LaNi₅储氢过程的热力学分析*

张秀兰¹) 黄 整^{1)†} 陈 2^{2} 麻焕锋¹) 高国强¹)

1) 西南交通大学理学院,成都 610031)
 2) 中国工程物理研究院核物理与化学研究所,绵阳 621900)
 (2006 年 8 月 25 日收到 2006 年 12 月 1 日收到修改稿)

分析了 LaNi₅ 储氢过程的热力学平衡关系 根据平衡状态下的热力学函数 导出了能够完整描述整个实验范围 *P-C-T* 关系的平衡公式.利用 *P-C-T* 平衡公式对不同温度下平衡压力与储氢量的变化曲线进行了拟合分析,计算并讨论了储氢过程中平衡反应的热力学函数.

关键词:LaNi_s,热力学,P-C-T关系 PACC:6410,6550

1.引 言

氢是人类的理想能源 ,对于储氢材料的研究主 要分为非金属^{12]}和金属^{3-10]}等类别.LaNi₅ 合金及 其衍生物是具有良好的吸收/解吸动力学特性的储 氢材料,也可用于氢同位素的储存、分离、纯化、泵输 与增压等. 目前已对 LaNis 及其衍生物作了广泛的 实验和理论研究,人们改变稀土的组成及含量,研 究其储氢特性的变化,例如 Nakamura 等用中子粉末 衍射对 $L_aNi_{4,9}Al_{0,1}D_x$ 的晶体结构和氢的占位做了解 析等温线的研究^[3], Joubert 等对 LaNis_, Pt, -H, 系统 的结构和吸氢特性做了研究^[4],樊志剑等研究了 LaNi₅D₁(x = 0 0.3)化合物的中子粉末衍射^[5],刘实 等对氦在球磨储氢合金中的存在行为进行了研 究^[6]. 理论上的研究主要集中在能量和电子结构方 面^[7-9],例如 Nakamura 等采用紧束缚线形 Muffin tin 轨道以及原子球近似(TB-LMTO-ASA)分别计算了 LaNi₅, α-La₅Ni₁₀ H,以及β-La₂Ni₁₄的电子结构和能 量^[7]. Hector Jr 等采用密度泛函理论(DFT)方法. 对 LaNi_s和 LaNi_sH₇的电子结构和弹性性质进行了计 算^[9]. 然而 ,由 LaNi₅ 及其氢化物的晶体结构和能量 导出其储氢过程中的平衡压力-储氢量-温度变化关 系(即 P-C-T 关系)仍然是一个引人注目而又困难 的课题,这要求首先建立 LaNis 储氢过程的基本热

力学方法. 在氢的同位素应用方面,实验发现 LaNi, 合金氚化合物经过长时间储存后,引起的氚老化效 应会改变氚化物的微观结构并影响其性能. 最近, 文献[10]对 LaNi, 系统的氚老化效应进行了研究, 为研究氚的老化效应提供了实验基础. 要深入研究 氚老化效应,首先需要了解 LaNi, 储氢过程的机理. 本文对 LaNi, 储氢过程的热力学平衡过程进行了理 论分析,导出了 LaNi, 储氢过程中热力学函数与 *P-C-T* 曲线之间的关系,通过拟合实验的 *P-C-T* 曲线, 计算并讨论了储氢过程中的热力学函数关系.

2. 理论方法

 $LaNi_5$ 是一种具有 $CaCu_5$ 型晶体结构的稀土储 氢合金 ,属六方晶系 ,空间群为 $P6/mmm^{[11]}$. 实验研 究表明 ,其中 La 占 1a 位 ,Ni 占 2c 和 3g 位置 ;其氢 化物中的氢原子在 $LaNi_5$ 晶体中可能占据的位置分 别为 6 m *A* h ,12o ,12n 和 3f 等 5 种占位. Lartigue 曾 用中子粉末衍射检测到 $LaNi_5 D_{6.7}^{[12]}$,一般据此认为 $LaNi_5 H_n$ 氢化物中的储氢量 *n* 不超过 7. 因此 ,可以 认为 $LaNi_5$ 合金在储氢时 ,存在以下平衡反应:

$$\text{LaNi}_5 \text{H}_n \leftrightarrow \text{LaNi}_5 + \frac{n}{2} \text{H}_2$$
, (1)

其中 ,n = 1—7. 设 LaNi₅H_n 各组分在固体合金中的 摩尔百分比浓度分别为 X_n ,则平衡反应(1)中的平

^{*} 中国工程物理研究院科学技术基金(批准号 20050212)资助的课题.

