈SbTe₂₀ materials *

Yan Yong-Gao Tang Xin-Feng[†] Liu Hai-Jun Yin Ling-Ling Zhang Qing-Jie

(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Wuhan 430070 , China)

(Received 30 October 2006; revised manuscript received 29 January 2007)

Abstract

 $Ag_{1-x}Pb_{18}SbTe_{20}$ (x = 0 β .25 β .5 β .75) samples were prepared by melt-quench-spark plasma sintering SPS). As the Ag content decreased, a second phase Sb_2Te_3 occurred in samples and the carrier concentration increased to 5×10^{18} cm⁻³ and then ceased to increase as Ag content decreased further. The carrier mobility decreased first, and then increased, as the Ag content decreased, the carrier scattering mechanism shifted gradually from ionized impurity scattering to acoustic phonon scattering. As the Ag content decreased, the electric conductivity increased while the Seebeck coefficient decreased, and the thermal conductivity show an increasing trend.

Keywords : thermoelectric materials , $AgPb_m SbTe_{m+2}$, SPS , scattering mechanism **PACC** : 7210 , 6590 , 6170

^{*} Project supported by the Major International Cooperation Program of the National Natural Science Foundation of China (Grant No. 50310353) and the Cultivation Fund of the the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No. 705035).

[†] Corresponding author. E-mail :tangxf@mail.whut.edu.cn