各向异性超导体电阻转变的修正 Kosterlitz-Thouless 相变模型

吉高峰¹) 刘胜利²⁾

1 ∬ 江苏工业学院信息科学系,常州 213164)
 2 ∬ 南京邮电大学数理学院,南京 210003)
 (2007 年 1月 25 日收到 2007 年 2月 11 日收到修改稿)

从二维系统的 Kosterlitz-Thouless (KT)相变理论出发,在关联长度中引入热激活能和平均钉扎高度,提出了修 正的 KT 相变模型.该模型与库伦气体标度理论和 Halperin-Nelson 关系具有一致性.应用修正的 KT 相变模型研究磁 场下 Tl₂ Ba₂ CaCu₂ O₃ (Tl-2212)薄膜电阻转变的标度行为,发现由电阻转变计算得到的平均钉扎高度与温度具有线 性依赖关系,实验结果支持修正的 KT 相变模型.

关键词:标度行为,各向异性超导体,电阻转变 PACC:7530G,7475,7430F,7460E

1.引 言

在高温超导体中,由于长的穿透深度、短的关联 长度以及很强的各向异性和高的转变温度导致显著 的热涨落,使得磁场下电阻转变具有展宽效应^[12]. 在纯净材料(去挛晶的单晶^[3,4])中强热涨落导致涡 旋格子的一级熔化^[5],将混合态分隔成涡旋固体和 涡旋液体两个不同的相.当引入无序之后,涡旋固体 相将转变成涡旋玻璃态,此时涡旋固体-液体转变成 为二级相变^[6,7].

对于各向异性高温超导体,比如 Tl₂Ba₂CaCu₂O_x (Tl-2212)或 Bi₂Sr₂CaCu₂O_x(Bi-2212)⁸¹,超导面通过 Josephson 效应耦合在一起,而热涨落和磁场会减弱 这种耦合,这非常类似于涡旋-反涡旋对的束缚和退 束缚描述的 Kosterlitz-Thouless(KT)相变^[9,10]. 当磁场 沿着一个准二维高温超导体的 *c* 轴方向时,磁通线 由通过层内和层间相互作用而耦合在一起的涡旋饼 构成^[11,12].在一定的温度下,这种相互作用能够被减 弱到足够低,使得在各个 CuO₂ 面上出现二维的涡 旋.此时,库仑气体(Coulomb-Gas)标度定律能够用来 分析这些二维涡旋^[13-15].这一标度定律假定用如下 的标度方程:

 $\ln [R(T,H)/R_{n}] = \ln [R^{*}(X)/R_{n}], \quad (1)$

 $X(T,H) = \frac{T[T_{X}(H) - T_{d}(H)]}{T_{d}(H)[T_{X}(H) - T]}, \quad (2)$

来研究 La 掺杂的 Bi₂Sr_{2-x} La_xCuO_{6+y}(Bi-2201)薄膜 在磁场下的电阻转变^[16],所有的电阻曲线(R(T, H))被标度到一条普适曲线上.这里 T_{a0} 类比于 KT相变中的 T_{KT} ,而 T_{X} 是平均场转变温度 R_{a} 是正常 态电阻 X 是库伦气体标度的标度变量. X(T, H)仅仅通过 $T_{a0}(H)$ 和 $T_{X}(H)$ 依赖于磁场 H.同时, 该普适标度曲线可以用 Halperin-Nelson 关系来描述^[10].即

lr[$R^*(X)R_n$] = $-A(X-1)^{2r}$, (3) 这里 A 是一个常数.本文从 KT 相变理论出发,通过 在关联长度中引入热激发能量和平均钉扎势,提出 了修正的 KT 相变模型,该模型给出了库仑气体标 度方程的一致性描述,并将该模型用于研究磁场下 Tl-2212 薄膜的电阻转变.