[†] 联系作者 :E-mail Zhhuang@home.swjtu.edu.cn

衡关系为

$$e^{-\frac{\Delta G_n}{R \cdot T}} = \frac{X_0}{X_n} \cdot P^{n/2} , \qquad (2)$$

其中 ΔG_n 为平衡反应式(1)的 Gibbs 函变 , R 为理 想气体普适常量 , T 为平衡温度 , P 为气体氢的平衡 压力 , X_0 为 LaNi₅ 在固体合金中的摩尔百分比浓 度. 固体合金中各组分的摩尔百分比浓度满足如下 关系:

$$\sum_{n=0}^{7} X_n = 1 , \qquad (3)$$

$$\sum_{n=0}^{7} n \cdot X_n = C , \qquad (4)$$

其中 ,*C* 为固体合金晶体中氢原子的含量 ,即每摩 尔固体合金(分子式 LaNi₅)中吸附的氢原子摩尔数. 由(2)--(4)式 ,可以导出 *P* 与 *C* 之间的关系为

$$C = \frac{\sum_{n=1}^{7} n \cdot e^{\frac{\Delta G_n}{R \cdot T}} \cdot P^{n/2}}{1 + \sum_{n=1}^{7} e^{\frac{\Delta G_n}{R \cdot T}} \cdot P^{n/2}}, \qquad (5)$$

这就是 LaNis 储氢过程中的 P-C-T 关系.

根据热力学理论,平衡反应式(1)的 ΔG_n 可写为如下形式:

 $\Delta G_n = \Delta E_n + P \cdot \Delta V_n - T \cdot \Delta S_n , \quad (6)$ 其中 $\Delta E_n \Delta V_n \Delta S_n$ 分别为平衡反应(1)前后内能、 体积和熵的变化. ΔE_n 和 ΔS_n 可以近似地表示为

$$\Delta E_n = \Delta E_n^0 + \int_{T_0}^T \Delta C_V \, , n \cdot \mathrm{d}T$$
$$= \Delta E_n^0 + \Delta C_{v,n} \cdot T - \Delta C_{v,n} \cdot T_0 \, , \qquad (7)$$
$$\Delta S_n = \Delta S_n^0 + \int_{T_0}^T \frac{\Delta C_{P,n}}{T} \mathrm{d}T$$

 $= \Delta S_n^0 + \Delta C_{P,n} \cdot \ln T - \Delta C_{P,n} \cdot \ln T_0$,(8) 其中 ΔE^0 和 ΔS^0 为平衡反应式(1)前后在标准条件 下的内能和熵的变化 , $\Delta C_{P,n}$ 和 $\Delta C_{P,n}$ 为平衡反应式 (1)前后的等体热容和等压热容的变化 , T_0 为标准 条件下的温度.

对于固体,其物态方程可表示为体积 V 在温度 T_0 和零压强的附近 Taylor 展开,

 $V_s = V_0 \cdot [1 + \alpha \cdot (T - T_0) - \kappa_T \cdot P], (9)$ 其中 V_0 为温度 T_0 和零压时固体的体积, α 为体胀 系数, κ_T 为等温压缩系数. 忽略反应前后固体的等 温压缩系数的变化,则平衡反应式(1)前后晶体体积 变化为

 $\Delta V_{s_0,n} = (\Delta V_{s_0,n} - \Delta (V_{s_0,n} \cdot \alpha) \cdot T_0)$

气体氢的摩尔体积可以由理想气体的状态方程 计算:

$$PV_g = RT. \tag{11}$$

为计算方便,固体合金中各组分的内能、体积、 热容和熵,可以近似地表示为 n 的正比例关系:

$$\Delta E_n = n \cdot \Delta E_1 , \qquad (12)$$

$$\Delta V_n = n \cdot \Delta V_1 , \qquad (13)$$

$$\Delta C_{V,n} = n \cdot \Delta C_{v,1} , \qquad (14)$$

$$\Delta C_{P,n} = n \cdot \Delta C_{p,1} , \qquad (15)$$

$$\Delta S_n = n \cdot \Delta S_1. \tag{16}$$

将(7)-(16) 武代入(6) 武则可以得到

$$\Delta G = n \cdot R \cdot (a_1 + a_2 \cdot P + a_3 \cdot T + a_4 \cdot P \cdot T)$$

$$+ a_5 \cdot T \cdot \ln T), \qquad (1/)$$

其中系数为

$$a_{1} = \frac{\Delta E_{1}^{0} - \Delta C_{v,1} \cdot T_{0}}{R} , \qquad (18)$$

$$a_2 = \frac{\Delta V_1 - \Delta (V_1 \cdot \alpha) \cdot T_0}{R} , \qquad (19)$$

$$a_{3} = \frac{1}{2} + \frac{\Delta C_{v,l}}{R} - \frac{\Delta S_{1}^{0} - \Delta C_{p,l} \cdot \ln T_{0}}{R} , (20)$$

$$a_4 = \frac{\Delta (V_1 \cdot \alpha)}{R}, \qquad (21)$$

$$a_5 = -\frac{\Delta C_{PA}}{R}.$$
 (22)

平衡反应(1)的 ΔS 和 ΔH 可以由 ΔG 对温度的偏导数求出,即

$$\Delta S_n = -\left(\frac{\partial \Delta G_n}{\partial T}\right)_{p,n}$$

= - n \cdot R \cdot (a_3 + a_4 \cdot P + a_5 \cdot + a_5 \cdot \ln T),
(23)

$$\Delta H_n = \Delta G_n - T \cdot \left(\frac{\partial \Delta G_n}{\partial T}\right)_{P,n}$$

= $n \cdot R \cdot (a_1 + a_2 \cdot P - a_5 \cdot T).$ (24)

平衡反应前后体积变化为

$$\Delta V_n = n \cdot \left[\Delta V_1 - \Delta (V_1 \cdot \alpha) \cdot T_0 + \Delta (V_1 \cdot \alpha) \cdot T + \frac{1}{2} \cdot \frac{R \cdot T}{P} \right]$$
$$= n \cdot R \cdot \left[a_2 + a_4 \cdot T + \frac{1}{2} \cdot \frac{T}{P} \right] , (25)$$

则

$$\Delta E_n = \Delta H_n - P \cdot \Delta V_n$$
$$= \Delta H_n - n \cdot R \cdot (P \cdot a)$$

$$+ P \cdot a_{4} \cdot T + \frac{1}{2} \cdot T \Big)$$

$$= n \cdot R \cdot \Big(a_{1} - a_{4} \cdot P \cdot T - a_{5} \cdot T - \frac{1}{2} \cdot T \Big). \qquad (26)$$

因此,只要确定系数 a, 就可以得到在一定温度和 压力下,储氢反应热力学函数的变化.

当
$$n = 1$$
时,平衡反应式(1)的热力学函数为

$$\Delta G_1 = R \cdot (a_1 + a_2 \cdot P + a_3 \cdot T + a_4 \cdot P \cdot T + a_5 \cdot T \cdot \ln T), \quad (27)$$

$$\Delta S_1 = -R \cdot (a_3 + a_4 \cdot P + a_5 + a_5 \cdot \ln T), \quad (28)$$

$$\Delta H_1 = R \cdot (a_1 + a_2 \cdot P - a_5 \cdot T), \quad (29)$$

$$\Delta E_1 = R \cdot (a_1 - a_4 \cdot P \cdot T - a_5 \cdot T - \frac{1}{2} \cdot T).$$
(30)

3. 结果与讨论

采用(5)式和(17)式对文献 10 叶 LaNis 在三个 不同温度下氘的解吸附实验数据进行拟合,拟合得 到的系数列于表 1. 根据拟合结果绘出了三个温度 下,LaNi,储氢的 P-C-T 关系曲线,如图 1 所示.

表1 LaNis 解吸附 P-C-T 曲线的系数

$a_1/$	$a_2/$	<i>a</i> ₃ /	a_4 /	a5/
(K/mol·H)(K/MPa · mol · H	[)(1/mol·H)([1/MPa∙mol∙H	() () () () () () () () () () () () () (
1.5749×10^4	613.57	- 229.71	- 0.66811	31.356

图 1 LaNi₅H_x 的 P-C-T 关系(实验数据来自文献 10])

由图 1 可见 拟合结果在整个实验范围内与实 验数据基本符合,由气体压强计算的储氢量与实验 数据的标准偏差为 0.47. 为讨论储氢量的影响 表 2 列出了储氢量为 C = 1-6 时,在 333 K, 343 K, 373 K 时的平衡压强.

表 2 在一定温度和储氢量下的压力 P(MPa)

С	333 K	343 K	373 K
0	0	0	0
1	0.2547	0.4328	1.1057
2	0.3854	0.6050	1.3663
3	0.4785	0.7217	1.5319
4	0.5694	0.8307	1.6812
5	0.6802	0.9610	1.8551
6	0.8782	1.1879	2.1487

由平衡压力可以计算固体晶体中 LaNi, H. 组分 的摩尔百分比浓度 即

$$X_n = \frac{\mathbf{e}^{\frac{\Delta G_n}{R \cdot T}} \cdot P^{n/2}}{\sum_{i=1}^{T} \mathbf{e}^{\frac{A G_i}{R \cdot T}} \cdot P^{i/2}}.$$
 (31)

计算结果表明 固体合金中的储氢量 C 相同 时,在实验的三个不同温度下,各组分的比例是非常 接近的. 在表 3 中列出了在 333 K, C = 1-6 时, 各 组分的摩尔百分比浓度.