2. 理论模型

对于一个二维 KT 相变,螺旋模量在相变温度 *T*₀有一个跳变^[17].在低于 *T*₀附近关联长度无穷 大,而在高于 *T*₀附近关联长度按如下关系发散

$$\xi \propto \left[B \left(\frac{T}{T_{c0}} - 1 \right)^{-1/2} \right] , \qquad (4)$$

其中 B 是一个常数.考虑电子输运性质的时候,直

其中

流电导在二维情形下满足 σ ∝ ξ^{*} ,代入方程(4),得到 KT 相变电阻的特征行为满足

$$R \propto \exp\left[-Bz\left(\frac{T}{T_{.0}}-1\right)^{-1/2}\right]$$
, (5)

其中 z 是经典动力学临界指数.类似于修正的涡旋 玻璃相变模型^[18-20],用能量尺度来表征 KT 相变. 当热激活能和平均钉扎势相等的时候发生 KT 相 变,即

$$U_{0}(H, T_{0}) = k_{\rm B} T_{0} , \qquad (6)$$

其中 U₀ 是钉扎势的平均高度 ,而热激活能减弱钉 扎效应.此时 ,KT 相变的关联长度变成

$$\xi \propto \exp\left[B\left(\frac{k_{\rm B}T}{U_0}-1\right)^{-1/2}\right],$$
 (7)

因此 ,电阻关系可以写成

$$R = R_{\rm n} \exp\left[-Bz\left(\frac{k_{\rm B}T}{U_0} - 1\right)^{-1/2}\right].$$
 (8)

注意到如果令 $X = k_B T/U_0$,方程(8)直接给出了 Halperin-Nelson 关系(方程(3)).从电阻转变标度曲 线得到的有效激活能的经验关系满足^[20-22]

$$U_0 = U_{\rm H} (1 - T/T_{\rm c}),$$
 (9)

其中 T_{c} 是零场下的临界温度; $U_{H} = k_{B}T_{c}$ (H/H_{0})^{- β},这里 H_{0} 是特征磁场, β 是一个常数,与涡旋 玻璃相变温度类似,KT 相变温度 T_{0} 如果满足如下 关系:

$$H = H_0 \left[\frac{1 - T/T_c}{T/T_c} \right]^{1/\beta} , \qquad (10)$$

那么依赖于磁场的钉扎势变成 $U_{\rm H} = k_{\rm B} T_{\rm e} T_{\rm e} (T_{\rm e} - T_{\rm e})$)因此方程(9)变成

$$U_{0} = k_{\rm B} T_{\rm c0} \frac{T_{\rm c} - T}{T_{\rm c} - T_{\rm c0}} , \qquad (11)$$

其中磁场的依赖关系隐含在 *T*_{.0}(*H*)中.利用方程 (8)和(11)、磁场下的电阻转变函数关系变成

$$R = R_{\rm n} \exp\left[-Bz\left(\frac{T(T_{\rm c} - T_{\rm c0})}{T_{\rm c0}(T_{\rm c} - T)} - 1\right)^{-1/2}\right].$$
 (12)

由于平均场临界温度 T_x 对磁场的依赖关系非常微弱,因此可以忽略 T_e 和 T_x 的差别,即 $T_x \cong T_e$,方程 (12)直接给出了库仑气体标度关系.这一结果表明 我们提出的修正的 KT 相变模型与库仑气体标度定 律和 Halperin-Nelson 关系具有一致性.

3. 实 验

具有很好的 c 轴取向的 TI-2212 薄膜是用磁溅

射装置制备 样品制备的细节已在文献中报道^[23].X 射线衍射分析表明样品具有很好的垂直于衬底的 *c* 轴取向.样品被制成 50 µm 宽、50 µm 长 ,2000 nm 厚 的微桥.电阻测量采用标准的四引线测量法 ,固定的 偏置电流为 100 µA.外加磁场利用超导磁体达到 7 T.样品的温度通过 Rh-Fe 热电偶温度计测量.零场 下的超导转变温度是 108 K.