表 3 温度为 333 K 时,一定储氢量下各组分的比例浓度

С	X_0	X_1	X_2	X_3	X_4	X_5	X_6	X_7
1	0.4934	0.2511	0.1277	0.0650	0.0331	0.0168	0.0086	0.0044
2	0.2940	0.2145	0.1565	0.1142	0.0833	0.0608	0.0444	0.0324
3	0.1715	0.1556	0.1411	0.1280	0.1161	0.1054	0.0956	0.0867
4	0.0871	0.0959	0.1056	0.1163	0.1280	0.1410	0.1552	0.1709
5	0.0324	0.0443	0.0608	0.0833	0.1142	0.1565	0.2145	0.2940
6	0.0044	0.0086	0.0168	0.0331	0.0650	0.1278	0.2511	0.4934

可以看出 固体合金系统形成氢化物时 并不是 单一组分的晶体相、当 C = 1 时,系统中主要包含 LaNi、LaNi、H和 LaNi、H,组分 这三个组分所占比例 的和达到 87% :随着 C 的增大 ,含氢量的较大的组 分在晶体中的比例浓度相应增大,当C = 3-4时, 各组分所占的比例接近;当 C = 6时, LaNi_s H_s, LaNis Hanis 为系统的主要组分。

表 4 列出了利用表 2 中的压强和温度,由 (27)-(29)式计算得到的平衡反应式(1)的热力学 函数

表4 平衡反应式(1)的热力学函数

С —	333 K		343 K			373 K			
	$\Delta H_1/{ m kJ}$	$\Delta S_1 / \mathbf{J}$	$\Delta G_1/\mathrm{kJ}$	$\Delta H_1/{ m kJ}$	$\Delta S_1 / \mathbf{J}$	$\Delta G_1/\mathrm{kJ}$	$\Delta H_1/{ m kJ}$	$\Delta S_1 / \mathbf{J}$	$\Delta G_1 / \mathrm{kJ}$
0	44.13	135.0	- 0.8054	41.53	127.2	- 2.116	33.70	105.4	- 5.601
1	44.15	135.0	- 0.8056	41.54	127.3	-2.117	33.71	105.4	- 5.602
2	44.14	135.0	- 0.8056	41.54	127.3	-2.117	33.71	105.4	- 5.602
3	44.04	135.0	-0.8037	41.44	127.0	-2.112	33.63	105.2	- 5.589
4	44.14	135.0	- 0.8055	41.53	127.3	- 2.116	33.71	105.4	- 5.601
5	44.13	135.0	- 0.8054	41.53	127.2	- 2.116	33.70	105.4	- 5.601
6	44.14	135.0	- 0.8055	41.53	127.3	-2.116	33.71	105.4	- 5.601

从表 4 可以发现,相同温度下,C = 0 - 6时,尽 管平衡压力不同,但反应式(1)的 ΔH , ΔS , ΔG 基本 不变.随着温度的升高 ΔH 和 ΔS 下降 ΔG 的绝对 值增大.表明温度增大有利于平衡反应式(1)的解 吸过程,温度减小有利于氢的吸附.

一般认为 LaNi_s 的吸附和解吸过程中,在很大的温度范围内,平衡压力 P 与温度 T 的关系可以由 van 't Hoff 关系描述,即 $\ln P$ 与 1/T 呈严格的直线 关系,

$$\ln P = \frac{\Delta H}{R \cdot T} - \frac{\Delta S}{R}.$$
 (32)

图 2 给出了不同储氢量 C 时的 van 't Hoff 线. 由图中直线的斜率和截距,即可计算出 LaNi₅ 的吸 附/解吸过程的 ΔH 和 ΔS ,列于表 5.

图 2 LaNi₅D_x 去氚化的 van 't Hoff 线

随着储氢量的增大,由 van 't Hoff 关系得到的 $\Delta H \Delta S$ 存在减小的趋势,与表4的规律不同.需要 指出的是,由本文导出的(5)式可以完整地描述整个 实验范围的 *P-C-T* 关系,优于 van 't Hoff 关系式.