4. 结果与讨论

TI-2212 薄膜在不同磁场下电阻转变温度依赖 关系如图 1,外加磁场平行于 c 轴. KT 相变温度可 以通过[$\partial \ln R(T, H) \partial T$]⁻¹外推到 T 轴([$\partial \ln R/$ ∂T]⁻¹=0)得到^[16].不同磁场下的 KT 相变温度 T_{a0} 见图 2.同时 , $T_{a0}(H)$ 可以用方程(10)来描述 ,拟合 参数为 $H_0 = 2.1$ T 以及 $\beta = 0.58$, $T_c = 108$ K 是零场 下的临界温度.该结果与点无序的 3D-XY 超导体的 涡旋玻璃相变温度非常类似.

图 1 TI-2212 薄膜磁场平行于 c 轴时,不同磁场下的电阻转变的温度依赖关系

利用方程(12)得到不同磁场下各向异性超导体 T1-2212 薄膜电阻转变的标度曲线,结果如图 3.不同 磁场下所有的电阻转变曲线都归一到同一条普适标 度曲线上.在标度过程中,我们发现标度结果对参数 T_x 的依赖非常微弱,因此我们直接用 T_c 作为标度 参数,这也与我们在方程(12)中的假设一致.同时, 普适标度曲线在很宽的范围内(1 < X < 30)都能用 Halperin-Nelson 关系描述,其拟合的参数为 $R_n = R$ (T = 125K,H = 0),以及 A = 4.8.这一标度结果说明 我们提出的修正的 KT 相变模型能够很好地描述各 向异性超导体的电阻转变曲线,它与库仑气体标度

图 2 H-T 相图上的 KT 相变温度与磁场的函数关系(实线是根 据方程(10)的拟合结果)

模型和 Halperin-Nelson 关系具有一致性.

图 3 不同磁场下的电阻转变曲线的标度结果(实线是利用 Halperin-Nelson 关系拟合的结果)

我们提出的修正的 KT 相变模型还可以通过计 算平均钉扎高度来检验.根据方程(8),平均钉扎高 度 U₀ 可以表示为

$$U_0 = \frac{k_{\rm B}T}{1 + (\ln(R/R_{\rm n})/Bz)^2}.$$
 (13)

因此,平均钉扎高度可以通过电阻转变曲线 *R(T*, *H*)直接计算得出.不同磁场下的平均钉扎高度计算 结果如图 4 所示.可以看出,不同磁场下的平均钉扎 高度 *U*₀与温度之间具有很好的线性关系,可以用方 程(9)来描述.这一结果直接说明我们提出的修正 的 KT 相变模型中的假设(方程(9))是和实验结果 相符合的,表明实验结果支持修正的 KT 相变模型.

图 4 不同磁场下(从左到右 H = 7 5 3,1 0.5 T)的平均钉扎高 度与温度的依赖关系(实线是线性拟合的结果)

5. 结 论

对于各向异性的高温超导体,在关联长度中引入热激活能和平均钉扎高度,提出了修正的 KT 相 变模型.该模型与库伦气体标度模型和 Halperin-Nelson 关系具有一致性.修正的 KT 相变模型应用于 磁场下 TI-2212 薄膜电阻转变曲线的标度行为研究. 由电阻转变曲线计算得到的平均钉扎高度与温度具 有线性依赖关系,结果支持修正的 KT 相变模型.

本文的写作过程中得到了邵惠民教授的热情帮助和悉 心指导,在此表示衷心感谢.

- [1] Lobb C J 1987 Phys. Rev. B 36 3930
- [2] Blatter G, Feigel 'man M V, Geshkenbein V B, Larkin A I, Vinokur V M 1994 Rev. Mod. Phys. 66 1125
- [3] Safar H , Gammel P L , Huse D A , Bishop D J , Rice J P , Ginsberg D M 1992 Phys. Rev. Lett. 69 824
- [4] Welp U, Fendrich J A, Kwok W K, Crabtree G W, Veal B W 1996 Phys. Rev. Lett. 76 4809
- [5] Houghton A, Pelcovits R A, Symo A 1989 Phys. Rev. B 40 6763

- $\left[\begin{array}{c} 6\end{array}\right] \quad Fisher D S$, Fisher M P A , Huse D A 1991 Phys . Rev . B ${\bf 43}$ 130
- [7] Koch R H, Foglietti V, Gallagher W J, Koren G, Gupta A, Fisher M P A 1989 Phys. Rev. Lett. 63 1511
- [8] Wen H H , Radovan H A , Kamm F M , Ziemann P , Yan S L , Fang L , Si M S 1998 Phys. Rev. Lett. 80 3859
- [9] Kosterlitz J M , Thouless D J 1973 J. Phys. C 6 1181
- [10] Halperin B I, Nelson D R 1979 J. Low Temp. Phys. 36 599
- [11] Brandt E H 1995 Rep. Prog. Phys. 58 1465

7期

- [12] Cohen L F , Jensen H J 1997 Rep. Prog. Phys. 60 1581
- [13] Minnhagen P 1987 Rev. Mod. Phys. 59 1001
 Minnhagen P , Olsson P 1991 Phys. Rev. Lett. 67 1039
 Minnhagen P 1991 Phys. Rev. B 44 7546
 Minnhagen P , Olsson P 1992 Phys. Rev. B 45 5722
- [14] Weber H, Minnhagen P 1988 Phys. Rev. B 38 8730
 Weber H, Wallin M, Jensen H J 1996 Phys. Rev. B 53 8566
- [15] Jensen H J, Minnhagen P 1991 Phys. Rev. Lett. 66 1630
- [16] Zhang Y Z, Deltour R, Zhao Z X 2000 Phys. Rev. Lett. 85 3492
- [17] Schneider T, Singer J M 2000 Phase Transition Approach to High Temperature Superconductivity, Universal Properties of Cuprate

Superconductors (London : Imperial College) p147

- [18] Espinosa A B , Andersson M 2005 Phys. Rev. B 71 024507
- [19] Rydh A, Rapp Ö, Andersson M 1999 Phys. Rev. Lett. 83 1850
- [20] Andersson M , Rydh A , Rapp Ö 2001 Phys. Rev. B 63 184511
- [21] Warmont F, Hardy V, Provost J, Grebille D, Simon C 1998 Phys. Rev. B 57 7485
- [22] Warmont F, Goupil C, Hardy V, Simon C 1998 Phys. Rev. B 58 132
- [23] Shan L, Yau J K F, Jin X, Lu R T, Fang L, He M, Yan S L, Kang L, Shan W L, Wu P H 2001 Supercond. Sci. Technol. 14 457

Modified Kosterlitz-Thouless transition model for the temperature dependence of the resistivity of anisotropic superconductors

Ji Gao-Feng¹) Liu Sheng-Li²)

1) Department of Information Science, Jiangsu Polytechnic University, Changzhou 213164, China)

2) College of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)

(Received 25 January 2007; revised manuscript received 11 February 2007)

Abstract

Based on the Kosterlitz-Thouless (KT) phase transition model of two-dimensional systems, by introducing the thermal activation energy and the mean height of the pinning landscape into the correlation length, a modified KT transition model has been proposed to study the temperature dependence of the resistivity transition in anisotropic superconductors. This modified KT transition model is consistent with the Coulomb-Gas (CG) scaling law and the Halperin-Nelson relation. And it is applied to study the scaling behavior of the resistivity transition of $Tl_2 Ba_2 CaCu_2 O_x$ (Tl-2212) thin film under various intensities of magnetic field. The calculated mean height of the pinning landscape from the resistivity curve depends on the temperature linearly, which supports the proposed model.

Keywords : scaling behavior , anisotropic superconductor , resistivity transition **PACC** : 7530G , 7475 , 7430F , 7460E