表 5 平衡反应式(1)的热力学函数(van't Hoff)

С	1	2	3	4	5	6
$\Delta H \land (kJ/mol \cdot H)$	36.94	32.02	29.32	27.53	25.25	22.67
$\Delta S \neq J/mol \cdot H$)	214.9	203.48	197.2	193.15	187.77	182.1

4.结 论

1. 分析了固体合金 LaNi_s 储氢过程的热力学平 衡关系 根据平衡状态下的热力学函数 ,导出了能够 完整地描述整个实验范围 *P-C-T* 关系的平衡公式. 类似的 *P-C-T* 平衡公式作者未见文献报道.

2. 采用本文导出的 *P-C-T* 平衡公式,对文献 [8 的实验数据进行了拟合分析. 拟合得到的 *P-C-T* 平衡曲线与实验数据符合较好. 计算并讨论了储 氢过程中平衡反应的热力学函数 Δ*H*₁ Δ*S*₁ 和 Δ*G*₁, 表明平衡反应的热力学函数受温度变化的影响,但 是基本不受平衡压力变化的影响.

3. 值得指出的是,本文导出的 *P-C-T* 平衡式 (5)和热力学函数关系式(17)表明,如果知道氢气和 LaNi,及其氢化物的能量、体积、热容及物态方程等 性质,即可以导出 LaNi,固体合金储氢过程的 *P-C-T* 关系. 而这些性质都可以通过量子力学的晶体结构 理论计算得到,这正是储氢材料理论研究领域的重 要课题.

另外,由于本文采用的实验数据有限,因此通过 (11)-(16)式引入了合理的近似.相信如果采用更 多的实验数据,则减少理论近似的引入,也可以得到 较好的分析结果.

- [1] Zheng H, Wang SQ, Cheng H M 2005 Acta Phys. Sin. 54 10(in Chinese)[郑 宏、王绍青、成会明 2005 物理学报 54 10]
- [2] Yi S P, Zhang H Y, Ouyang Y, Wang Y H, Pang J S 2006 Acta Phys. Sin. 55 5 (in Chinese)[易双萍、张海燕、欧阳玉、王银 海、庞晋山 2006 物理学报 55 5]
- [3] Nakamura Y, Ishigaki T, Kamiyama T, Akiba E 2004 J. Alloys and Compounds 384 195
- [4] Joubert J M, Charton J, Percheron-Guegan A 2003 Journal of Solid State Chemistry 173 379
- [5] Fan Z J, Chen B, Sun G A, Xue Y J, Chen D F, Zhang X A 2006 Atomic Energy Science and Technology 40 111 (in Chinese)[樊志 剑、陈 波、孙光爱、薛艳杰、陈东风、张晓安 2006 原子能科 学技术 40 111]
- [6] Liu S, Zheng H, Zhao Y, Xun L Y, Wang L B, Yang X 2003 Acta Phys. Sin. 52 3 (in Chinese)[刘 实、郑 华、赵 越、

熊良钺、王隆保、杨 勋 2003 物理学报 52 3]

- [7] Nakamura H, Nguyen-Manh, Pettifor D. G. 1998 J. Alloys and Compounds 281 81
- [8] Liu Y, Wu F 2005 Journal of Functional Materials 36 394 (in Chinese)[刘杨、吴锋 2005 功能材料 36 394]
- [9] Hector Jr L G , Herbst J F , Capehart T W 2003 J. Alloys and Compounds 353 74
- [10] Xiong Y F, Li R, Luo D L 2002 J. Atom. Mole. Phys 19 11 (in Chinese)[熊义富、李 嵘、罗德礼 2002 原子与分子物理学报 19 11]
- [11] Soubeyroux J L, Percheron-Guegan A and Achard J C 1987 J. Less-Common Met. 129 181
- [12] Lartigue C , Le Bail A , Percheron-Guegan A 1987 J. Less-Common Met. 129 65

Thermodynamic analysis of the hydrogen storage of LaNi₅*

Zhang Xiu-Lan¹) Huang Zheng¹[†] Chen Bo²) Ma Huan-Feng¹) Gao Guo-Qiang¹)

1) School of Science, Southwest Jiaotong University, Chengdu 610031, China)

2 J. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China)

(Received 25 August 2006; revised manuscript received 1 December 2006)

Abstract

The thermodynamic equilibrium relationship of the hydrogen storage of $LaNi_5$ is analyzed. An equilibrium formula describing the *P-C-T* relationship for covering all the available experimental data is derived. The experimental *P-C-T* relationship is analyzed using the equilibrium formula. The thermodynamic functions for the equilibrium of the hydrogen storage are calculated and discussed.

Keywords : LaNi₅ , thermodynamics , *P-C-T* relationship **PACC** : 6410 , 6550

^{*} Project supported by the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 20050212).

[†] E-mail Zhhuang@home.swjtu.edu.cn